

Bilaterale INFN - IN2P3

(SUB-KELVIN) CRYOGENIC DETECTORS IN FRANCE

MONFARDINI Alessandro Institut Néel - CNRS Grenoble

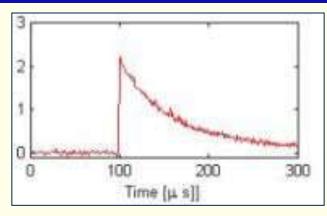
Bilaterale INFN - IN2P3

<u>MENU</u>

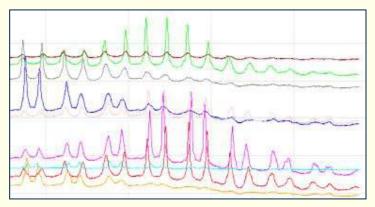
- MOTIVATIONS FOR SUB-KELVIN LTD (LOW TEMPERATURE DETECTORS)
- SCIENCE DRIVERS IN A NUTSHELL
- EXAMPLES OF FRENCH LTD
- ONGOING / FUTURE / IT-FR LINKS

MONFARDINI Alessandro Institut Néel - CNRS Grenoble

ENERGY/POWER versus TIME


Single Events:

- Photomultipliers
- X-ray detectors
- Particles, Rare events ...


Continuum:

- IR cameras
- mm and THz

Triggering

Both plots taken with the same detectors

Recording

Characterised by:

- Detection threshold
- Speed (counting)
- Pulse(s) shape(s)
- Energy resolution (ΔE or ΔE/E)

Characterised by:

- NEP

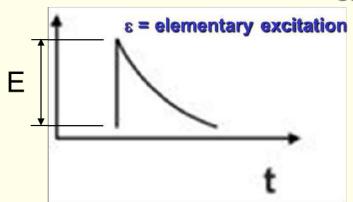
(Noise Equivalent Power)

- Sampling rate
- 1/f knee ...

WHY SUB-KELVIN

- TO detect/measure tiny amounts/variations of power (aW/Hz $^{0.5}$), targeting the ultimate photon-noise limit \rightarrow RECORD A TIMELINE
- TO measure **very precisely** small amounts of deposited energy, targeting the ultimate the <u>phonon-noise limit</u> → TRIGGER A PULSE

Both these ultimate limits have been achieved a long ago in several domains and on single detectors/pixels .. well not so long ago


HOWEVER:

- EVERY MODERN/FUTURE APPLICATION REQUIRES A LARGE NUMBER OF DETECTORS → PARALLELISATION
- NEW FUNCTIONALITIES ARE ADDED, e.g. SMART PIXELS

QUANTUM RULERS

Whole point is to reduce the energy associated to the "elementary excitation".

$$\Rightarrow$$
 N = E/ ϵ

$$\Rightarrow \sqrt{N} = \sqrt{E/\epsilon}$$

 \Rightarrow Energy Resolution $\propto \sqrt{\epsilon}$

 $\Rightarrow \epsilon$ to be MINIMIZED

→ Cooper-pair-breaking detectors (gap ≈ 3.5·kT_c)

$$T_{base} \ll T_{c}$$

→ Bolometers (phonon energy ≈ kT)

Big advantage of bolometers: working temperature is a "free" parameter

Big advantage of pair-breaking detectors: design not driven by thermal constrains

Independent "practical" limitation: multiplexing

OTHER REASONS TO GO SUB-K

THE MOST OBVIOUS, IF JOKING, ARE:

- BEING A LITTLE MASOCHIST
- POSSESSING BLUEFORS OR OXFORD SHARES

THE REAL MESSAGE IS:

"BEFORE DOING THINK TWICE .. DO I REALLY NEED IT?"

