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Motivations

Black holes and quasi-local horizons have a rich symmetry structure
... and arich literature!

Geroch-Hansen ‘70, Hansen ’74,BCH ’73... Ashtekar-Beetle-Fairhurst-Krishnan-Lewandowski-etc ’00,
Donnay-Giribert-Gonzales-Pino ‘15, Grumiller et al ‘19, Sheikh-Jabbari et al ‘20, Freidel- et al ’18,
Chandrasekaran-Flanagan-Prabhu ’18, Ashtekar-Khera-Kolanowski-Lewandowski-etc ’22
Ciambelli-Freidel-Leigh '23, Ruzziconi-Zwikel 25, Agrawal-Charalambous-Donnay ’25 ...

For a special type of quasi-local horizons called non-expanding horizons (NEHs) one finds a
symmetry group that is very closely related to Scri: BMS + one global dilation

* Indeed, it is known that Scri can be described as a non-expanding horizon;

e but the physics of Scriis completely different from the equilibrium physics of a NEH!

So why the similarities, and at the same time the profound differences?



Plan of the talk

| - Horizons and null infinity

Il - Symmetry groups of horizons and null infinity

Il - Noether charges for the symmetry groups

IV - Weaker boundary conditions and larger symmetry groups



Geometry of null hypersurfaces

N :®=0 L2 —f0,®,  12Z0

Qv = Guv = "V 1 2kl k: inaffinity (tang. acc.)

Induced metric is degenerate:  Guv = guv q=(0,4,+) gl =0

v
shear and expansion:  £q,, = o, + 5 Qv
N
—> no projector, no induced connection
14 14 v 9
[, X"V, Y = -X"YIV 1, = -X"YH"(0,, + 57,,”/) (X,Y tangent vectors)

e null hypersurfaces with vanishing shear and expansion admit a unique connection
e in general case, possible to consider rigging/Carrolian connections



Geometry of null hypersurfaces
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Qv = Guv = "V 1 2kl k: inaffinity (tang. acc.)

Induced metric is degenerate:  quv = Guv q=(0,4,+) gl =0

4

0
shear and expansion:  £;q,,, = 0., + 5 duv
N
following Newman-Penrose (NP), useful to introduce an auxiliary null vector
n® =0, ntl, = —1 aka (null) rigging vector

fn [ \

induces a local projector on the 2d spacelike planes N
_ NP tetrad
Vv 3= G+ 2 () = 2, Juy = (1., m, )
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Geometry of null hypersurfaces

N

N @ = —f9,®,  12Z0
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Qv = Guv = "V 1 2kl k: inaffinity (tang. acc.)

Induced metric is degenerate:  quv = Guv q=(0,4,+) gl =0

4

6
shear and expansion:  £;q,,, = 0., + o duv

Extrinsic geometry via the Weingarten map:

y v N v b 1
- N——
rotation 1-form in IH literature
Hajicek 1-form, or twist

Caveat : (0,9,n,k) are not purely geometric quantities, but depend on kinematical choices
They are class | and Il - dependent, in the classification of Chandra’s book



Non-expanding horizons (NEHs)

e topology S? x R
N e vanishing expansion 6 =0
e vanishing shear* R, 0I"=al, = o0=0

(*in vacuum, same thing as shear and expansion free, but a subclass thereof in presence of matter)

— NEHs admit a unique connection D, =V,

Convenient to limit the kinematical freedom (the rescaling f ):
e choose affinely parametrized normals: k=0 & X5, =0 time-independent twist
e choose divergence-free twist: D,n" =

Only remaining arbitrariness: constant rescaling f

Notation: In the catalogue of Ashtekar-Beetle-Fairhurst-Krishnan-Lewandowski-etc,
a NEH equipped with this restricted equivalence class of choices of normal is called
extremal weakly isolated horizon



Non-expanding horizons are not stationary

At first sight, NEHs appear to be very close to equilibrium

N c=60=0 £m:0

They are however not stationary, because the induced connection is in general time-dependent :

- 1 R
L1, Dplny = Dyuny + nuny + Cppwel’n® + §(Suv + (o — g)QW)
) XI N -
Using Einstein’s equations:  time-independent vanishes

