Some unconventional enhanced black hole symmetries with physical implications The tune of Love, and null infinity as an inverted extremal horizon

# Based on: {[2209.02091], [2502.02694]}; [2506.15526].

In collaboration with: Sergei Dubovsky, Mikhail Ivanov; Laura Donnay, Shreyansh Agrawal.

## Black holes and their symmetries

Tours; July 02-04, 2025

Panagiotis (Panos) Charalambous







uropean Research Council tablished by the European Commission

Panos (SISSA)

Love symmetries and spatial inversions

Tours, 04 July 2025

1/20

#### Table of Contents

#### The tune of Love and Love symmetries

#### Null infinity as an inverted extremal horizon



#### Love numbers in GR - Worldline EFT Goldberger & Rothstein [hep-th/0409156] Porto [gr-qc/0511061] Laura's talk

# Kol & Smolkin [1110.3764 Newtonian matching Hui & Joyce & Penco & Santoni & Solomon [2010.00593] PC & Dubovsky & Ivanov [2102.08917] • Put a pure $2^{\ell}$ -pole background with source moments $\overline{\mathcal{E}}_{L}$ at large distances and match 1-pt function: "response" $\left< h_{00} \right>_{\mathsf{EFT}} =$ $=\bar{\mathcal{E}}_{L}x^{L}\left|\left(1+a_{1}\frac{GM}{r}+\ldots\right)+\frac{\lambda_{\mathsf{e}|,\ell}^{(2)}}{r^{2\ell+1}}\left(b_{0}+b_{1}\frac{GM}{r}+\ldots\right)\right|$

$$\lambda_\ell^{(j)} \propto k_\ell^{(j) ext{Love}} \left( \omega = 0 
ight) \mathcal{R}^{2\ell+1}$$

- *j* = 0: Scalar response
- j = 1: Electric/Magnetic polarization
- j = 2: Electric/Magnetic tidal response

#### The tune of Love

- Totalitarian principle: "Everything not forbidden is compulsory!"
- 't Hooft naturalness (1980): "At any energy scale, a physical parameter is allowed to be small if setting it to zero enhances the symmetry of the system. Otherwise, its natural value is an O(1) number".

#### Magic zeroes in the black hole response problem

• For all isolated asymptotically flat GR (Kerr-Newman) black holes:

Fang & Lovelace [0505156] Hinderer [0711.2420] Damour & Nagar [0906.0096] Binnington & Poisson [0906.1366]

Poisson [1411.4711] Le Tiec & Casals [2007.00214] Chia [2010.07300] Le Tiec et. al [2010.15795] PC & Dubovsky & Ivanov [2102.08917]

Gürlebeck [1503.03240] De Luca et al. [2305.14444] Riva et al. [2312.05065]

 $k_{\ell m}^{(s)\text{Love}}(\omega=0)=0 \Rightarrow \square$ 

Porto [1606.08895]

## Scalar perturbations of Schwarzschild black hole (c=1)

• Massless scalar field in Schwarzschild background  $(r_h = r_s = 2GM)$ :

$$\Box \Phi = 0, \quad ds^2 = -\frac{\Delta(r)}{r^2} dt^2 + \frac{r^2}{\Delta(r)} dr^2 + r^2 d\Omega_2^2, \quad \Delta(r) = r(r - r_s)$$

• Full e.o.m.: 
$$\mathbb{O}_{\mathsf{full}} \Phi_{\omega\ell m} = \left[\partial_r \Delta \partial_r - \frac{r^4}{\Delta} \partial_t^2\right] \Phi_{\omega\ell m} = \ell \left(\ell + 1\right) \Phi_{\omega\ell m}$$

#### Response as low-energy scattering problem

Starobinsky (1973,1974)

- Near-zone region:  $\omega \left( r r_{\mathsf{h}} 
  ight) \ll 1$
- Far-zone region:  $\omega r \gg 1$

• Intermediate region: 
$$r_{\rm h} \ll r \ll \frac{1}{\omega}$$



## Scalar perturbations of Schwarzschild black hole (c=1)

• Massless scalar field in Schwarzschild background  $(r_h = r_s = 2GM)$ :

$$\Box \Phi = 0, \quad ds^2 = -\frac{\Delta(r)}{r^2} dt^2 + \frac{r^2}{\Delta(r)} dr^2 + r^2 d\Omega_2^2, \quad \Delta(r) = r(r - r_s)$$

