

Performance of the High-Angle Time Projection Chambers in the Upgraded T2K **Off-Axis Near Detector ND280**

Lavinia Russo on behalf of the T2K HA-TPC WG

IRN Neutrino meeting 2025, Lyon

The T2K Experiment a long-baseline neutrino oscillation experiment

Tokai To Kamioka

The T2K Experiment a long-baseline neutrino oscillation experiment

Tokai To Kamioka

The T2K Experiment a long-baseline neutrino oscillation experiment

The ND280 upgrade

- **P0D** : precisely **quantify** the π^0 production in neutrino interactions (main **background** to ν_{ρ} appearance)
- **P0D** did **not** play an **important role anymore** because of :
 - ° large θ_{13}
 - ° improvement in reducing $NC\pi^0$ background at SK
 - ^o precise knowledge of π^0 cross section

Lavinia Russo

*UA1 magnet inherited from UA1 experiment

The ND280 upgrade

- **P0D** : precisely **quantify** the π^0 production in neutrino interactions (main **background** to ν_{ρ} appearance)
- **P0D** did **not** play an **important role anymore** because of :
 - ° large θ_{13}
 - ° improvement in reducing $NC\pi^0$ background at SK
 - ^o precise knowledge of π^0 cross section

Lavinia Russo

*UA1 magnet inherited from UA1 experiment

The ND280 upgrade the motivations

reduce the ~400 MeV/c reconstruction momentum 0 threshold and increase the interaction probability

Lavinia Russo

T2K's novel detector concept :

• 2 million plastic scintillating cubes read out with WLS fibers

• sub ns time resolution per cube

^o 1 cm 3D granularity \Rightarrow reconstruct short tracks

^o 3 projections \Rightarrow isotropic tracking

The ND280 upgrade the motivations

- reduce the ~400 MeV/c reconstruction momentum threshold and increase the interaction probability
- ° reproduce the 4π angular acceptance of the far detector

Lavinia Russo

The ND280 upgrade 2 nice event displays

ND280 upgrade is **installed** and **fully operational** since **November 2024**

- $^{\circ}$ ν interactions in the **new target** SFGD
- SFGD high granularity allows to see proton (short) tracks
- $^{\rm O}$ in $\bar{\nu}$ mode it is possible to measure neutrons kinematics by time of flight
- full angle coverage thanks to top and bottom HA-TPC
- forward going tracks are matched with the downstream tracker

The High-Angle TPCs of upgraded near detector of T2K

Introduction

The High-Angle TPC

Lavinia Russo

• box-like shape **gaseous detector** (Ar:CF₄:iC₄H₁₀ = 95:3:2)

• (uniform) \overrightarrow{E} in **X-direction**, (uniform) \overrightarrow{B} in **X-direction**: charged particles curve in the (Z,Y) plane

• cathode in the middle: 2 EPs* for each HAT where the drifted electrons arrive

8 ERAMs* for each EP: new read-out system, upgrade of the bulk Micromegas

• **1152 pads** for each ERAM organised in a 32 x 36 matrix

The Resistive Anode Micromegas of the HA-TPCs the bulk Micromegas upgrade

In both **bulk** and **resistive Micromegas**:

- drifted electrons arrive to the anode plane
- the signal goes through an **avalanche** process
- the signal arrives to the **pad** where it is read-out

The Resistive Anode Micromegas of the HA-TPCs

- **signal** on the anode plane is **spread over multiple pads**
- the combination of information form the leading pad and its neighbours allows for a more precise **reconstruction** of the **initial particle**
- **spatial resolution** is **improved** compared to bulk Micromegas

The performance of the HA-TPCs

HA-TPCs perfomance

- spatial resolution (SR)
 - **related** to the **momentum** resolution
 - better SR \Rightarrow more precise momentum estimation Ο
 - requirement: momentum resolution $< 10\% \Rightarrow$ SR < 0.6 mm Ο