= geometry entirely determined by cod-2 free data 7,,, V2

‘in equilibrium’, although in a weaker sense than for a Killing horizon

Special cases
e isolated horizons £1,D,ln, =0
e Killing horizons (£, V,]n, =0



(Future) null infinity

|dealization useful to model isolated gravitational systems

weak-field region: spacetime becomes

strong-field region: asymptotically flat
highly curved

e Coordinate-dependent definition (Bondi-Sachs) based on null foliations
e Coordinate-independent definition (Penrose-Geroch) based on conformal compactifications



Penrose’s conformal compactification

Warm-up example: Minkowski

ds® = —du? — 2dudr + rqudeAde

e retarded time: u=¢t—r metric ill-defined at r — o©

e change coord.: ) = ds® = —du’® + Q_2(2dudQ + qABda:Ad:EB)

r
e define "'unphysical metric’: ﬁuy = QQUW

ds® = 2dudQ + qapdr?dz® — Q% du?




Penrose’s conformal compactification

Warm-up example: Minkowski i+
ds® = —du® — 2dudr + rqudeAda:B -
e retarded time: u =1t —r metric ill-defined at r — oo
e change coord.: {2 = — ds? = —du® + Q2 (2dudQ + gapdx?dz?)
r -
e define “unphysical metric’: A = Q°Nu 4

ds® = 2dudQ + gapdzrdz® — Q?du?

Formal definition (Penrose ’64): a spacetime is AF if it admits a conformal completion (M, §)
such that:

e it has aboundaryat 2 =0, with 9,2 # 0
e the boundary has topology S? x R
e the Einstein’s equations are satisfied at the boundary with 7}, = O(9%)



Null infinity as a NEH
Geroch ‘77

Einstein’s equation for the conformally rescaled metric

A A

Siw =Ry — ~GuwR= — 207V, n, + Q202§ + 0(Q?)

|

Smoothness of Scri then implies:

22y, Wanb)

1S

0, Vunt=LyIn/—§Z0+2k=20

n

& Scriis shear-free, but not necessarily expansion-free

O(Q?)




Null infinity as a NEH
Geroch ‘77

Einstein’s equation for the conformally rescaled metric

A A 1 A
Siw =Ry — ~GuwR= — 207V, n, + Q202§ + 0(Q?)

6
N 7. - 0@

Smoothness of Scri then implies:

0, Vunt=LyIn/—§Z0+2k=20

& Scriis shear-free, but not necessarily expansion-free

However, always possible to use freedom in changing to conformal factor
in order to pick 6 =0

0 — w2 Vunt — w YV, +4£, Inw) = V,n" =0




Null infinity as a NEH
Geroch ‘77

Einstein’s equation for the conformally rescaled metric

A A 1 A
Siw =Ry — ~GuwR= — 207V, n, + Q202§ + 0(Q?)

6
N 7. - 0@

Smoothness of Scri then implies:

22y, Wanb)

1S

0, Vunt=LyIn/—§Z0+2k=20

& Scriis shear-free, but not necessarily expansion-free

However, always possible to use freedom in changing to conformal factor

inordertopick =0 & £,¢q=0  divergence-free conformal frame © Bondi condition

0 — w2 Vunt — w YV, +4£, Inw) = V,n" =0



Null infinity as a NEH

Geroch ‘77
Einstein’s equation for the conformally rescaled metric i+
. . 1 .
S =Ry, — ggﬂ,,}zﬁ — 207V, + Q202G + O(Q2) -
L TNV — O(QQ)
Smoothness of Scri then implies: 0

n?20, Vg 20, V' =£,In/—§Z0+2k=20

& Scriis shear-free, but not necessarily expansion-free

However, always possible to use freedom in changing to conformal factor
inordertopick =0 & £,¢q=0  divergence-free conformal frame © Bondi condition

0 — w2 Vunt — w YV, +4£, Inw) = V,n" =0

Then also @Mn,, = (0, soin adiv-free frame,Scrihas c =0 =k =n=0 - extremal WIH

From a geometric viewpoint, a weakly isolated horizon is the same thing as a non-expanding
horizon; the only difference is a piece of additional information in the kinematical structure used



Null infinity as a WIH

Geroch ‘77

_|_ A
Z In a div-free frame, Scriis a WIH with vanishing twist in (M, g)

C > 0‘:9:]{;:7’]:0

We can apply the previous general equation of WIH, but with completely different dynamics now!