• Full e.o.m.: 
$$\mathbb{O}_{\mathsf{full}} \Phi_{\omega\ell m} = \left[\partial_r \Delta \partial_r - \frac{r^4}{\Delta} \partial_t^2\right] \Phi_{\omega\ell m} = \ell \left(\ell + 1\right) \Phi_{\omega\ell m}$$
  
• NZ e.o.m.:  $\mathbb{O}_{\mathsf{NZ}} \Phi_{\omega\ell m} = \left[\partial_r \Delta \partial_r - \frac{r_s^4}{\Delta} \partial_t^2\right] \Phi_{\omega\ell m} = \ell \left(\ell + 1\right) \Phi_{\omega\ell m}$ 

 $\mathsf{SL}\left(2,\mathbb{R}\right)$  symmetry of  $\mathbb{O}_{\mathsf{NZ}}$  :

Bertini & Cacciatori & Klemm [1106.0999] Kim & Myung & Park [1205.3701]

$$L_0 = -\kappa^{-1}\partial_t \,, \quad L_{\pm 1} = e^{\pm\kappa t} \left[ \mp \sqrt{\Delta} \,\partial_r + \left(\sqrt{\Delta}\right)' \kappa^{-1} \partial_t \right] \,, \quad \kappa = 2r_s \,.$$

$$[L_m, L_n] = (m-n) L_{m+n}, C_2 = \mathbb{O}_{\mathsf{NZ}}$$

$$L_0 \Phi_{\omega \ell m} = i \kappa^{-1} \omega \Phi_{\omega \ell m}$$
$$\mathcal{C}_2^{\mathsf{SL}(2,\mathbb{R})} \Phi_{\omega \ell m} = \ell \left(\ell + 1\right) \Phi_{\omega \ell m}$$

## Scalar perturbations of Schwarzschild black hole (c = 1)

• Massless scalar field in Schwarzschild background  $(r_h = r_s = 2GM)$ :

$$\Box \Phi = 0, \quad ds^2 = -\frac{\Delta(r)}{r^2} dt^2 + \frac{r^2}{\Delta(r)} dr^2 + r^2 d\Omega_2^2, \quad \Delta(r) = r(r - r_s)$$

• Full e.o.m.: 
$$\mathbb{O}_{\mathsf{full}} \Phi_{\omega\ell m} = \left[\partial_r \Delta \partial_r - \frac{r^4}{\Delta} \partial_t^2\right] \Phi_{\omega\ell m} = \ell \left(\ell + 1\right) \Phi_{\omega\ell m}$$
  
• NZ e.o.m.:  $\mathbb{O}_{\mathsf{NZ}} \Phi_{\omega\ell m} = \left[\partial_r \Delta \partial_r - \frac{r_s^4}{\Delta} \partial_t^2\right] \Phi_{\omega\ell m} = \ell \left(\ell + 1\right) \Phi_{\omega\ell m}$ 

 $\mathsf{SL}(2,\mathbb{R})$  symmetry of  $\mathbb{O}_{\mathsf{NZ}}$ :

Bertini & Cacciatori & Klemm [1106.0999] Kim & Myung & Park [1205.3701]

$$L_0 = -\kappa^{-1}\partial_t \,, \quad L_{\pm 1} = e^{\pm\kappa t} \left[ \mp \sqrt{\Delta} \,\partial_r + \left(\sqrt{\Delta}\right)' \kappa^{-1} \partial_t \right] \,, \quad \kappa = 2r_s \,.$$

$$\begin{bmatrix} L_m, L_n \end{bmatrix} = (m-n) L_{m+n}, C_2 = \mathbb{O}_{NZ} \\ \hline L_0 \Phi_{\omega\ell m} = i\kappa^{-1}\omega \Phi_{\omega\ell m} \\ C_2^{\mathsf{SL}(2,\mathbb{R})} \Phi_{\omega\ell m} = \ell(\ell+1) \Phi_{\omega\ell m} \end{bmatrix} \xrightarrow{\begin{array}{c} \underline{\mathsf{Selection rule}}:\\ L_{+1}^{\ell+1} \Phi_{\omega=0,\ell m} = 0 \\ \hline \sim \partial_r^{\ell+1} \Phi_{\omega=0,\ell m} = 0 \Rightarrow \operatorname{No} r^{-\ell-1} \operatorname{term!} \end{bmatrix}} \mathcal{P}_{\omega}$$

