

Chiara Lastoria (lastoria@lpccean.in2p3.fr) LPC/CNRS, Caen (France)

IRN Meeting, Lyon, 13/06/2025

EXPLORING ν_{τ} APPEARANCE MEASUREMENTS IN KM3NeT/ORCA

Outline

- Why studying $u_{ au}$ is important?
- The KM3NeT experiment
- First ν_{τ} -appearance analysis with KM3NeT/ORCA 6
- $\odot \nu_{\tau}$ -normalization as a proxy of the cross-section measurement
- O test of the 3ν -flavor paradigm (non-unitarity neutrino mixing)
- Summary and outlook

13.06.2025 - IRN Lyon - C. Lastoria

Why studying ν_{τ} ?

- still one of the less studied Standard Model (SM) particles (only ~2100 detected so far)
 - O relatively high **production threshold**
 - **O low cross-section**

Why studying ν_{τ} ?

• next-generation neutrino experiments aims at reaching sub-percent precision in oscillation parameters

 \bigcirc constraints on PMNS elements $\leq 10\%$

(< 1% in e-row, but ~ 10 % in τ -row)

O neutrino mixing non-unitarity extensions to explore Beyond Standard Model (BSM) physics

<u>Complementarity: different energy scale and sensitivity to BSM parameters</u>

• long-baseline accelerator neutrino experiments (e.g.OPERA, DUNE, HK)

- O remarkable event reconstruction
- atmospheric neutrino experiments (e.g. SK, IceCube, KM3NeT/ORCA)

O larger statistics (e.g. ~3000 ν_{τ} / year, in KM3NeT/ORCA)

The KM3NeT experiment

- Water Cherenkov neutrino telescope

A growing detector

- Flexible and robust data quality criteria for each detector configuration O stable detector operation, low-bioluminescence conditions, high-timing accuracy
- Two main topologies: **tracks** and **showers**
- **KM3NeT/ORCA 6**: many exploited novelties
 - O reconstruction of both **tracks** & **showers** (first time!)
 - O event selection using **machine learning** algorithms (e.g. BDT, RGS)
 - O opening to new oscillation analyses exploiting the shower topology

Event selection

- **BDT algorithm** for background rejection and track-shower separation O trained on MC (maximum likelihood variables) **O challenging classification** at low E (70% track-purity, ~30GeV)
 - O three classes: high/low purity track, and showers

			N	
	all events	showers*	tracks (HP)	tracks (L
MC	5831	1959	1870	2002
Data	5828	1958	1868	2002
		: •)	

(*expected $\nu_{\tau} = 185 \pm 1$ in the 3ν -paradigm)

• remarkable statistics: ν_{τ} identified as an excess in the shower class

 10^{-3}

Tracks

0.8

Track score

ν_{τ} normalisation fit in KM3NeT/ORCA 6

- 2D bin log-likelihood minimization of E_{reco} and $cos\theta_{reco}$ distributions
- oscillation hp \otimes flux model \otimes cross-section \otimes detector response
 - O assuming both normal and inverted ordering
 - $O \Delta m_{31}^2$ and θ_{23} free
 - ν_{τ} -normalization \bigcirc

n. of observed ν_{τ}

n. of expected ν_{τ} | tested osc. model

O two tested hypotheses

u_{τ} normalisation within the 3ν paradigm

a) S_{τ} : PMNS unitarity hypothesis

- $O \nu_{\tau}$ -norm. \neq 1, due to neutrino interaction modelization
- \bigcirc variation in ν_{τ} -CC rate
- $\odot \nu_{\tau}$ charge-current cross-section

Main sources of systematics

	Parameter	Constraint
	flux δ_{γ}	0.3
	shape $\delta_ heta$	2%
atmospheric neutrino flux	neutrino $s_{\muar\mu}$	5%
	composi S _{eē}	7%
	tion $s_{\mu e}$	2%
neutrino interactions	$f_{ m NC}$	20%
	light E_s	9%
	propag. $f_{ m HE}$	50%
	$f_{ m all}$	unconstrained
detector response	overall $f_{\rm HPT}$	unconstrained
	norms $f_{ m S}$	unconstrained
	f_{μ}	unconstrained
$ u_{\tau}$ cross-section	$S_{ au}$	Depending on analy

ν_{τ} normalisation within the 3ν paradigm

a) S_{τ} : PMNS unitarity hypothesis

- $O \nu_{\tau}$ -norm. \neq 1, due to neutrino interaction modelization
- \bigcirc variation in ν_{τ} -CC rate
- $\odot \nu_{\tau}$ charge-current cross-section