- 1 R
L1, Dylny = Dyuny + e + Copwel’n” + §(Suv + (a — g)QW)
Using conformal Einstein’s eqs:  vanishes time-dep, carries radiation
Bondi news

(Caveat: conformal invariance)



Null infinity vs horizons

o1 R
L1, Dyplny = Dyuny + nuny + Cppwel’n® + §(Suv + (o — g)QW)
A A

Einstein’s egs
at a physical horizon conformal Einstein’s eqs

select this part at null infinity

select this part



Il - Symmetry groups



General relativity and symmetries

The only symmetries of general relativity are diffeomorphisms, and these are gauge symmetries



General relativity and symmetries

The only symmetries of general relativity are diffeomorphisms, and these are gauge symmetries

If we expand around a background with Killing vectors, we gain genuine symmetry status for

those diffeomorphisms that correspond to the isometries of the background
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When modelling isolated systems,

we assume a flat background metric but only
asymptotically far away from the sources

= asymptotic symmetries

E.g. Poincare at spatial infinity, BMS at null infinity: Asymptotic symmetries that arise from the
isometries of the asymptotic boundary conditions



General relativity and symmetries

The only symmetries of general relativity are diffeomorphisms, and these are gauge symmetries

If we expand around a background with Killing vectors, we gain genuine symmetry status for
those diffeomorphisms that correspond to the isometries of the background

When modelling isolated systems,
we assume a flat background metric but only
asymptotically far away from the sources

= asymptotic symmetries

E.g. Poincare at spatial infinity, BMS at null infinity: Asymptotic symmetries that arise from the

isometries of the asymptotic boundary conditions
More in general, we can define boundary symmetries, as residual diffeomorphisms preserving

the boundary conditions

Symmetries of BH horizons, and of null hypersurfaces in general, arise as residual diffeos
preserving the boundary conditions defining the horizons and null hypersurfaces
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Since Scri is a WIH in the unphysical spacetime then, should the symmetry groups match?



General relativity and symmetries

The only symmetries of general relativity are diffeomorphisms, and these are gauge symmetries

If we expand around a background with Killing vectors, we gain genuine symmetry status for

those diffeomorphisms that correspond to the isometries of the background

When modelling isolated systems,
we assume a flat background metric but only
asymptotically far away from the sources

= asymptotic symmetries

E.g. Poincare at spatial infinity, BMS at null infinity: Asymptotic symmetries that arise from the

isometries of the asymptotic boundary conditions

More in general, we can define boundary symmetries, as residual diffeomorphisms preserving

the boundary conditions

Symmetries of BH horizons, and of null hypersurfaces in general, arise as residual diffeos
preserving the boundary conditions defining the horizons and null hypersurfaces

Since Scri is a NEH in the unphysical spacetime then, should the symmetry groups match?

Almost!  Scri: G"™° = S0(3,1) x ST Physical NEH: G™*" = 50(3,1) x ST x D



Asymptotic symmetries at spatial and null infinity

At fixed time: At fixed retarded time:
(t,T,9,¢) (U,T,9,¢) u:=t—r
r— 00 Minkowski metric T — 00 Minkowski metric
misses all radiation captures all radiation

‘o Spatial infinity Null infinity

Poincare group  P* = SO(3,1) x T* BMS group G""° = S0(3,1) x ST




Why super-translations?

Very easy to gain intuition using Penrose’s conformal picture :

ds? = 2dudQ + qapdr?dz® — Q%du?

Global symmetries: £ =0 = Lenu — 2060, =0
conformal isometries of full unphysical flat metric

P*=S50(3,1) x T*

Asymptotic symmetries:  £efuy — 20¢M), = O(Q)
conformal isometries of leading order unphysical flat metric

G"™ = 50(3,1) x ST
7




Why super-translations?

Very easy to gain intuition using Penrose’s conformal picture :

ds® = 2dudQ + qapdr?dz® — Q% du?