#### Love symmetry for Kerr-Newman black holes PC & Dubovsky & Ivanov [2103.01234.2209.02091]

# $$\begin{split} L_{0}^{(s)} &= -\kappa^{-1}\partial_{t} + s \\ L_{\pm 1}^{(s)} &= e^{\pm\kappa t} \bigg[ \mp \sqrt{\Delta} \,\partial_{r} + \left(\sqrt{\Delta}\right)' \kappa^{-1} \partial_{t} \frac{+s}{\omega^{-1}} \frac{-1}{\omega^{-1}} \frac{+s}{\omega^{-1}} \frac{-s}{\omega^{-1}} \frac{-s}{\omega$$

- Selection rule:  $(L_{+1}^{(s)})^{\ell+s+1}\psi_{s,\omega=0,\ell m} = 0 \quad \sim k_{\ell m}^{(s)\text{Love}}(\omega=0) = 0$
- Love SL  $(2, \mathbb{R}) \times \overline{SL(2, \mathbb{R})}$ , with  $\overline{SL(2, \mathbb{R})}$  not globally defined,  $\overline{L}_m^{(s)} \xrightarrow{\phi \to \phi + 2\pi} e^{2\pi m \kappa / \Omega} \overline{L}_m^{(s)}$ , and without smooth spinless limit.

Teukolsky (1973)

#### The tune of Love and Love symmetries

| Hui & Joyce & Penco & Santoni & Solomon | [2010.00593] | Kol & Smolkin [1110.3764]                               |  |  |
|-----------------------------------------|--------------|---------------------------------------------------------|--|--|
| Pereñiguez & Cardoso                    | 2112.08400   | Gürlebeck [1503.03240]                                  |  |  |
| PC & Dubovsky & Ivanov [2103.01234      | 2209.02091   | De Luca & Khoury & Wong [2305.14444]                    |  |  |
| PC & Ivanov                             | [2303.16036] | Riva & Santoni & Savić & Vernizzi [2312.05065]          |  |  |
| Rodriguez & Santoni & Solomon & Temoche | 2304.03743   | Iteanu & Riva & Santoni & Savić & Vernizzi [2410.03542] |  |  |
| PC                                      | 2402.07574   | Combaluzier-Szteinsznaider et al. [2410.10952]          |  |  |
| Gray & Keeler & Kubiznak & Martin       | 2409.05964   | Kehagias & Riotto [2410.11014]                          |  |  |
| PC & Dubovsky & Ivanov                  | 2502.02694   | Gounis & Kehagias & Riotto [2412.08249]                 |  |  |

| Black configuration                              | Type of perturbation                               | Magic zeroes?                                            | Love symmetry?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Schwarzschild-<br>Tangherlini $(d \geq 4)$       | p-form "el."                                       | $\checkmark (\frac{\ell \pm p}{d-3} \in \mathbb{N})$     | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  | p-form "mag."                                      | $\checkmark(\frac{\ell\pm(d-2-p)}{d-3}\in\mathbb{N})$    | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                  | Gr. el. (Z)                                        | $\checkmark (\frac{\ell \pm (d-3)}{d-3} \in \mathbb{N})$ | (? for $d > 4$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                  | Gr. mag. (RW)                                      | $\checkmark (\frac{\ell \pm (d-2)}{d-3} \in \mathbb{N})$ | <ul> <li>Image: A second s</li></ul> |
|                                                  | Gr. tensor $(d > 4)$                               | $\checkmark (\frac{\ell}{d-3} \in \mathbb{N})$           | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Reissner-Nordström $(d \ge 4)$                   | Scalar                                             | $\checkmark (\frac{\ell}{d-3} \in \mathbb{N})$           | <ul> <li>✓</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  | $p$ -form ( $p \ge 2$ )                            | ×                                                        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  | Gr. tensor $(d > 4)$                               | $\checkmark(\frac{\ell}{d-3}\in\mathbb{N})$              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Kerr $(d = 4)$                                   | Scalar, Em., Gr.                                   | $\checkmark (\ell \in \mathbb{N})$                       | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Myers-Perry $(d = 5)$                            | Scalar                                             | $\checkmark(rac{\ell}{2}\in\mathbb{N})$                 | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Einstein-Maxwell Lense-Thirring ( $d \ge 4$ )    | Scalar                                             | $\checkmark(\frac{\ell}{d-3}\in\mathbb{N})$              | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Schw.+Riemann $^{n\geq 2}$ ( $d\geq 4$ )         | Scalar                                             | ×                                                        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Static black <i>p</i> -branes<br>(non-dilatonic) | Scalar                                             | $\checkmark(rac{\ell}{d-p-3}\in\mathbb{N})$             | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Schwarzschild, Kerr ( $d = 4$ )                  | Non-linear gravitational,<br>static & axisymmetric | $\checkmark(\ell\in\mathbb{N})$                          | ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

