Status of the Juno Experiment

IRN Neutrino 12-13 June 2025 L. Labit Strasbourg University - IPHC

Survival probability given by :

$$\mathcal{P}(\overline{\nu_e} \to \overline{\nu_e}) = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 \times L}{4E_\nu}\right) - \sin^2 2\theta_{13} \left(\frac{\Delta m_{21}^2 \times L}{4E_\nu}\right) - \sin^2 2\theta_{13} \left(\frac{\Delta m_{21}^2 \times L}{4E_\nu}\right) \cos \left(\frac{2|\Delta m_{31}^2| \times L}{4E_\nu}\right) \\ \stackrel{\bullet}{\longrightarrow} \frac{\sin^2 \theta_{12}}{2} \sin^2 2\theta_{13} \sin \left(\frac{2\Delta m_{21}^2 \times L}{4E_\nu}\right) \sin \left(\frac{2|\Delta m_{31}^2| \times L}{$$

 Requires very good energy resolution and precise modeling of the energy response

- Expected 3σ sensitivity after 6 years of data taking

• Precision measurement of oscillation parameters

- Simultaneous measurement of Δm^2_{12} and Δm^2_{13}

 Subpercent precision on 3 кеу parameters within 6 years of data taking

SOLABNEVTBRNOS Solar neutrinos:

-Large statistic from ⁸B solar neutrinos: ~60 000 events after 10 yr.

constrain Δm^2_{21} and $\sin^2 2 heta_{12}$ from solar neutrinos alone

constrain day-night asymmetry at ~0.9%

-Sensitivity to intermediate solar neutrinos energy for different radiopurity scenarii

GEO, SNNEUTRINOS Geo neutrinos:

-Neutrinos from Earth's 238 U and 232 Th $\sim 400 / year \Rightarrow 2$ times more than actual total world sample (KamLAND + Borexino ~200)

SuperNovae neutrinos: -Constrain absolute neutrino mass -Study of star physics: late-stage stellar evolution, SN hydrodynamic models

And other: -Diffuse SN neutrino background, nucleon decay,

\mathbf{F} The Jiangmen Underground Neutrino Observatory:

 Largest liquid scintillator based neutrino detector: 20 KTons target

 Located at ~53 km from Taishan & Yangjiang NPP (26.6 GW_{th}) to optimise neutrino ordering discrimination

> - Underground detector: 650m overburden ~2000 m.w.e → ~4muons/s in LS

Energy resolution of 3% at 1 MeV

THEJUNOESPERTLENTCentral Detector (CD) :

 35.4m diameter sphere composed of 260 acrylic panels 12 cm thick - 20 Kilotons of liquid scintillator: LAB + PPO + bis-MSB + BHT

- High photon yield ~10000 ± 10% photons/MeV NMO minimal U/Th concentration

requirement : $\leq 10^{-15} g/g$

 Very transparent: attenuation length ~25m - 17612 (arge 20-inch PMTs (LPMT) & 25600 small 3-inch PMTs (SPMT) High optical coverage: 75% LPMT and 3% SPMT - High PMT's quantum efficiency: ~30%

$\mathbf{SC} = \mathbf{SC} = \mathbf{SC$ Water Cherenkov Detector (WP)

- 43.5×44m cylinder filled with 35 kilotons of ultrapure (degased) water : Radon concentration $\sim 10 \text{mBg/m}^3$

- Seen by 2400 LPMT and 600 8-inch PMTs refurbished from Daya Bay

 Passive shielding against natural radioactivity from surrounding rock and fast neutrons from cosmic muons

Muon detection efficiency of 99.5 %

 Host the underwater box containing PMT's readout electronics

- THE JUNO EXPERTMENT TOP Tracker (TT)

- Target Tracker
- 50% coverage
- 2.6 x 2.6 cm^2 granutarity
- Muon track angular resolution of 0.2°
- Provide a muon control sample to validate track reconstruction and study cosmogenic background

- 3 layers of plastic scintillator refurbished from OPERA's

1 othe Junio Experiment

Calibration strategy:

Requires good control of energy scale, energy non-linearity, response non-uniformity

- Many radioactive sources in [~0.5, ~6] MeV

- 1D, 2D and 3D scan systems
- e⁺ energy bias uncertainty< <mark>1%</mark>

THEJUNOESPERTUT

- Taishan Antineutrino Observatory:
 - 1 ton fiducial volume Gd loaded LS detector.
 - 10 m² of SiPM operated at -50°C
 - Located at ~30m from one of Taishan's 4.6 GW_{Fh} core
 - Energy resolution < 2% at 1 MeV
 - Provides a precise reference reactor spectrum for JUNO

1 2676nal and Bagisground

Neutrino detection:

-Inverse β decay $\bar{\nu_e} + p \rightarrow n + e^+$ E_{vis}(e⁺) \simeq E($\bar{\nu_e}$) - 0.8 MeV

-Prompt-delay signature ensures large background suppression

Background:

-Selection cut on time & space correlation between prompt and delay signal, energy threshold and muon veto strategy

After selection cuts:
~47 signal events/day
~4 background events/day

I OD OONSTRUCTION Bottom structure Jan. 2022.

