DUNE overview and MeV-scale Calibration

Laboratoire de Physique des 2 Infinis

13/06/2025

NNFRGROUND **NEUTRINO EXPERIMENT**

Emile Lavaut

I. DUNE Status

1. DUNE construction status 2. DUNE production status 3. Prototyping phase

Conclusion

II.ProtoDUNE-HD calibration

1. Few MeV energy spectrum 2.²³²Th energy range 3. Calibration factor and recombination

Context of DUNE

lacksquare

DUNE - Main physics program

DUNE is composed of three parts : Far Detector, Near Detector and Accelerator

Context of DUNE

- peak with **E > 1 GeV**

DUNE -Main physics program

VICLOB DUNE Context of DUNE

Main goals:

- Measure of the neutrino mass ordering
- Measure of the **CP-phase value**, is there a CP- \bullet violation in the leptonic sector?
- Measure with precision some of PMNS parameters:

DUNE - Main physics program

5

200 kt-MW-years \approx 3 years of data taking with full-scale detector

VICLOBO Irème Joliot-Curie **DUNE** Context of DUNE

Low energy physics program (~MeV):

- SuperNova Burst detection
 - Important information on birth of black-holes
 - Multi-messenger astrophysics: Gravitational waves, neutrinos then photons
- Solar neutrino detection (hep neutrino)
- Diffuse SuperNova Background
- **Challenging range of energy** with lower cross-section and more sensitive to detector or reconstruction effects like background or noise level. Need a dedicated Trigger and dedicated reconstruction.

Low Energy neutrino physics

ເີ້ 4500⊢ $v{\mathbf{x}} (v_{\mu} + \overline{v}_{\mu} + v_{\tau} + \overline{v}_{\tau})$ WeV 4000- 3500F 3000 Supernovae spectrum 2500 2000E Ē 1500⊨ 1000E 500E 10 20 30 40 50 Neutrino Energy (MeV) 75° 60° 45° 30° 15° 120° 150° 0° -15° 9 -60° -75°

0.68

0.99

0.90

Confidence level

- Excavation of Far Detector site finished
- Cavern available $\rightarrow 01/01/26$
- Cryostat delivery completed

2023				
Far I				

- Two Far Detectors (LArTPC):
 - Vertical Drift (French effort):
 - starting the production phases of different detector components (cathode, anode, photon detection system, top drift electronics)
 - starting the installation test at Cern (1:1 size)
 - Horizontal Drift:
 - production of the anode unit near full-speed (~30) anodes produced)
- Near Detector and Beam:
 - Near detector: 100% completed designs
 - 0.9 MW NuMI beam already achieved for NOvA

ProtoDUNE Vertical Drift (PDVD) Cathode Field Cage 9 m

Prototyping Phase (PDVD)

- Full with liquid Argon
- Under commissioning
- Same design as FDVD (anode and cathode)
- Two drift volumes
- ~3 meter drift length
- Only two cathode units

9 m.

9 m

Prototyping Phase (PDVD)

- Prototypes at CERN on surface
- Full with liquid Argon
- Under commissioning
- Same design as FDVD (anode and cathode)
- Two drift volumes
- ~3 meter drift length
- Only two cathode units

Context of DUNE

ProtoDUNE Horizontal Drift (PDHD)

- Prototype at CERN on surface
- Only two drift volumes
- ~3.5 meter drift length
- took data (May \rightarrow November 2024)
- Detector full of LAr in April 2024
- Stabilized needed purity level (>30 ms) achieved in June
- 10 weeks of beam run
- beam energy from 1 to 7 GeV (mainly pions)

Anode

Fieldcage

- Prototype at CERN on surface
- Only two drift volumes
- ~3.5 meter drift length
- took data (May \rightarrow November 2024)
- Detector full of LAr in April 2024
- Stabilized needed purity level (>30 ms) achieved in June
- 10 weeks of beam run
- beam energy from 1 to 7 GeV (mainly pions)

MeV calibration of ProtoDUNE-HD

ProtoDUNE-HD calibration

- Use radiologic decays (radiologicals) for calibration:
 - prototypes)

ProtoDUNE-HD calibration

- Signal signature: **point-like events isolated in the detector** (with few MeV energy)
- **But:** ProtoDUNE's are surface detectors \rightarrow **lots of cosmics**
- Made a dedicated analysis tool (available for the collaboration) to reconstruct isolated hits position and energy and make **Low Energy clusters**

