Développement de matrices de bolomètres

Philippe Camus Collaboration DCMB

Journée de l'Astroparticule Paris, le 7 septembre 2007

• La collaboration DCMB

- Motivations
- Participants
- Financement

• Etat d'avancement

- Points clés
- Résultats

Perspectives

La collaboration DCMB Contexte / motivations

- Environnement scientifique de Planck / HFI
- Lacunes dans le développement des bolomètres en France (méthodes de microfabrication)
- Evolution des besoins vers les matrices de bolomètres à très basse température (< 0.3 K)

Labo	Tâches
CSNSM	Couches thermométriques (semiconductrices, supra)
IEF	Architecture bolométrique, Réalisation SQUIDs
LPSC	Antennes, MPI
APC / LISIF / LERMA	Antennes, traitement GHz-THz, ampli SiGe
Inst. Néel / LAOG	Multiplexage haute impédance, cryogénie, MPI
LPN	Réalisation HEMTs
IAS	Tests échantillons supra
APC	Tests échantillons supra, réalisation SQUIDs (avec IEF), multiplexage SQUIDs
CESR	Electronique, étude CEB

Impliquation de ~50 personnes (chercheurs, ITA)

Site internet : http://crtbt.grenoble.cnrs.fr/astro/dcmb_pub

Points clés

• Technologie des détecteurs

- Choix du senseur thermométrique (HI, TES)
- Microfabrication, compatibilité pour construire de grandes matrices

• Multiplexage

- Version haute impédance
- Version basse impédance

Démonstration

- Matrices 'classiques' (OLIMPO)
- Matrices de bolomètres à antennes

Principe du bolomètre

• Détecteur thermique

- Système macroscopique
- Mesure de l'échauffement résultant de l'absorption du rayonnement
- Thermomètre = élément résistif
- Meilleur détecteur large bande dans la gamme 200µm-3mm

TES : critical temperature

Electrical field effect

E-field + e-ph coupling

□ High impedance case :

 Order influence : thermal annealing / ion irradiation
 Sizing with electron-phon and electrical field effect (L_{LOC}~10-20 nm, E_c~3000-5000 V/m, g_{e-ph}~100 W/cm³/K⁵)

$$\rho(T_{el}, E) = \rho_0 \bullet \exp\left[\left(\left(\frac{T_0}{T_{el}}\right) \cdot \left(1 - \frac{E}{E_c}\right)\right)^n\right]$$
$$E_c = \frac{2 \cdot k_B \cdot T_{el}}{q \cdot L_{LOC}}$$
$$\frac{E^2}{q} = G_{e-ph} \cdot \left(T_{el}^5 - T_{ph}^5\right)$$

NbSi alloy fabrication

- Co-evaporation of pure Nb and Si
- □ Sample rotation at 3 RPM
- Evaporation rate 3 A s⁻¹
- Composition reproductibity < 0.1%</p>
- Sample size :
 2 inches 4 inches
- Thermal control

NbSi co-evaporation at CSNSM / Orsay

• High impedance NbSi sensor (200 μ m X 400 μ m X 100 nm) • Grid aborber 2X2 mm² (Z_C = 377 Ω)

□ Classical architecture on full or structured LS-Si₃N₄ membranes

□ Deep etching process developed at IEF / Orsay or standard wet etching can be used (KOH, TMH)

□ NbSi thermometers :

- > Anderson insulator for Nb < 9%
- ➤ TES for Nb > 12% (adj. Tc 50 mK 1K)

23 Pixels prototype array, 45 X 45 mm²

Echantillons OLIMPO

Membrane SiN LS Lionix ou IEF

Litho NbSi + électrodes

Litho Grille Absorbante

Gravure humide

23 Pixels Membranes pleines

Structuration des membranes

- RIE + gravure profonde
- gravure XeF₂ (phase gazeuse)

Matrices OLIMPO

- Small prototype arrays of 23 pixels @ 300mK
- Frequency channels 500-600 GHz and 380-440 GHz (TBC)
- Resonant cavity design
- Backshort / front distances $\lambda/4$ (2nd wafer)
- Crosstalk < 1%

Matrice de bolomètres à antenne

- Plannar antenna array for imaging in millimeter wavelength
- optical cryostat with dilution developed for IRAM 30m telescope
- versatile fabrication process for future applications :
 - Polarisation sensitive detectors
 - Integrated frequency selection on the pixels

204 pixels test array

Logique de validation / application

Multiplexeur haute impedance

Principal constituents and operating mode

Quantum Point Contact High Electron Mobility Transistors (QPC-HEMTs)

Multiplexeur TES (APC / Lisif)

Bilan provisoire

- Mise en place des compétences (conception, fabrication des matrices)
- Moyens de fabrication disponible au Csnsm / IEF
- Moyens de validation (MPI, Caméra bolo)
- Méthodes de multiplexage
- Détecteurs pour Olimpo (vol été 2008)
- Matrice + multiplexeur TES
- Démonstration d'une matrice de bolomètres à antenne

- Préparation d'expériences pour la mesure de la polarisation du CMB (voir M.Piat)
- Instrument bolométrique pour IRAM 30m (CEA / CNRS) (2012)
- Collaboration européenne pour le développement de KIDs (SRON, Cardiff)
- Projet d'investissements à l'IEF (Minerve) pour la production de composants :
 - Dépôts de matériaux supra
 - NbSi sur wafer 4 pouces
 - Gravure XeF₂ des membranes

Caméra / Optique 'télécentrique', 2 lentilles HDPE

Cryostat optique :

- version avec bain d'hélium
- version avec Pulse-tube
- complètement opérable à distance (Internet)

- ✓ Spectre em Tiransmisisioion
- ✓Influence:delatempératurere
- ✓ Spectne em absorption
- ✓Influenceedelapplakisation
- ✓Indice optique
- Îpaisseur

✓ Etendue spectrale: 50	0 – 3000 GHz
✓ Résolution:	0,6 GHz
✓ Signal sur Bruit:	6000
✓ Durée pour obtenir un spectr	e: 2 min

150-220 GHz Diplexer

— 140 GHz — 210 GHz — atm

300

250

-5

-35 -40

0

50

100

150

Frequency [GHz]

200

- 4 bolometers
- 4-pole λ/4 shorted-stub filters define bands
- Impedance & length of input lines chosen so one filter looks open in the other's band.