8 / 20

The tune of Love and Love symmetries

## Relation to enhanced NHE isometry

PC & Dubovsky & Ivanov [2209.02091] PC & Ivanov [2303.16036] PC & Dubovsky & Ivanov [2502.02694]

- At extremality, near-horizon develops an infinite throat that *decouples* from far-horizon geometry and acquires an AdS structure.
- $\mathsf{RN}_d$ :  $\mathsf{SL}(2,\mathbb{R})_{\mathsf{NHE}} imes SO(d-1)$

• 
$$\mathsf{MP}_d$$
:  $\mathsf{SL}(2,\mathbb{R})_{\mathsf{NHE}} imes U(1)^{\left\lfloor \frac{d-1}{2} 
ight
floor}$ 

• p-branes: 
$$SO(p+1,2)_{NHE} \times SO(d-p-1)$$
  
Carter (1973) Bardeen & Horowitz [hep-th/9905099]  
Kunduri & Lucietti & Reall [0705.4214]  
Galajinsky [1209.5034] Galajinsky et. al [1303.4901]







 $Q^2 = M^2$ 

$$\begin{aligned} \mathsf{RN}_{d} &: \lim_{Q^{2} \to M^{2}} \mathsf{SL}(2,\mathbb{R})_{\mathsf{Love}} = \mathsf{SL}(2,\mathbb{R})_{\mathsf{NHE}} \\ \mathsf{MP}_{4,5} &: \lim_{a^{2} \to M^{2}} \left( \mathsf{SL}(2,\mathbb{R})_{\mathsf{BH}} \subset \mathsf{SL}(2,\mathbb{R})_{\mathsf{Love}} \ltimes \hat{U}(1)^{\left\lfloor \frac{d-1}{2} \right\rfloor} \right) = \mathsf{SL}(2,\mathbb{R})_{\mathsf{NHE}} \\ & \mathsf{Black strings:} \lim_{Q^{2} \to M^{2}} SO(2,2)_{\mathsf{Love}} = SO(2,2)_{\mathsf{NHE}} \end{aligned}$$

#### Summary and extensions

- Love numbers are Wilson coefficients in worldline EFT that capture the conservative response of compact bodies to external "tidal" fields.
- Black holes in *d* = 4 GR have vanishing static Love numbers.
- Enhanced SL  $(2, \mathbb{R})$  symmetry in near-zone  $\sim$  Highest-weight banishes Love
- For *d* > 4 black holes and black strings, Love symmetries still exist and are in accordance with the more intricate vanishing of Love numbers.
- For modified GR, Love symmetry in general does not exist and Love numbers have their natural non-zero and RG-flowing values.
- For scalar perturbations of RN and p-form perturbations of Schwarzschild, Love SL (2, ℝ) admits a full centerless Virasoro (Witt) algebra extension.
- Approximate near-zone symmetries are isometries of near-NHE geometries.
- Closely related to enhanced isometry of NHE throat.

#### Table of Contents

#### The tune of Love and Love symmetries

#### Null infinity as an inverted extremal horizon

# Null infinity as a non-expanding horizon Ashtekar & Speziale {[2401.15618]

## Null infinity as a non-expanding horizon (NEH)

 $\mathscr{I}^+$  is a NEH of the conformal completion of an asymptotically flat spacetime (AFS),

$$ds^2_{\mathscr{J}^+} = \Omega^2 d ilde{s}^2_{\mathscr{J}^+} \quad ext{with} \quad \Omega = rac{lpha}{r} \,.$$

- Even in the presence of radiation, if  $\mathcal{T}_{\mu
  u}=\mathcal{O}\left(\Omega^{2}
  ight).$
- $\exists$  divergence-free conformal frames  $\sim \mathscr{I}$  is an extremal NEH.
- $g_{uA} = \mathcal{O}\left(r^{0}\right) \rightsquigarrow \mathscr{I}$  is a non-twisting NEH.