• dE/dx resolution

- Ο
- better dE/dx res \Rightarrow more **reliable PID** Ο
- requirement: dE/dx resolution < **10%** 0

is used in combination to the momentum to evaluate the likelihood of the particle being an e^- , μ^- or a p

dE/dx vs momentum beam data + MC predictions

Lavinia Russo

• compatibility with what we expect to have in both negative and positive tracks

dE/dx resolution beam and cosmic: data and MC comparison

- 0
- general trend: dE/dx resolution gets better with momentum
- **discrepancy** between data and MC (max 17%)
- both cosmic and beam **meet** the **requirements** (10%)

beam (horizontal tracks, longer) have better resolution than cosmic (vertical, shorter)

spatial resolution vs drift distance beam and cosmic: data-MC comparison

- expected **dependence** on **drift** (diffusion effects)
- low drift distance: good agreement between data and MC in both beam and cosmic 0
- ^o spatial resolution in data better than 0.5 mm \rightarrow meet the requirements (0.6 mm)

Lavinia Russo

• high drift distance: MC overestimates the spatial resolution (bigger effect in the cosmic case)

spatial resolution vs angle data-MC comparison

- to better determine the initial deposit position we group pads into clusters (leading pad + its neighbours)
- different track **orientation** \Rightarrow different **clustering**
- vertical clustering is optimised for horizontal tracks: the less a track is horizontal, the less the clustering is adapted
- in general the **best clustering** is the one more perpendicular to the track

Electric and magnetic field non uniformities in the HA-TPCs

The $\overrightarrow{E} \times \overrightarrow{B}$ effect

- \overrightarrow{B} is **nominally** (0.2T, 0, 0), \overrightarrow{E} is **nominally** (275V/cm, 0, 0): the electrons drift in the Xdirection, the charged particles have a curvature in the (Z,Y) plane
- \overrightarrow{E} and \overrightarrow{B} non-uniformities have been observed: E_v, E_z, B_v and B_z are **<u>actually</u>** different from zero
- these non-uniformities affect the electrons' drift through the anode plane

$$\overrightarrow{V_d} = \frac{\mu}{1 + (\omega\tau)^2} \left(\overrightarrow{E} + (\omega\tau) \frac{\overrightarrow{E} \times \overrightarrow{B}}{|\overrightarrow{B}|} + (\omega\tau)^2 \frac{(\overrightarrow{E} \cdot \overrightarrow{B}) \overrightarrow{B}}{|\overrightarrow{B}|^2} \right)$$

- \overrightarrow{B} is **nominally** (0.2T, 0, 0), \overrightarrow{E} is **nominally** (275V/cm, 0, 0): the electrons drift in the Xdirection, the charged particles have a curvature in the (Z,Y) plane
- \overrightarrow{E} and \overrightarrow{B} non-uniformities have been observed: E_v, E_z, B_v and B_z are **actually** different from zero
- these non-uniformities affect the electrons' drift through the anode plane

$$\overrightarrow{V_d} = \frac{\mu}{1 + (\omega\tau)^2} \left(\overrightarrow{E} + (\omega\tau) \frac{\overrightarrow{E} \times \overrightarrow{B}}{|\overrightarrow{B}|} + (\omega\tau)^2 \frac{(\overrightarrow{E} \cdot \overrightarrow{B}) \overrightarrow{B}}{|\overrightarrow{B}|^2} \right)$$

B_{v} on the (Z,Y) plane

- in this case the **reconstructed track** image on the anode plane is more curved than the original track in the interaction plane
- ^o in order to **correct** for the $\overrightarrow{E} \times \overrightarrow{B}$ effect, the collected electrons on the anode plane are *drifted back in the* past in the interaction plane using already existing B^{2} maps

- even without \overrightarrow{B} field the tracks were still curved
- assumptions: homogeneous Efield, cage gaps not modelled
- the actual geometry has been implemented in COMSOL and E maps have been produced
- corrections were performed using *E* maps

23

Systematics on p reconstruction due to distortions in the HA-TPCs the strategy

- in order to investigate the effect of $\vec{E} \times \vec{B}$ correction a **separate track fit** was implemented for the **first** half and the second half of the track \rightarrow pl and pr
- we reconstructed beam data and simulations selecting long tracks crossing the whole EndPlate and comparing p and p with and without $\overrightarrow{E} \times \overrightarrow{B}$ correction

Systematics on p reconstruction due to distortions in the HA-TPCs (p_L - p_R)/p_R vs p in MC