Global symmetries: £ =0 = LNy — 2060, =0 Only valid for Minkowski
conformal isometries of full unphysical flat metric

P*=S50(3,1) x T*

Asymptotic symmetries:  L¢fu — 20, = O(Q) Property of any AF spacetime
conformal isometries of leading order unphysical flat metric

G"™ = 50(3,1) x ST
7

AF metrics match the flat metric at Scri,

with departures at subleading orders



Null infinity symmetry: BMS

For the general derivation, there are two equivalent approaches in the literature:

e Coordinate-dependent definition (Bondi-Sachs) based on null foliations
& Asymptotic symmetries as residual diffeomorphisms preserving the boundary conditions
e Coordinate-independent definition (Penrose-Geroch) based on conformal compactifications
& Asymptotic symmetries as isometries of the universal structure shared by AF metrics



Null infinity symmetry: BMS

For the general derivation, there are two equivalent approaches in the literature:

e Coordinate-dependent definition (Bondi-Sachs) based on null foliations
= Asymptotic symmetries as residual diffeomorphisms preserving the boundary conditions
e Coordinate-independent definition (Penrose-Geroch) based on conformal compactifications
& Asymptotic symmetries as isometries of the universal structure shared by AF metrics

Universal structure at Scri:

The induced metric at Scri is just Minkowski, hence universal;

{Q,uv — QAV — ngiy
n = df2

however, there is freedom in choosing the conformal factor:

) — wl) = [{(quu,n“> ~ (w2qumw_1n“>})

£,0 =0 inorderto preserve the Bondi condition (Scri as a WIH)

Isometries of the universal structure:

[ffng = 20¢q, Lent = —agn“J




BMS group

[fng/ = 20¢Quy, Lent = —agn“j G®M =50(3,1) x ST

Infinite dimensional extension of the Poincare group with structure constants

In particular, super-translations don’t commute with rotations and boosts:

ey xr] =&, T =YA94T — jT

= Infinitely many Lorentz subgroups, one per "cut’
Only ideal subalgebra is the global translations 1




Physical WIH symmetry: BMS+Dilation

Universal structure at a physical WIH: c=0=0 = Lyqu =0

Since the induced metric is time-independent, it is the pull-back of a 2d space-like metric

Any 2d space-like metric can be written as a round sphere metric up to a conformal transformation:

5 O The existence of a round sphere metric is thus
7= (V7 ) a universal property of any metric admitting a WIH

But there is a 3 parameter family of round spheres: Lorentz boosts

& the universal structure is really an equivalence class of round spheres {éw w2 21}

How about the normal vector? recall that the multipole moments are contained in the Hajicek

D" =n,l” & useful to rescale also [ so that multipole moments can be defined wrt ¢

{( @, [1M]) ~ (@ Qw0 [14])}
{ )

Isometries of the universal structure:

[”65%1/ = 20¢qu, £ent = —(ag + We)n# j

The reason why in the physical case we have on more generator is because of the different
universal structures. Remark: extra generator related to the area as Noether charge (Wald '94)



Symmetries of physical WIH vs null infinity

Null infinity: Physical WIH:

() ~ i) (G 4 ~ (2 )]

[fng = 20¢q, Lent = —agn“j [Jfng = 20¢qu, £Lent = —(ag + We)nt )

G = 50(3,1) x ST G =50(3,1) x ST x D

The reason why in the physical case we have on more generator is because of the different
universal structures

Remark: extra generator related to the area as Noether charge (Wald ’94)



l1l - Noether charges
for horizon symmetries



Noether theorem in gravity

If we have symmetries at the horizon, we can study their Noether charges
and gain intuition on the physical interpretation of the symmetries

Even though Noether’s theorem was motivated precisely by GR,
its application to GRis very subtle, and often badly used

|

Noether charges for residual gauge transformations are surface charges
= completely ambiguous (see e.g. problems of Komar expression)

In some conditions the ambiguities can be fixed looking at the canonical generators,
but in the presence of radiation, some of the boundary symmetries
are not Hamiltonian vector fields & no canonical generators



Noether theorem in gravity

Because of these difficulties, conservation/flux-balance laws for the asymptotic symmetries
were first identified using purely Einstein’s equations and physical requirements
(ADM ’60, Regge-Teitelboim ’74, Geroch ’77, Ashtekar-Streubel ’79, Dray-Streubel ’84)

and only later identified as canonical generators (lyer-Wald ’94, Wald-Zoupas ’99)
and as improved Noether charges (Harlow-Wu ’19, Odak-Rignon-Bret-SSp "22)

The Wald-Zoupas prescription was then applied to general null hypersurfaces and NEHs in
Chandrasekaran-Flanagan-Prabhu 18, Ashtekar-Khera-Kolanowski-Lewandowski-etc "22
Odak-Rignon-Bret-SSp 23

The Wald-Zoupas prescription solves the ambiguities by imposing criteria on the
symplectic potential



BMS charges

GEM = SO(3,1) x ST

E=fn+Y  f=T+5DY"°

1
QY = 5(2 M, + Y%, es

M = — (wg + 00 + % (525 — cc)) = —Re(¢2 + 05)7

mJ, = — (wl + 000 + %5(05)) .