KM3NeT/ORCA6 preliminary, 433 kton-years

13.06.2025 - IRN Lyon - C. Lastoria

Main sources of **systematics**

	Parameter	Constraint
	flux δ_{γ}	0.3
	shape $\delta_ heta$	2%
atmospheric neutrino flux	neutrino $s_{\muar\mu}$	5%
	composi S _{eē}	7%
	tion $s_{\mu e}$	2%
neutrino interactions	$f_{ m NC}$	20%
	light E_s	9%
	propag. $f_{ m HE}$	50%
	$f_{ m all}$	unconstrained
detector response	$_{overall}$ $f_{\rm HPT}$	unconstrained
	norms $f_{ m S}$	unconstrained
	f_{μ}	unconstrained
$ u_{\tau}$ cross-section	$S_{ au}$	Depending on analy

u_{τ} normalisation measurement

• strong complementarity among the different experiments

- O neutrino energy, source, and identification techniques
- O fit method and sensitivity to other oscillation parameters

13.06.2025 - IRN Lyon - C. Lastoria

no robust rejection of the 3ν -flavor paradigm

F Cerisy, N. Geißelbrecht, Ω Lastoria, arXiv:2502.01443

ν_{τ} -CC cross-section measurement

- ν_{τ} -normalization behaves as scaling factor for the measured ν_{τ} -CC cross-section: $\sigma_{meas} = S_{\tau} \times \langle \sigma_{theory} \rangle$
- additional inputs to **constrain cross-section** (sensitivity to different energy ranges and interaction media)

[OPERA] Phys. Rev. Let. 115 (2015) [SuperKamiokande] Phys. Rev. D 98, 052006 (2018)

Experiment	Interaction	Energy	N. of
	medium	[Gev]	observed ν
OPERA	lead	≤ 20	10
Super-Kamiokande	water	~ 25	338.1 ± 72.2
ORCA6 (this work)	water	$20.3^{-8.0}_{+15.6}$	$92\substack{+90 \\ -63}$

13.06.2025 - IRN Lyon - C. Lastoria

Cerisy, 2. Geißelbrecht, C Lastoria arXiv:2502.01443

Non-Unitarity Neutrino Mixing (NUNM)

b) α_{33} : nxn unitarity matrix

O Heavy Neutral Leptons (seesaw mechanism for neutrino masses generation)

O oscillation probabilities impacted by α_{33}

$$P^{\alpha}_{\beta} = P_{\beta e} + P_{\beta \mu} + \alpha_{33}^2 P_{\beta \tau}$$

ONC affected due to neutrons in the Earth (V_{NC} potential non-negligible)

• first test on atmospheric neutrino data

13

Non-Unitarity Neutrino Mixing (NUNM)

- impact on both CC and NC rates
- at the best fit,
 - $\odot \alpha_{33} = 0.83^{+0.20}_{-0.25}$ (if V_{NC} =0, $S_{\tau} = 1$) $\odot \alpha_{33} = 0.993^{+0.026}_{-0.025}$ (otherwise)

	(V _{NC} !=0, S ₇ free)	$(V_{NC}=0, S_{\tau}=1)$
n. of ν_{τ} -CC	170_9^+5	132^{+60}_{-61}
n. of NC	325 ⁺¹ ₋₄	313 ⁺¹¹ ₋₁₃

current best limit on α_{33} : [0.95, 1.04] at 95% CL

Cerisy, N. Geißelbrecht, C. Lastoria, arXiv:2502.01443

Limitations and prospects

- analysis of larger configurations in the pipeline!
 - O expected $\nu_{\tau} \sim 420$ /year (CC) in 16% active volume (ORCA18)
 - O toward 3000 ν_{τ} /year (CC) in full ORCA
- alternative **Deep Learning techniques** are under study (e.g. transformers, GNN)
- extend current set of systematics and fit methods (e.g. Bayesian approach) O better understanding of the detector response O achieve enhanced purity of the shower class

...thanks for your attention!

Extra slides

......

KM3NeT: technology

- 3" Hamamatsu PMTs assembled into a spherical structure for a 4π coverage: O high time precision (~ns)
 - O good spatial resolution (~10 cm)

13.06.2025 - IRN Lyon - C. Lastoria

Eur. Phys. J. C 80, 99 (2020)

J. Phys. G: Nucl. Part. Phys. 43 084001 (2016)

KM3NeT/ORCA physics goals

- atmospheric neutrinos: secondary particle of cosmic ray interaction with Earth's atmosphere O wide energy range (1-100 GeV) and baseline (L, from ~10 to ~13000 km)

 - $O \nu_{\mu}$ disappearance (dominant effect): neutrino oscillation parameters θ_{23} , Δm_{32}^2
 - $O \nu_{\rho}$ appearance (sub-dominant effect): sensitive to the Neutrino Mass Ordering (NMO)
 - other searches: ν_{τ} appearance, sterile and other BSM searches, etc... \bigcirc