KEY ENABLING TECHNOLOGIES

THE TECHNOLOGICAL CONDITIONS, IN FRANCE, PROVIDED FERTILE GROUND FOR OUR DEVELOPMENTS

IN PARTICULAR, among others:

- CRYOGENICS. Historically developed starting from the Grenoble area.
 Examples: Planck (CNRS/Air Liquide), Herschel (CEA), NIKA2 (CNRS), BICEP (CEA)
- MICROFABRICATION. Hubs in Saclay, Grenoble, Lille ... The CNRS platforms are working as a single network (RENATECH). CEA-LETI is the biggest center in France and made the Herschel detectors.
- ELECTRONICS. Several excellence centers: Paris, Lyon, Grenoble, Toulouse, Bordeaux and others

KEY ENABLING TECHNOLOGIES

THE TECHNOLOGICAL CONDITIONS, IN FRANCE, PROVIDED FERTILE GROUND FOR OUR DEVELOPMENTS

IN PARTICULAR, among others:

- CRYOGENICS. Historically developed starting from the Grenoble area. Examples: Planck (CNRS/Air Liquide), Herschel (CEA), NIKA2 (CNRS), BICEP (CEA). Conservation of Momentum?
- MICROFABRICATION. Hubs in Saclay, Grenoble, Lille ... The CNRS platforms are working as a single network (RENATECH). CEA-LETI is the biggest center in France and made the Herschel detectors.
- ELECTRONICS. Several excellence centers: Paris, Lyon, Grenoble, Toulouse, Bordeaux and others

SCIENCE DRIVERS: PARTICLE PHYSICS

A COUPLE KEY QUESTIONS TO BE ADDRESSED

- What is the dark matter?

Observable: unexplained events

- The nature of the neutrino, the Physics beyond the Standard Model ...

Observable: "forbidden" nuclear reactions, neutrino coherent interactions

e.g. DARK MATTER SEARCH

→ EDELWEISS heritage

e.g. NEUTRINOLESS DOUBLE-BETA

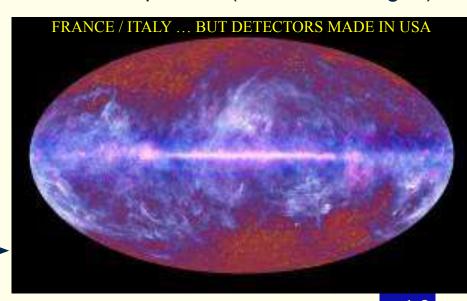
→ CUORE heritage

e.g. COHERENT NEUTRINO SCATTERING

→ EDELWEISS heritage

SCIENCE DRIVERS: ASTROPHYSICS

A COUPLE KEY QUESTIONS TO BE ADDRESSED


- Did inflation occur soon after the Big Bang?
 Observable: the Cosmic Microwave Background polarised pattern (CMB, T = 2.7K)
- How the Universe structures formed?
 Observable: early evolution stages of galaxies, stars, planets (cold dust and gas)

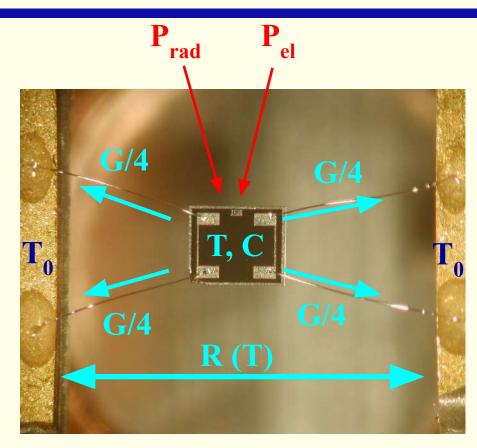
e.g. MILLIMETRE ASTRONOMY

Blackbody's Wien law ($\lambda = 1$ mm $\equiv 5$ K)

□ mm-waves ≡ «Cold» radiation

The millimetric Sky surveyed by Planck

BOLOMETERS (MIS, TES, MMC)

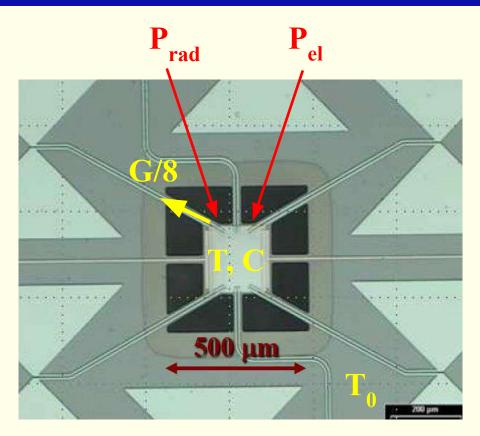

Measurable: R (or any other electrical quantity function of T)