20 Acrylic Layers

23 Acrylic Layers

Top structure

I GONGTRUGTION Acrylic assembly platform

Bottom structure

20 Acrylic Layers

23 Acrylic Layers

Top structure

- Construgton Top structure

Bottom structure

Acrylic assembly platform

20 Acrylic Layers

23 Acrylic Layers

- Construgton 5 Acrytic tayens.

Bottom structure

Acrylic assembly platform

Top structure

23 Acrylic Layers

I Gonstrugton 20 Acrytic tayens.

Bottom structure

Acrylic assembly platform

Top structure

23 Acrylic Layers

1 Gongtron 23 Acrylic layers

Bottom structure

Acrylic assembly platform

20 Acrylic Layers

Top structure

- Pritrigtonstrond 1 PMT Layer Oct. 2022

9 PMT Layers

4 PMT Layers

22 PMT Layers

CD completion

- Pritrigtaitester PMT 4 Layers

PMT 1 Layer

Inside View

22 PMT Layers

CD completion

9 PMT Layers

- Pritrigtaitester 9 PMT tayens

PMT 1 Layer

PMT 4 Layers

Inside View

22 PMT Layers

CD completion

1 PRS7033207000 Inside View

PMT 1 Layer

PMT 4 Layers

9 PMT Layers

CD completion

22 PMT Layers

1 PMT PNSTALATION 22 PMT Layers

PMT 1 Layer

PMT 4 Layers

<image>

9 PMT Layers

Inside View

CD completion

tion

I PRSTRIGTBRACTRON CD completion Dec. 2024

PMT 1 Layer

PMT 4 Layers

9 PMT Layers

Inside View

22 PMT Layers

PITTRETALLATION Water Pool extra PMTs Dec. 2024

PMT 1 Layer

PMT 4 Layers

9 PMT Layers

Inside View

22 PMT Layers

CD completion

1577 INSTALATION TOP Tracker Bridge Jan. 2025

Modules positioning

Wall positioning

1st Top Tracker Layer

Support Table assembly

Module testing & validation

1577 **/ハミアクムムクア/ON** Support Table assembly

Top Tracker Bridge

Modules positioning

Wall positioning

Module testing & validation

1577 NOSTALATION Module testing & Validation

Top Tracker Bridge

Support Table assembly

Modules positioning

Wall positioning

1577 ROSTALLATION Modules positionning

Top Tracker Bridge

Support Table assembly

Module testing & validation

Wall positioning

1577 7087044077000 Wall positioning

Top Tracker Bridge

Support Table assembly

Module testing & validation

Modules positioning

15TT FRETALLATION 1st Top Tracker Layer Mar. 2025

Top Tracker Bridge

Support Table assembly

Module testing & validation

Wall positioning

15t TOP Tracker Layer Mar. 2025

Top Tracker Bridge

Support Table assembly

Module testing & validation

Modules positioning

Wall positioning

1577 **/ハミアクムムクア/ON** 2nd Top Tracker Layer Apr. 2025

Top Tracker Bridge

Support Table assembly

Module testing & validation

Modules positioning

Wall positioning

- Synchronised CD & WP fitting: - Started on Dec. 18th 2024 and ended early Feb. 2025
 - Pure water production $\sim 90 \text{ m}^3/\text{h}$ - Mechanical stress closely monitored during filling
- Water quality meets requirements: - Attenuation length > 60m
 - U/Th concentration $< 10^{-15}g/g$
 - Rn concentration <10 mBq/m³

globe valve level gauge for VETO **CD** Level Measuremen 02- kN -30 Laver 1^{*} -Layer C Layer ____ -80 01/01 2025 01/02 2025 01/03 2025 01/04 2025 01/12 2024 Date

I FREST LUON EVENTS First muon events in the Water Pool, early 2025

182990070077001

LSPRODUCTION

1 SLEPRODUCTION

Four purification plants for optimal radio-purity and attenuation length.

Add PPO + bis-MSB + BHT

Lepedduotron

1 SLEPRODUCTION

l Water-lg Exclange

- Water liquid scintillator exchange: – Started on Feb. 2nd 2025
- LS quality monitored :
 - Attenuation length for sampled batch ~ 20 m
 - Radiopurity by ICP-MS every week:
 - U/Th concentration $< 10^{-15} g/g$
 - Rn concentration $\sim 0.5 \text{ mBg/m}^3$
- End of liquid scintillator filling expected August 2025

LPHT status:

- 16/17612 LPMTs not installed because of space conflict.
- 8 dead LPMTs
- ~130 with fluctuating dark rate
- Gain stable at 1% level
- Low electronic noise : RMS ~0.055 PE (threshold : 0.2 PE).
- Low trigger threshold ~150keV (300 PMTs/225 ns).