- **bias** and **resolution** on $(p_L p_R)/p_R$ are evaluated in function of p for the 4 EP (different colours)
- without $\overrightarrow{E} \times \overrightarrow{B}$ corrections:
 - bias has a negative trend
 - p resolution increases with p (up to 35%)
- with $\overrightarrow{E} \times \overrightarrow{B}$ corrections:
 - \circ bias is constantly ~ 0
 - p resolution increases with p (up to 23%)

Lavinia Russo

Systematics on momentum reconstruction due to distortions in the HA-TPCs $(p_L - p_R)/p_R vs p in data$

- bias and resolution on (p_L p_R)/p_R are evaluated in function of p for the 4 EP (different colours)
- without $\overrightarrow{E} \times \overrightarrow{B}$ corrections:

- similar trend seen in MC for both p bias and resolution
- with $\overrightarrow{E} \times \overrightarrow{B}$ corrections:
 - bias is reasonably well corrected for 3 out of 4 EPs, residual bias for top X<0 EP
 - top X<0 EP has the worst p resolution

Lavinia Russo

Conclusions

- T2K ND280 Upgrade is installed and fully operational
- High-Angle TPCs' performance :
 - meet the requirements on both spatial resolution and dE/dx resolution
 - ^o little discrepancies in data and MC \Rightarrow room for improvement !
- \vec{E} and \vec{B} fields non-uniformities in the High-Angle TPCs were observed: lot of work (and improvements) have been made to correct for the induced $\overrightarrow{E} \times \overrightarrow{B}$ effect:
 - $\overrightarrow{B} :$ inhomogeneities from UA1 magnetic field \Rightarrow extrapolation of \overrightarrow{B} maps in the HA-TPC region \Rightarrow correction drifting back electrons in the interaction plane
 - \overrightarrow{E} : curvature was observed without $\overrightarrow{B} \Rightarrow \overrightarrow{E}$ maps got from COMSOL \Rightarrow curvature sensitively reduced
 - o studies on the systematics on momentum reconstruction show that the applied corrections work reasonably well

Grazie per l'attenzione !

Backup slides

- in order to correct for the $\vec{E} \times \vec{B}$ effect, the collected electrons on the anode plane are drifted "back in the past" in the interaction plane
- this drift is performed using the detector B' map

Lavinia Russo

- even without \overrightarrow{B} field the tracks were still curved
- assumptions: homogeneous Efield, cage gaps not modelled
- the actual geometry has been implemented in COMSOL and E maps have been produced
- corrections were performed using *E* maps

HA-TPCs perfomance collected data tracks types

Lavinia Russo

We collect data of 2 types:

cosmic muons

• beam data:

cosmic muons 0

• sand muons

muons from neutrino interactions in ND280

Ζ

HA-TPCs perfomance collected data tracks types

Lavinia Russo

We collect data of 2 types:

- cosmic data:
 - cosmic muons

vertical tracks

• beam data:

- cosmic muons 0
- sand muons
- muons from neutrino interactions in ND280

horizontal tracks

IRN Lyon - June 2025

Ζ

momentum resolution

3 type of MC (at p = 1 GeV/c)

- vertical tracks (the shortest)
- diagonal tracks
- horizontal tracks (the longest) \rightarrow better momentum resolution

IRN Lyon - June 2025

34

The High-Angle TPC Time Projection Chamber working principle

- a **charged particle** crosses the TPC
- it ionizes the gas the **ionization electrons** that **drift** towards the **anode plane**
- a 2D projection of the track on the read-out plane is produced
- the **drift time** can be used to reconstruct the 3rd dimension
- the momentum and charge can be determined based on the track curvature produced by $B^{'}$

How to get the spatial resolution ?

- o each track is fitted with a circle/parabola
- for each cluster in the track compute the residuals:

$$res = \sqrt{(z_{rec}^{cluster} - z^{track fit})^2 + (y_{rec}^{cluster} - y^{track fit})^2 - R}$$

- ^o fill a histogram with *res* from all the tracks
- o fit the histogram with a gaussian
- ° SR = σ from the fit

How to get the dE/dx resolution ?

Lavinia Russo