CALIBRATION

End result □ P_{rad}

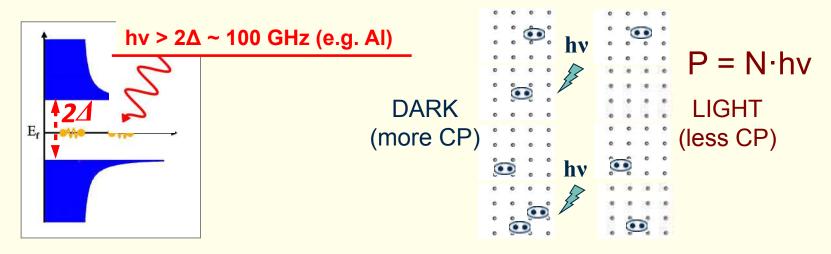
A real « vintage » bolometer from the 90s

BOLOMETERS (MIS, TES, MMC)


Measurable: R (or any other electrical quantity function of T)

CALIBRATION

End result □ P_{rad}


From the 2000s ... microfabricated

P.S. Reality is EVEN more complicated than that.

SUPERCONDUCTING COOPER-PAIRS COUNTING

 2Δ (Al) ~ 0.8 meV \rightarrow A single "red photon" brakes ~ 10^3 CP

GOAL: count the Cooper pairs ... to deduce how many are missing

HOW: measure their total kinetic energy

□ MEASURE THE INDUCTANCE OF A FILM

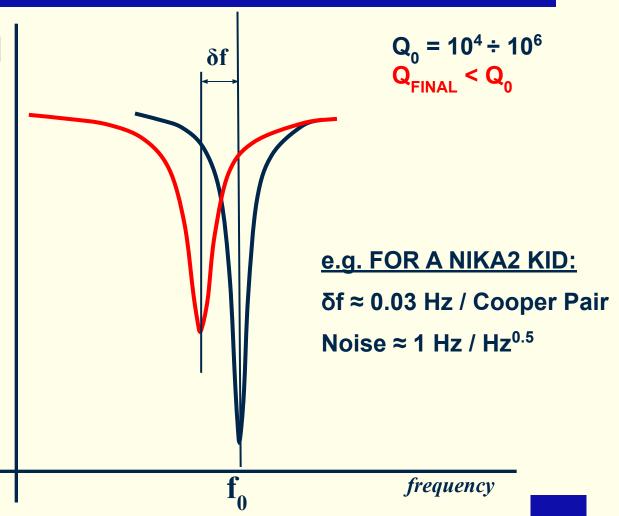
Kinetic Inductance Detectors (KID)

KINETIC INDUCTANCE DETECTOR

|S21|

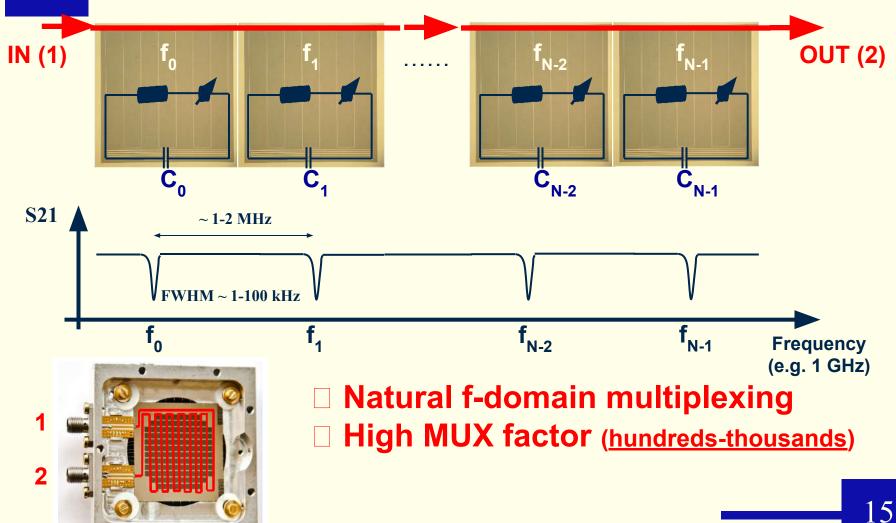
DARK:

- $-T << T_c \sim 1 \text{ K}$
- deep & sharp resonance
- frequency \Box $\mathbf{f_0}$


LIGHT:

- shallow & broad resonance
- frequency \Box \mathbf{f}_0 $\delta \mathbf{f}$

Large dynamics (linear!):


 $\delta f \propto \delta L_{\kappa} \propto \delta P$

APL 96, Issue 26, 263511 (2010)

RF MULTIPLEXING (APPLICABLE TO KID & BOLOMETERS)

ALL THIS IN FRANCE

BOLOMETERS

PAIR-BREAKING

SINGLE EVENTS

High-impedance (Si:P:B, NTD*) KID (TiN, Ti)

TES (NbSi) KID (Al, AlTiAl)

MMC (Au/Ag:Er*)

High-impedance TES (NbSi)

CONTINUUM

MIS (Si:P:B) KID (Al, TiAl, ...)

TES (NbSi)

^{*} Commercial or "from collaborations" thermistors

... FOR THESE APPLICATIONS

PARTICLE PHYSICS

Dark Matter search, e.g. m_{DM} ~ n,p Neutrinoless Double Beta Decay Coherent Neutrino scattering

ASTROPHYSICS

VIS-NIR, e.g. Dwarf galaxies Sub-mm, e.g. Interstellar dust Millimeter, e.g. Cosmology X-rays, e.g. Compact objects

OTHER:

Metrology-Standards (gamma/x energy references)

17

DEPLOYED EXPERIMENTS

PARTICLE PHYSICS

France (ILL-RICOCHET)

France (LSM-EDELWEISS)

France/Spain (Canfranc-CROSS)

Italy (Gran Sasso-BULLKID-DM)

Italy (Gran Sasso-CUPID)

ASTROPHYSICS

Deep Space (Herschel)

Spain (NIKA, NIKA2)

Argentina (QUBIC)

Chile (Artemis, CONCERTO)

Tenerife (KISS)

Japan (Tsukuba-Grenoble)

High atmosphere (PILOT)

DEEP UNDERGROUND REACTOR (NEUTRINOS) HIGHEST PLATEAUX BALLOONS & SPACE

TECHNOLOGY PLATFORMS

BOLOMETERS

OTHERS?

CEA-LETI (MIS, SUB-MM & X)
ICJLAB* (MIS-TES, DM, v, CMB)
C2N-ICJLAB (TES, CMB)
NANOFAB-NEEL (MIS et al.)

* Non-standard processing, e.g. side-lithography

<u>KID</u>

PTA-GRENOBLE (MM-WAVE & DM)

PARIS OBSERVATORY (VIS-NIR)

IEMN-LILLE (MM-WAVE)

NANOFAB-NEEL (MM-WAVE)

IRAM (MM-WAVE)

FOCUS ON DETECTORS FABRICATION

OTHER LABS LIKE IP2I LYON, CEA-SACLAY, APC-PARIS, LPSC, IRAP ET AL. ARE MORE INVOLVED IN DESIGN, PACKAGING, ELECTRONICS, SYSTEM IN GENERAL AND SCIENCE EXPLOITATION.

→ THE FULL CHAIN IS NEEDED

Ricochet @ ILL (Grenoble)

- ◆ Coherent Elastic Neutrino Nucleus Scattering (CEVNS) measurement
- ~5 MeV ν from 60 MW Reactor @ ILL
- → ~100 eV nuclear recoll in Ge
- Installed end of 2023 Science Runs started summer 2005 for 2 years
- ◆ Heat-and-ionization cryogenic Ge detectors from EDELWEISS legacy

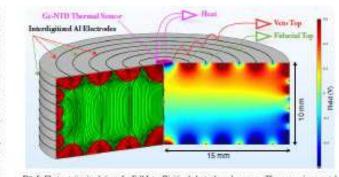
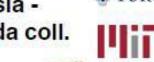
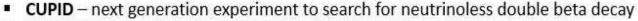



Fig. 6. Electrostatic simulation of a Full Inter-Distinct electrodes scheme on a 38 g germanium crystal # = 30 g, h = 10 mm).