SPMT status:

- 13/25600 channels lost during installation.
- ~100 channels with high dark rate or abnormal SPE spectra
- average gain 3.8×10⁶
- average dark rate ~530 cps
- Low electronic noise: RMS ~0.04 PE (threshold: 0.3 PE).

AmBe calibration:

- Attenuation length ~20m
- Light yield > 1600 photons/MeV

	٦		
	I	L	
MANANA	1	L	
	1	Ŀ	
	1	L	
Γ	1	L	
	1	L	
	1	L	
100	0	L	
	4		
	٦	I	
		I	
4 m		I	
m –		I	
		I	
		I	
		I	
		I	
	1	I	
10000	1)		-
1			

بالك ا		C
COUNTRY	INSTITUTE	-0
ARMENIA	YEREVAN PHYSICS	*
■BELGIUM	UNIVERSITE LIBRE DE BRUXELLES	
⊠BRAZIL	PUC	
⊠BRAZIL	UEL	2
CHILE	SAPHIR	Ľ
GHILE	UNAB	
CHINA	BISEE	
CHINA	CAGS	*
CHINA	CHONGQING UNIVERSITY	*
CHINA	DGUT	2
CHINA	GUANGXI U.	
CHINA	HARBIN INSTITUE OF TECHNOLOGY	¥
CHINA	IHEP	¥
CHINA	JINAN U.	¥
CHINA	NANJING U.	¥
CHINA	NANKAI U.	×
CHINA	NCEPU	
CHINA	SHANDONG	H
the RE opposite of the Real Property lies	a la constante de la constante	

COUNTRY INSTITUTE CHINA SHANGAI JT U. CHINA IGG-BEIJING CHINA SYSU CHINA TSINGHUA U. CHINA UCAS U. OF SOUTH CHINA CHINA WU YI U. CHINA CHINA WUHAN U. CHINA XIA /N JTU. CHINA XIAMEN U. CHINA ZHENGZHOU U. CHINA NUDT CHINA CUG-BEIJING ECUT-NANCHANG CITY CHINA CHINA CDUT-CHENGDU SUSTECH-SHENZHEN CHINA ■CZECH CHARLES U. U. OF ∍FINLAND ĴŶŶĂSKYLA

~750 Collaborators across 72 institutes in 20 + countries

ITALY

E COUNTRY INSTITUTE CO

FRANCE IJCLAB ORSAY FRANCE LP2I BORDEAUX CPPM MARSEILLE FRANCE IPHC STRASBOURG FRANCE SUBATECH NANTES **I**FRANCE RWTH AACHEN ■GERMANY ■GERMANY тим ■GERMANY U. HAMBOURG GERMANY GSI ■GERMANY U. MAINZ ■GERMANY U. TUEBINGEN ∎ITALY. INFN CATANIA INFN DI FRASCATI ITALY ITALY INFN-FERRARA ITALY INFN-MILANO INFN-MILANO BICOCCA ITALY. ITALY INFN-PADOVA

INFN-PERUGIA

COUNTRY	INSTITU
∎ITALY	INFN-ROM
■ PAKISTAN	PINSTECH (PAEC)
⇒ RUSSIA	INR MORSC
≔ RUSSIA	JINR
⊨RUSSIA	MSU
≝SLOVAKIA	FMPICU
MAIWAN-CHINA	NATIONAL CH TUNG U.
MAIWAN-CHINA	NATIONAL TAIWAN U.
MTAIWAN-CHINA	NATIONAL UNITED U.
MAIWAN-CHINA	NKNU
MAIWAN-CHINA	NTUT
≤THAILAND	NARIT
≤THAILAND	PPRLCU
≊THAILAND	SUT
₩UK	U. LIVERPO
	U. WARWI
■USA	UMD-G
USA	UC IRVIN

JUNO's rich and ambitious physics program includes:

- Determination of neutrino mass ordering at 3 σ in 6 years.
- Sub-percent precision on $\theta_{12}, \Delta m_{21}^2, \Delta m_{32}^2$
- Sensitivity to solar, geo- and supernovae neutrinos.

This is enabled by JUNO's unique features:

- 20 kiloton liquid scintillator target.
- Excellent energy resolution ($3\%/\sqrt{E}$)
- Stringent radiopurity requirements.
- Precise reactor spectrum reference provided by the TAO near detector.

• The experiment is transitioning from construction to commissioning :

- Water cherenkov detector filled and operating with good performance since Feb. 2025.
- Top Tracker installation expected to complete by end of June.

approaching soon

- Liquid scintillator filling of the central detector is underway, completion expected by Aug. 2025.

JUNO is on track to become a flagship neutrino experiment, with physics data-taking