R_{ext}

Time ~ x (drift-direction)

ijCLab Irène Joliot-Curie **ProtoDUNE-HD** calibration

• Reconstructed ~36 min of data taking \rightarrow ~50 To (only ~1% of all set)

Few MeV SingleHit spectrum

iceb Clab CLAP **ProtoDUNE-HD** calibration

• Reconstructed ~36 min of data taking \rightarrow ~50 To (only ~1% of all set)

Few MeV SingleHit spectrum

isclab Irène Joliot-Curie **ProtoDUNE-HD** calibration

²³²Th energy range

We recognize cathode and field cage lacksquarestructure

isclab Irène Joliot-Curie **ProtoDUNE-HD** calibration

²³²Th energy range

We recognize cathode and field cage lacksquarestructure

inclab Irène Joliot-Curie **ProtoDUNE-HD** calibration

²³²Th energy range

- Calibration factor is consistent with higher energy: $c_A^{\rm HE} \approx 0.036$ MeV/ADC/tick
- From calibration we can compute the recombination R :

Calibration factor and recombination

Calibration factor and recombination

Calibration factor and recombination

ijClab Irène Joliot-Curie **ProtoDUNE-HD** calibration

- Calibration factor is consistent with higher energy: $c_A^{\rm HE} \approx 0.036 \, {\rm MeV/ADC/tick}$
- From calibration we can compute the recombination R :

Calibration factor and recombination

Important features of LArTPC is recombination R:

$$R = \frac{E_{visible} [MeV]}{E_{true \ deposited} [MeV]}$$

Predicted with Modified Box Model at higher energy but **not well tuned at MeV** scale

$$R = \frac{W_{ions}}{g_e \times c_A} = 0.60 \pm 0.0$$

)5

- DUNE is in a intense phase of production
- The prototypes showed good result on HD (soon on VD)
- **Developed an analysis tool for the collaboration available in DUNE's software**
- Very good spatial resolution: cm level (Bi source, field cage structure)
- on PDHD data
- Find recombination value consistent with other experiments at low energy

• Shown that MeV scale physics is possible for ProtoDUNE-HD (DUNE Far Detector ?)

• Several radiological sources identified \rightarrow used for first calibration at low energy made

DUVE ProtoDUNE-HD calibration

- Identification of the peak as ^{39}Ar
- Fit 39 Ar end of spectrum region \rightarrow [10.5, 14.5] ADCxticks

• Official DUNE Monte Carlo: cosmics $+ {}^{39}Ar + 1$ GeV electron beam $+ {}^{85}Kr + {}^{222}Rn$

- *c*_A is the fitted calibration factor in MeV/ADC/ticks
- we find $c_A = 0.031 \pm 0.001$

DUNE ProtoDUNE-HD calibration

- For calibration purpose a source of ^{207}Bi has been added in PDHD
- Position is reconstructed **at the cm level**

²⁰⁷Bi energy range

Soustract the Compton front from the gamma

²⁰⁷Bi energy range - **NEXT STEP**

 Clear appearance of the conversion electron peak

isclab Irène Joliot-Curie **ProtoDUNE-HD** calibration

 $\overline{}$

Energy [MeV]

²⁰⁷Bi energy range

$^{207}\mathrm{Bi}$ is complex source (several gamma rays and conversion electrons)

Identification of two electrons peaks

Context of DUNE

- Neutrino are **neutral right-handed leptons** with **3 flavours**
- They are predicted to be mass-less within Standard Model

*at SNO with solar neutrinos in 2001: https://link.aps.org/doi/10.1103/PhysRevLett.87.071301

Flavour oscillation measured^{*} → first evidence of physics Beyond Standard Model

include Discrete Discrete States Stat **Context of DUNE**

- In neutrino field there are **fundamental unanswered** questions:
 - Is there CP violation in the lepton sector? CP-phase value?
 - Where does the neutrino mass come from ?
 - What is the neutrino mass ordering?
 - Are neutrinos their own antiparticle? Dirac or Majorana?
 - Are there any sterile neutrino states? If so, what are their masses?
 - Deviations from unitarity of the PMNS matrix?