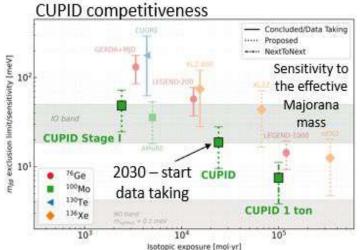
Background mitigation based on :


- ◆ Electronic/Nuclear recoll discrimination
- 22 tons 300K and 1K Pb & PE shielding
- 35 m² Full muon veto coverage (incl. cryo veto @ 4K)
- ◆ Reactor ON/OFF cycles
 - → Commissioning paper arXiv:2507.22751 (accepted in PRD) 1

NEUTRINO-LESS 2β DECAY

See Pia Loaiza talk

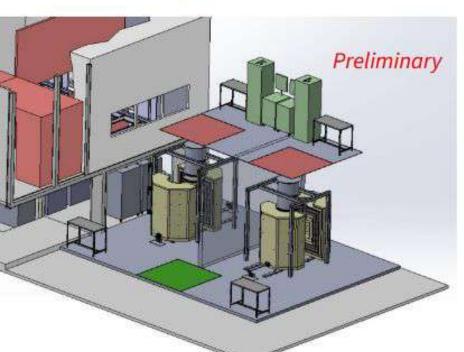
CUPID – CUORE Upgrade with Particle IDentifications


- Investigate the candidate ¹⁰⁰Mo embedded in enriched Li₂ ¹⁰⁰MoO₄ crystals
- Based on scintillating bolometers of Li₂MoO₄ with powerful rejection of α background
- Built on the successful **CUORE** and **CUPID-Mo** experiments
- CUORE will provide the cryogenic infrastructure at LNGS (INFN), CUPID-Mo have demonstrated the technology at LSM
- About 1600 detectors containing 240 kg of ¹⁰⁰Mo → realistic expansion to 1 ton

Major collaboration with INFN within the CUPID international collaboration

INFN: cryogenic infrastructure, assembly line, electronics, cleaning and other major components France (IJCLab+IRFU): light detectors, assembly elements (storage, gluing), part of electronics

tower tested

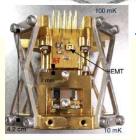


DARK MATTER: TESSERACT

Transition Edge Sensor with Sub-Ev Resolution And Cryogenic Targets

One experimental design, two cryostats, several targets:

- SPICE (Al₂O₃ and GaAs)
- HeRALD (LHe)
- Ge/Si bolometers

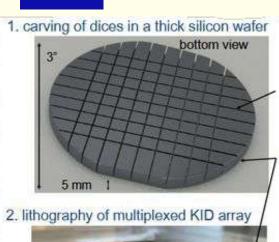


All equipped with new generation TES

Complementary DM sensitivity Commissioning at Laboratoire Souterrain de Modane

The French TESSERACT technologies

- HV with single-e/h sensitivity for electron-recoil DM search
- LV with dual phonon-ionization readout for nuclear-recoil DM search



DARK MATTER: BULLKID-DM

4.5 mm deep grooves

- 6 mm pitch
- chemical etching

0.5 mm thick common disk:

- holds the structure
- hosts the KIDs

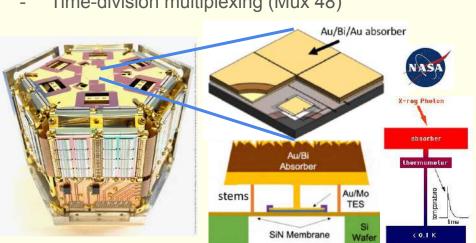
- 60 nm aluminum film
- 60 KIDs lithography

PROTOTYPE WILL BE INSTALLED IN GRAN SASSO. See Giorgio's talk later.

OUR **BIG HOPE**: REDUCED LOW-ENERGY "HEAT-ONLY" EXCESS THANKS TO THE SUPERCONDUCTING GAP "QUANTUM SHIELD".