(

Simone's talk

## $\mathscr{H}/\mathscr{I}$ correspondence

Godazgar & Godazgar & Pope [1707.09804] Agrawal & PC & Donnay [2506.15526]

 $i^+_{Q}$ 

#### Conformally completed AFS $\simeq$ Geometry near extremal horizon

Under the spatial inversion

$$r \mapsto \frac{\alpha^{2}}{\rho}, \quad u \mapsto v \quad \Rightarrow \quad d\tilde{s}_{\mathscr{G}^{+}}^{2} \mapsto d\tilde{s}_{\mathscr{G}^{+}}^{2} \mapsto d\tilde{s}_{\mathscr{G}^{+}}^{2} \\ \text{with:} \\ \mathcal{F}(v, \rho, x^{A}) = \alpha^{-2} F\left(u \mapsto v, r \mapsto \frac{\alpha^{2}}{\rho}, x^{A}\right), \\ \theta^{A}(v, \rho, x^{B}) = -\alpha^{-4} \rho U^{A}\left(u \mapsto v, r \mapsto \frac{\alpha^{2}}{\rho}, x^{B}\right), \\ g_{AB}(v, \rho, x^{C}) = \alpha^{2} \mathcal{H}_{AB}\left(u \mapsto v, r \mapsto \frac{\alpha^{2}}{\rho}, x^{C}\right).$$

$$ds_{\mathscr{H}^{+}}^{2} = -\rho^{2}\mathcal{F}dv^{2} + 2dvd\rho + g_{AB}(dx^{A} + \rho\theta^{A}dv)(dx^{B} + \rho\theta^{B}dv),$$
  
$$ds_{\mathscr{H}^{+}}^{2} = -\mathcal{F}du^{2} - 2dudr + r^{2}\mathcal{H}_{AB}\left(dx^{A} - \frac{U^{A}}{r^{2}}du\right)\left(dx^{B} - \frac{U^{B}}{r^{2}}du\right) = \left(\frac{\alpha}{r}\right)^{2}d\tilde{s}_{\mathscr{H}^{+}}^{2}.$$

Panos (SISSA)

13 / 20

## $\mathscr{H}/\mathscr{I}$ correspondence

Agrawal & PC & Donnay [2506.15526]

 $\mathscr{H}/\mathscr{I}$  dictionary

| $\mathscr{H}$  | Name                   | Evolution equation          | I                                 |
|----------------|------------------------|-----------------------------|-----------------------------------|
| $\kappa$       | "surface gravity"      | -                           | 0                                 |
| Θ              | longitudinal expansion | Null Raychaudhuri eq.       | 0                                 |
| $\omega_A$     | twist 1-form           | Damour eq.                  | 0                                 |
| $\sigma_{AB}$  | longitudinal shear     | Tidal force eq.             | 0                                 |
| $\Omega_{AB}$  | horizon metric         | (free data)                 | q <sub>AB</sub> (fixed)           |
| $\lambda_{AB}$ | transversal shear      | Trans. deform. rate ev. eq. | <i>C<sub>AB</sub></i> (free data) |

$$\begin{split} ds_{\mathscr{H}^+}^2 &= -2\rho \,\kappa \, d\upsilon^2 + 2d\upsilon d\rho + 2\rho \,\vartheta_A d\upsilon dx^A + \left(\Omega_{AB} + \rho \lambda_{AB}\right) dx^A dx^B + \dots \,, \\ ds_{\mathscr{I}^+}^2 &= -F_0 du^2 - 2du dr - 2u_A du dx^A + \left(r^2 q_{AB} + r C_{AB}\right) dx^A dx^B + \dots \,. \end{split}$$



## The Couch-Torrence inversion symmetry of ERN

Extremal Reissner-Nordström (ERN) black hole (d = 4, G = c = 1):

$$ds_{\mathsf{ERN}}^2 = -rac{\Delta\left(r
ight)}{r^2}dt^2 + rac{r^2dr^2}{\Delta\left(r
ight)} + r^2d\Omega_2^2\,,\quad \Delta\left(r
ight) = \left(r-M
ight)^2$$

#### Couch-Torrence (CT) inversion

Couch & Torrence (1984) Borthwick & Gourgoulhon & Nicolas [2303.14574]

$$r \xrightarrow{CT} \tilde{r} = \frac{Mr}{r-M}$$
: Isometry of  $r^{-2}ds_{\text{ERN}}^2$ ,