Neutrino physics -Open main question

Fractional flavour content varying $\sin^2(\theta_{23})$

inclab Irène Joliot-Curie **ProtoDUNE-HD** calibration

- Calibration factor is consistent with higher energy: $c_A^{\rm HE} \approx 0.036 \, {\rm MeV/ADC/tick}$
- From calibration we can compute the recombination R :

Calibration factor and recombination

Important features of LArTPC is recombination R:

$$R = \frac{E_{visible} [MeV]}{E_{true \ deposited} [MeV]}$$

 Predicted with Modified Box Model at higher energy but **not well tuned at MeV** scale

Data set	Particle		Topic
3 ton	Stopping	μ, p	\mathcal{R}_{3t} vs. $\frac{dE}{dx}$ 3 \mathscr{E} values
Scalettar ³	¹¹³ Sn source	364 keV <i>e</i> ⁻	\mathscr{R}_S vs. \mathscr{E}
	²⁴¹ Am source	5.64 MeV α	\mathscr{R}_{α} vs. \mathscr{E}
Aprile ⁴	²⁰⁷ Bi source	976 keV <i>e</i> ⁻	\mathscr{R}_A vs. \mathscr{E}
T600	Stopping	μ	\mathscr{R}_{T600} vs. $\frac{\mathrm{d}E}{\mathrm{d}x}$

From: Study of electron recombination in liquid argon with the ICARUS TPC 33

R at 0.5 kV/cn mip: 0.70 ± 0.02 0.58 ± 0.01 $0.014 \pm ?$ 0.64 ± 0.05 mip: 0.71 ± 0.04

dominate the measurement precision

All systems in prototyping or preparation

SAND

on-axis, stationary KLOE magnet & calorimeter Straw Tubes GRAIN: 1 ton LAr

Near Detector (ND) measurements shall be of sufficient precision to ensure that when extrapolated to predict the FD event spectra, the associated systematic error must not

- Mean efficiency: ~40% for 39Ar (MC)
- i.e. decays with < 3 hits and < 1 MeV
- Huge improvement wrt Pandora

35

inclab Irène Joliot-Curie **Context of DUNE**

- Measure hep neutrino for the first time \bullet
- Neutrino fluxes carry important information about the \bullet interior of the Sun: hep \rightarrow Outer Core

the energy spectrum of solar neutrinos. Image reprinted from J. Bahcall, A.M. Serenelli, and S. Basu Ap. J. 621, L85 (2005)

Low Energy (LE) neutrino physics

arXiv:2207.09632 [astro-ph.HE] Figure from arXiv:1205.6003 [astro-ph.IM]

inène Joliot-Curie **Context of DUNE**

- neutrinos then photons

the energy spectrum of solar neutrinos. Image reprinted from J. Bahcall, A.M. Serenelli, and S. Basu Ap. J. 621, L85 (2005)

Neutrino carry up to **99% of gravitational energy**

Important information on birth of black-holes

Multi-messenger astrophysics: Gravitational waves,

arXiv:2207.09632 [astro-ph.HE] Figure from arXiv:1205.6003 [astro-ph.IM]

isclab Irène Joliot-Curie **Context of DUNE**

the energy spectrum of solar neutrinos. Image reprinted from J. Bahcall, A.M. Serenelli, and S. Basu Ap. J. 621, L85 (2005)

Low Energy (LE) neutrino physics

- Addition of all SN's neutrinos in the universe
- **Never been observed**

inclab Irène Joliot-Curie **Context of DUNE**

or reconstruction effects like background or noise level.

the energy spectrum of solar neutrinos. Image reprinted from J. Bahcall, A.M. Serenelli, and S. Basu Ap. J. 621, L85 (2005)

Low Energy (LE) neutrino physics

Challenging range of energy with lower cross-section and more sensitive to detector

arXiv:2207.09632 [astro-ph.HE] Figure from arXiv:1205.6003 [astro-ph.IM]

VICLOB DUNE Context of DUNE

- Detector performance better for track/shower like event at GeV
- Default reconstruction/PID (Particle Identification) suboptimal for MeV signals

ProtoDUNE-HD calibration

- Allow to find the expected shape of the spectrum

DEVE ProtoDUNE-HD calibration

DUVE ProtoDUNE-HD calibration

- **LE clusters**
- Reconstructed ~36 min of data taking \rightarrow ~50 To (only ~1% of all set)
- Analysis tools included in duneana branch in the Calibana method
- Will be run in the reco 1 step for PDVD data
- <u>singlehit</u>
- <u>https://github.com/emilelavaut/duneana/tree/develop/duneana/CalibAna</u>

• Made a **dedicated analysis tool** to reconstruct **isolated hits** position and energy and make

<u>https://github.com/emilelavaut/protoduneana/tree/develop/protoduneana/verticaldrift/</u>