LET SEE ... ALONE, A GOOD REASON TO DO THE EXPERIMENT.

HIGH-ENERGY ASTRONOMY

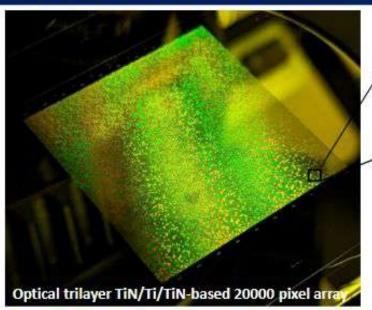

The NewAthena space observatory (X-IFU)

Large class ESA mission. Launch: 2037

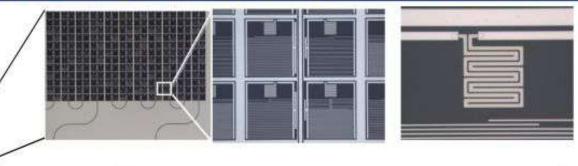
X-ray integral field unit (X-IFU):

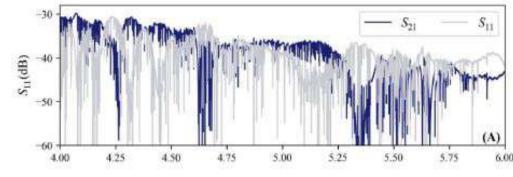
- **1500 TES** μ-calorim @ 50 mK
- $\Delta E < 4 \text{ eV} @ 6 \text{ keV} (first demo 2025 < 2.5 \text{ eV})$
- Time-division multiplexing (Mux 48)

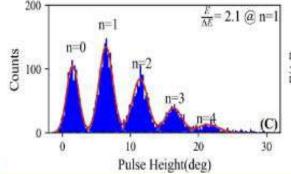
Warm Readout developed in France



AwaXe SiGe ASIC family developed for X-IFU warm front-end (WFEE)

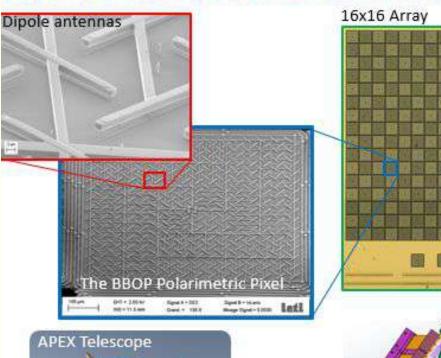

VIS-NIR ASTRONOMY


Project: SPIAKID (Spectro-Photometric Imaging in Astronomy with Kinetic Inductance Detectors)



- Based on Sapphire
- Pixel distance: 180um
 - Angular resolution of 0.45"
- Meander size about 35x35 um
- Change of finger length larger than 1 um
- Frequency: 4-8GHz
- 2000 pixels per readout line
- Q_c~50000

J. Low Temp. Physics, 2024
Applied Physics letters, 2024



SUB-MM ASTRONOMY

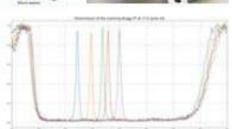
Bolometers for submillimeter astrophysics

POLARYS Focal Plane

Development of High-sensitivity Silicon bolometers with polarimetric capacity

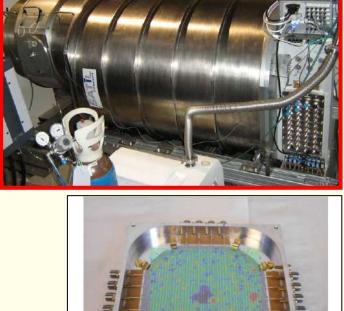
- Development initiated as part of the ESA SPICA Space Mission (2017 - 2021) for the BBOP imaging polarimeter
- · BBOP detectors are intrinsically sensitive to the polarization of light: 2 independant networks of antenna per pixel detect 2 orthogonal components of polarized light, no need for a rotating HWP for modulation.
 - We are developing the POLARYS camera at APEX telescope, that will use BBOP detectors at 350 µm.