CT inversion = Reflection of tortoise coord. that preserves  $r_{ph} = 2M$ :

$$r_* = r - M - \frac{M^2}{r - M} + 2M \ln \left| \frac{r - M}{M} \right| \xrightarrow{\mathsf{CT}} - r_*$$
$$\Rightarrow (v, r, x^A) \xleftarrow{\mathsf{CT}} \left( u, \frac{Mr}{r - M}, x^A \right) \Leftrightarrow \underbrace{\mathscr{H}^{\pm} \xleftarrow{\mathsf{CT}} \mathscr{I}^{\pm}}_{\mathsf{H}^{\pm}}$$



Null infinity as an inverted extremal horizon

### Physical implications: Matching of near- $\mathscr{H}$ and near- $\mathscr{I}$

charges

Bizon & Friedrich [1212.0729], Lucietti & Murata & Reall & Tanahashi [1212.2557] Bhattacharjee & Chakrabarty & Chow & Paul & Virmani [1805.10655] Fernandes & Ghosh & Virmani [2008.04365], Borthwick & Gourgoulhon & Nicolas [2303.14574] Agrawal & PC & Donnay [2506.15526]

Massless (minimally coupled) scalar perturbations of ERN black hole:

 $\Box_{\mathsf{ERN}}^{(0)} \Phi = 0 \Rightarrow \begin{cases} \Box_{\mathscr{I}^+}^{(0)} \Phi(u, r, x^A) = 0 , & \Phi(u, r, x^A) \sim \frac{1}{r} \sum_{n=0}^{\infty} \Phi^{(n)}(u, x^A) \frac{1}{r^n} ; \\ \Box_{\mathscr{H}^+}^{(0)} \hat{\Phi}(v, r, x^A) = 0 , & \hat{\Phi}(v, r, x^A) \sim \sum_{n=0}^{\infty} \hat{\Phi}^{(n)}(v, x^A) \left( \frac{r-M}{M} \right)^n ; \end{cases}$ 

 $r^{2}\Box_{\mathscr{I}^{+}}^{(0)} = \partial_{r}\left(r-M\right)^{2}\partial_{r} - 2r\partial_{u}\partial_{r}r + \Delta_{\mathbb{S}^{2}}, \quad r^{2}\Box_{\mathscr{H}^{+}}^{(0)} = \partial_{r}\left(r-M\right)^{2}\partial_{r} + 2r\partial_{\upsilon}\partial_{r}r + \Delta_{\mathbb{S}^{2}}.$ 

Newman-Penrose conserved quantities

Newman & Penrose (1965, 1968) Exton & Newman & Penrose (1969)

$$N_{\ell m}^{(0)} = \frac{(-1)^{\ell+1}}{(\ell+1)!} \lim_{r \to \infty} \int_{\mathbb{S}^2} Y_{\ell m}^* \left[ (r-M)^2 \partial_r \right]^{\ell} \left[ r \left( r-M \right) \partial_r \left( r\Phi \right) \right] \rightsquigarrow \partial_u N_{\ell m}^{(0)} = 0 \,.$$

Aretakis conserved quantities

Aretakis [1110.2007.1110.2009] [1206.6598]

16/20

$$A_{\ell m}^{(0)} = \frac{M^{\ell-1}}{(\ell+1)!} \lim_{r \to M} \int_{\mathbb{S}^2} Y_{\ell m}^* \partial_r^\ell \left[ r \partial_r \left( r \hat{\Phi} \right) \right] \rightsquigarrow \partial_v A_{\ell m}^{(0)} = 0 .$$

Panos (SISSA)

**CT** inversion 
$$\rightsquigarrow N_{\ell m}^{(0)} \simeq A_{\ell m}^{(0)}$$

Bizon & Friedrich [1212.0729] Lucietti & Murata & Reall & Tanahashi [1212.2557] Bhattacharjee&Chakrabarty& Chow&Paul&Virmani [1805.10655]

• Scalar wave operator transforms homogeneously under CT inversion:

$$\Box^{(0)}_{\mathscr{I}^+} \xrightarrow{\mathsf{CT}} \tilde{\Box}^{(0)}_{\mathscr{I}^+} = \Omega^{+1} \Box^{(0)}_{\mathscr{H}^+} \Omega^{+1} \,, \quad \Omega = \frac{r-M}{M} \,.$$

