

Le télescope à neutrinos ANTARES

http://antares.in2p3.fr

La collaboration ANTARES

Principes de détection

Détection de la lumière Tcherenkov émise par les muons induits Maillage 3D de PMs

> Temps, position, amplitude des PMs \Rightarrow trajectoire μ (~ v < 0,5 °)

 $\gamma_{\check{c}}$

Principes de détection

Détection de la lumière Tcherenkov émise par les muons induits Maillage 3D de PMs

Bruit de fond intense → Enfouissement Signal = muon montant

> Temps, position, amplitude des PMs \Rightarrow trajectoire μ (~ v < 0,5 °)

 $\gamma_{\check{c}}$

Contraintes des bruits de fond

 ⇒Blindage : Terre en dessous, Mer en dessus
 ⇒ Signal = muons montants

Contraintes des bruits de fond

⇒ Flux de v cosmiques : un excès par rapport au spectre de v atmosphériques

 ⇒Blindage : Terre en dessous, Mer en dessus
 ⇒ Signal = muons montants

- Scénario de production de neutrino
 - Cosmic ray interactions: $p+A/g \rightarrow mesons \rightarrow n$
 - Désintégration de particules lourdes
 - Annihilation de WIMP: $DM + DM \rightarrow ... \rightarrow n$
- Etudes interdisciplinaires:
 - océanographie, biologie sous-marine, sismologie...

- Scénario de production de neutrino
 - Cosmic ray interactions: $p+A/g \rightarrow mesons \rightarrow n$
 - Désintégration de particules lourdes
 - Annihilation de WIMP: $DM + DM \rightarrow ... \rightarrow n$
- Etudes interdisciplinaires:
 - océanographie, biologie sous-marine, sismologie...

STAR

South Pole visible sky

 \mathcal{V}_{μ}

-90

site ANTARES

Les 12 lignes de détection

Les 12 lignes de détection

Sensibilité aux sources ponctuelles

Intégration & étalonnage des lignes

5 étages (un secteur)

A Marseille

- Prototype Secteur Ligne
- MILOM, Ligne 0
- Lignes 1,2,4,6,8,MIL,10,12

- A Saclay:
- Lignes 3,5,7,9,11

Intégration & étalonnage des lignes

5 étages (un secteur)

A Marseille

- Prototype Secteur Ligne
- MILOM, Ligne 0
- Lignes 1,2,4,6,8,MIL,10,12

A Saclay:

- Lignes 3,5,7,9,11

Assemblage et déploiement

Connexion sous-marine

Junction Box

<u>2001 – 2003:</u>

- Câble électro-optique 2001
- Boîte de jonction 2002
- Prototype Secteur Line (PSL) & Mini-ligne instrumentée (MIL) 2003

<u>2001 – 2003:</u>

- Câble électro-optique 2001
- Boîte de jonction 2002
- Prototype Secteur Line (PSL) & Mini-ligne instrumentée (MIL) 2003

<u>2005 – 2006:</u>

- > Mini-ligne instrumentée + OMs (MILOM)
 12 April 2005 → 6 April 2007
 □ Astropart. Phys 26 (2006) 314
- Ligne 1 en fonctionnement depuis le 2 Mars 2006
- Ligne 2 depuis Sept 2006

<u>2001 – 2003:</u> Câble électro-optique 2001 ➢ Boîte de jonction 2002 L1 Prototype Secteur Line (PSL) & Mini-ligne instrumentée (MIL) 2003 <u>2005 – 2006:</u> Mini-ligne instrumentée + OMs (MILOM) **12 April 2005** → **6 April 2007** Astropart. Phys 26 (2006) 314 Ligne 1 en fonctionnement depuis le 2 Mars 2006 Ligne 2 depuis Sept 2006

Junction Box

<u>2001 – 2003:</u>

- Câble électro-optique 2001
- Boîte de jonction 2002
- Prototype Secteur Line (PSL) & Mini-ligne instrumentée (MIL) 2003

<u>2005 – 2006:</u>

- > Mini-ligne instrumentée + OMs (MILOM) 12 April 2005 → 6 April 2007
 □ Astropart. Phys 26 (2006) 314
- Ligne 1 en fonctionnement depuis le 2 Mars 2006
- Ligne 2 depuis Sept 2006

2006 - aujourd'hui:

- Lignes 3,4,5 connectées Janvier 2007
- Lignes 6,7,8 et 9 déployées
- Line instrumentée déployée

<u>2001 – 2003:</u>

- Câble électro-optique 2001
- Boîte de jonction 2002
- Prototype Secteur Line (PSL) & Mini-ligne instrumentée (MIL) 2003

<u>2005 – 2006:</u>

- ≻ Mini-ligne instrumentée + OMs (MILOM) 12 April 2005 → 6 April 2007
 □ Astropart. Phys 26 (2006) 314
- Ligne 1 en fonctionnement depuis le 2 Mars 2006
- Ligne 2 depuis Sept 2006

2006 - aujourd'hui:

- Lignes 3,4,5 connectées Janvier 2007
- Lignes 6,7,8 et 9 déployées
- Line instrumentée déployée

Détecteur final début 2008

Configuration au sol

TAR

Bruit de fond optique

Sursauts de bio-luminescence:

Espèces animales photo-émettrices

Ligne de base ⁴⁰K

Bio-luminescence

Evolution de l'activité 2005-2007

Evénements reconstruits

Temps d'arrivée (t) des γ en fonction de l'altitude (z)
 Fonction de l'angle zénithal et de la distance
 Plusieurs algorithmes utilisés par la collaboration 1D, 3D, χ2 ,ML

Evénements à 5 lignes

Candidat neutrino atmosphérique

Distribution zénithale

Balise optique Forte intensité lumineuse : TTS PM négligeable

Résolution en temps (électronique) ~ 0.5ns

Conclusions

Avancées décisives au cours de l'année

Fonctionnement conforme au cahier des charges :

- Boîte de jonction opérationnelle depuis 2002
- Données à 5 lignes depuis janvier 2007
- Difficultés techniques surmontées
- Surveillance activité optique sur long terme

Détecteur final 12 lignes début 2008 : Exploitation scientifique ≥ 5 ans

Etape majeure vers un détecteur KM³ méditerranéen

Conclusions

Avancées décisives au cours de l'année

Fonctionnement conforme au cahier des charges :

- Boîte de jonction opérationnelle depuis 2002
- Données à 5 lignes depuis janvier 2007
- Difficultés techniques surmontées

Surveillance activité optique sur long terme

Détecteur final 12 lignes début 2008 : Exploitation scientifique ≥ 5 ans

Etape majeure vers un détecteur KM³ méditerranéen

dicats premie

neutrinos sous-marins !!