The Newman-Penrose tetrad is fixed requiring
n to be tangent to Scri and | tangent to the cut

This is the unique set of charges that satisfies the 3 criteria of Wald-Zoupas
0. Being associated to the standard Einstein-Hilbert symplectic 2-form
1. Being covariant

2. Being conserved when the Bondi news vanish



Horizon charges

For a general null hypersurface, with CFP boundary conditions:
GCFP = Diff(S) x ST x W Qg = % (T(9>\ -+ Y'unlu + W(l — )\HA))GS

e Satisfy flux-balance laws such that they are conserved when the null hypersurface

is shear free and expansion free
e Special case of NEH: G™*" = S50(3,1) x ST x D

e Weyl charge used as dynamical entropy (Hollands-Wald-Zhang ’24)

Odak-Rignon-Bret-SSp "23:
There is a one-parameter family of charges,
correspondent to different choices of polarizations in the phase space

. c c
Qg — % (§T9)\ + Y'unlu + W(l — 5)\(9)\))65

e Dirichlet polarization: c=2

e York-type conformal polarization: c=1

This alternative polarization leads to a positive-definite flux and a notion
of dynamical entropy that increases only during collapse (Rignon-Bret ’23)



Charges covariance

The charges so constructed provide a realization of the symmetry in the phase space

0xQe — %ixjﬁ = Q[ﬁ,x]

This property is guaranteed by Wald-Zoupas covariance (Rignon-Bret-SS ’24)

For instance the famous field-dependent 2-cocycle found for the BMS charge algebra in
Barnich-Troessaert "1 is entirely due to the use of non covariant charges,
and can be removed correcting the prescription



IV - Weaker boundary conditions
and larger symmetry groups



Boundary conditions and residual diffeomorphisms

finite distance 1, N —NO, residual diffeos null infinity n, = 0,

N
nH* i 0P =0 Diff (N) o) =
(61, =0 Diff (N on, =0
\
/— L ol" =0 Diff;(N) := Diff (S) x Diff(R)° dn* =0 |
109, =0
CFP 5k =0 (Diff(S) x Ry,) x RS 5k =0 BMSW
iff A/ isa NEH: 5CIW =0 Diff(S) X R% 5\/5 =0 gBMS
S
SO(3,1) x RZ x D | SO(3.1) X RS, g =0 BMS

Campiglia-Laddha ‘15
Compere-Fiorucci-Ruzziconi 18
Freidel-Oliveri-Pranzetti-SSp 21

Donnay et al ‘15, Adami et al 21, Grumiller et al ‘21,

Chandrasekaran-Flanagan-Prabhu 18
Ashtekar-Khera-Kolanowski-Lewandowski ’21

Chandrasekaran-Flanagan ’23...



Conclusions

NEHs share many geometric features with Scri, but a completely different physics
e The shared features explain why the symmetry groups are so closely related
e The different physics is encoded in the dynamics

Symmetries of black hole horizons, of quasi-local horizons, and null hypersurfaces in general,
can be studied using the same techniques of asymptotic symmetries like ADM and BMS:

as residual diffeos compatible with boundary conditions, or equivalently as isometries
of the universal structure

(The second method is coordinate-independent and tends to give easier geometric formulas)
The number of symmetries and the resulting symmetry groups depends on the boundary cond.
Relaxing too much the b.c. leads to charges that are never conserved & probably not useful

Ambiguities in the Noether charges can be removed insisting on (a generalization of)
the Wald-Zoupas prescription

The same results can be obtained without selecting a symplectic potential,
but instead equipping the phase space with a norm (Ashtekar-SSp ’24)

Can this prescription be applied to celestial symmetries?