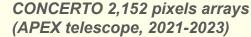
Development of on-chip spectroscopy in the submillimeter range


Cryogenic Silicon Fabry Perot



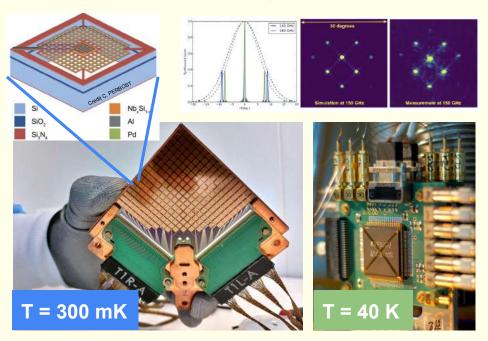
Stationary array of Fabry-Perot made of microstructured Si

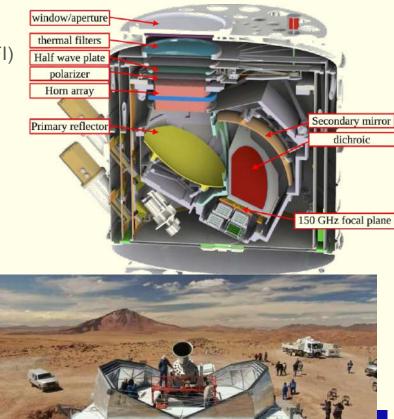

MM-WAVE ASTRONOMY & COSMOLOGY


NIKA2@30-m (right) is, since 2015, mapping with unprecedented resolution and depth patches of the Sky at 150 and 250 GHz. "Vanta innumerevoli tentativi d'imitazione".

concerto@APEX (<u>left</u>) has carried out, in the period 2021-23, the first LIM of the high-z [CII] line. Setting a first upper limit to be (hopefully) improved by second generation instruments, e.g. CCAT/FYST, NIKONA, TIME, TIFUUN, SPT-SLIM and many others.

NIKA2 mapping a high-z galaxy cluster. 30-m IRAM telescope Pico Veleta)

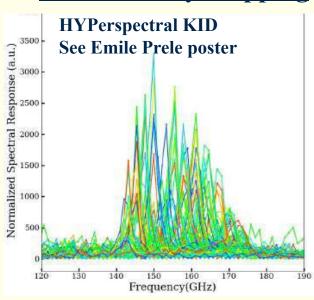

https://www.eso.org/sci/publications/announcements/sciann17736.html

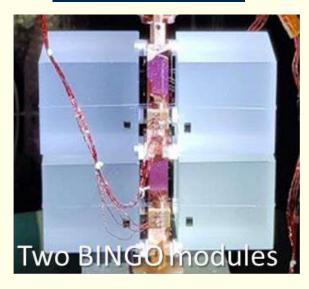


CMB POLARISATION

QUBIC (QU Bolometric interferometer for cosmology)

- **Spectral information** from interference side lobes
- **256 NbSi TES** @ 150 GHz currently deployed (1/4 of FI)
- Time division multiplexing (MUX 128) with cold ASIC



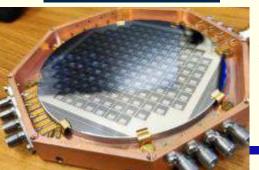


ON-GOING* .. **JUST A SMALL TASTE**

Line Intensity Mapping

DOUBLE-BETA

CMB



TESSERACT

BULLKID-DM

See G. Del Castello and Paul Vittaz talks

CONCLUSIONS AND THANKS

The border between Italy and France is extremely porous.

→ SYNERGIES & CONSTRUCTIVE COMPETITION

The **French LTD community** is positively (hopefully) contaminated. The dopants are Claudia Nones, Silvia Scorza, Valentina Novati, Martino Calvo, Andrea Giuliani+Catalano, Emiliano Olivieri, myself, <u>and others (sorry!)</u>

A number of **Italian LTD researchers** have on the other hand worked in France. They brought a bit of France across the Alps. Andrea Tartari, Angelo Cruciani, Antonio D'Addabbo, Daniele Delicato, and so many others (sorry!)

FIND THE ERROR .. AND THANKS FOR YOUR ATTENTION !!