 $\bar{\nu}_{\tau} CC$

13.06.2025 - IRN Lyon - C. Lastoria

hadronic shower and
$$\mu$$
 track
($\tau^{\pm} \rightarrow \mu^{\pm} \tilde{\nu}_{\mu} \tilde{\nu}_{\tau}, \sim 17\% \text{ BR}$)

hadronic shower and EM shower $(\tau^{\pm} \rightarrow e^{\pm} \tilde{\nu}_{e} \tilde{\nu}_{\tau}, \sim 18\% \text{ BR})$

hadronic shower

 $(\tau^{\pm} \rightarrow \text{hadrons}, \sim 65\% \text{ BR})$

shover-like events

track-like events

KM3NeT/ORCA: neutrino topologies

• Depending on the neutrino flavor and interaction, two event topologies can be reconstructed: O track-like events, very elongated and easier to be reconstructed O shower-like events, more spherical

KM3NeT/ORCA: neutrino topologies

• Maximum likelihood algorithms optimized for the two topologies:

- O based on **track and shower hypotheses** per event
- O **causality** for hit selection
- O time in each PMT
- O vertex and direction determination

matching the topology hypothesis

- \bigcirc energy estimation
- since KM3NeT/ORCA 6, new reconstruction algorithm for showers using single-PMT **information** (instead of single-DOM)

Oscillation fit in KM3NeT/ORCA

KM3NeT/ORCA: how to study ν_{τ} appearance?

- the main **advantage** of KM3NeT/ORCA is the **high statistics**:
 - O using unitarity (hypothesis of ν_{τ} norm = 1)
 - \bigcirc 3000 ν_{τ} events/year in full ORCA
 - O search for an **excess in the shower sample** (a good shower reconstruction is critical!)

plots from S. Hallmann, PhD thesis

Sensitivity to ν_{τ} appearance in KM3NeT/ORCA

• unprecedented ν_{τ} statistics: 3000 ν_{τ} events/year in full geometry

- O using unitarity (hypothesis of ν_{τ} norm = 1)
- O analysis performed on a statistical basis: **excess in shower sample**

ν_{τ} normalisation fit in KM3NeT/ORCA 6

• Feldman-Cousins method to evaluate the 68% and 90% confidence level (CL)

 S_{τ} : PMNS unitarity hypothesis • at the best fit, $S_{\tau} = 0.48^{+0.50}_{-0.33}$ O **n. of observed** ν_{τ} -**CC** = 92^{+90}_{-63} events KM3NeT/ORCA6, 433 kton-years 10 -Observed Feldman-Cousins 68% CL 8 -Feldman-Cousins 90% CL 6 - $2\Delta \log \mathcal{L}$ 4 -2 -() -0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 S_{τ}

• at the best fit, $\alpha_{33} = 0.993^{+0.026}_{-0.025}$

O n. of observed ν_{τ} -CC = 170^{+5}_{-9} events

O n. of NC = 325^{+1}_{-4} events

ν_{τ} normalisation fit in KM3NeT/ORCA 6

 $heta_{23}$ [°] $\Delta m^2_{31} \times 10^{-3}$ Spectral Ind $u_{
m hor}/
u_{
m ver}$ $u_\mu/ar
u_\mu$ $u_e/ar{
u}_e$ $u_{\mu}/
u_{e}$ $S_{
m NC}$ Energy sca High-energy Light **Overall Normali** Track Normalis Shower Normali Muon Normalis

13.06.2025 - IRN Lyon - C. Lastoria

		-					
er	Central value \pm prior						
$ m GeV^2$	$49.2 (49.3) \\ 2.517 (-2.424)$	- KM3NeT/ORCA6 Preliminary, 433 kton-ye $(\epsilon_{\rm BF} - \epsilon_{\rm CV})/\sigma$ -4 -3 -2 -1 0 1 2					
dex	$egin{array}{cccc} 0.00 \pm 0.3 \ 0.00 \pm 2\% \ 0.00 \pm 5\% \ 0.00 \pm 7\% \ 0.00 \pm 2\% \ 1.00 \pm 20\% \end{array}$	S_{τ} - HE Light Sim - Shower Norm - Overall Norm - Muon Norm - Track Norm - Track Norm - NC Norm - Energy scale - Spectral Index - ν_{hor}/ν_{ver} -					
ale Simulation lisation	$1.00 \pm 9\% \\ 1.00 \pm 50\% \\ 1.00$	$ \begin{array}{c} \nu_{\mu}/\bar{\nu}_{\mu} \\ \nu_{\mu}/\nu_{e} \\ \nu_{e}/\bar{\nu}_{e} \\ \Delta m_{31}^{2} \\ \theta_{23} \end{array} $		 			
sation isation sation	$1.00 \\ 1.00 \\ 1.00$	-1.00	-0.75	-0.50	$-0.25 0.00 \\ (\alpha_{33}^{2 \text{ shift}} - \alpha_{33}^{2})$	0.25 bf) $/\sigma_{\alpha_{33}^2}$	0.50