• Action of CT inversion on scalar field:  $\Phi(u, r, x^{A}) \xrightarrow{\mathsf{CT}} \tilde{\Phi}(u, r, x^{A}) = \Omega^{-1} \hat{\Phi}\left(\upsilon \mapsto u, r \mapsto \frac{Mr}{r-M}, x^{A}\right).$ 

$$\rightsquigarrow \text{ If } \Box^{(0)}_{\mathscr{H}^+} \hat{\Phi}(\upsilon, r, x^A) = 0, \text{ then } \Box^{(0)}_{\mathscr{I}^+} \tilde{\Phi}(u, r, x^A) = 0 \xrightarrow{b.c.'s} \Phi(u, r, x^A) = \tilde{\Phi}(u, r, x^A).$$

$$\therefore \quad \underline{\text{Matching condition}}: \quad \Phi(u, r, x^{A}) = \frac{M}{r - M} \hat{\Phi} \left( \upsilon \mapsto u, r \mapsto \frac{Mr}{r - M}, x^{A} \right)$$

$$\Rightarrow \cdots \Rightarrow \boxed{N_{\ell m}^{(0)} = M^{\ell+2} A_{\ell m}^{(0)}}$$

Panos (SISSA)

# **CT** inversion $\rightsquigarrow N_{\ell m}^{(s)} \simeq A_{\ell m}^{(s)}$

Fernandes & Ghosh & Virmani [2008.04365] Agrawal & PC & Donnay [2506.15526]

$$\psi_s := \begin{cases} \Phi & \text{for } s = 0 \text{ (Massless scalar perturbations) ;} \\ \phi_0 & \text{for } s = +1 \text{ (EM perturbations (frozen gr.)) ;} & \sim \Box_{\text{ERN}}^{(s)} \psi_s = 0 \text{ .} \\ \Psi_0 & \text{for } s = +2 \text{ (Gr. perturbations (constrained em.)) ;} \end{cases}$$

$$\begin{split} \text{NP constants:} \ & \mathcal{N}_{\ell m}^{(s)} = \frac{(-1)^{\ell-s+1}}{(\ell-s+1)!} \lim_{r \to \infty} \int_{\mathbb{S}^2} {}^{s} Y_{\ell m}^* \left[ (r-M)^2 \partial_r \right]^{\ell-s} \left[ \frac{(r-M)^{2s+1}}{r^{2s-1}} \partial_r \left( r^{2s+1} \psi_s \right) \right], \\ \text{Aretakis constants:} \ & \mathcal{A}_{\ell m}^{(s)} = \frac{M^{\ell-s-1}}{(\ell-s+1)!} \lim_{r \to M} \int_{\mathbb{S}^2} {}^{s} Y_{\ell m}^* \partial_r^{\ell-s} \left[ \frac{1}{r^{2s-1}} \partial_r \left( r^{2s+1} \hat{\psi}_s \right) \right]. \end{split}$$

$$\underline{\text{Matching condition}}: \quad \psi_s(u,r,x^A) = \left(\frac{M}{r-M}\right)^{2s+1} \hat{\psi}_s\left(\upsilon \mapsto u,r \mapsto \frac{Mr}{r-M},x^A\right) \,,$$

$$\Rightarrow \cdots \Rightarrow \boxed{N_{\ell m}^{(s)} = M^{\ell + s + 2} A_{\ell m}^{(s)}}.$$

#### Summary and extensions

- ✓ is an extremal and non-twisting NEH of the conformally completed AFS.

   Ashtekar & Speziale [2401.15618,2402.17977]

   ~ The conformally completed AFS is a spatially inverted extremal and
   non-rotating near-horizon geometry.
   <sup>Godazgar</sup> & Godazgar & Pope [1707.09804]
   Agrawal & PC & Donnay [2506.15526]
- Self-inverted paradigm: ERN black hole (d = 4). Couch & Torrence (1984)
- Physical implications of existence of such conformal mappings: near- *I* Newman-Penrose constants ~ near- *H* Aretakis constants for scalar (<sup>Bizon & Friedrich [1212.0729], Lucietti & Murata & Reall & Tanahashi [1212.2557]), Bhattacharjee & Chakrabarty & Chow & Paul & Virmani [1805.10655]), electromagnetic (Fernandes & Ghosh & Virmani [2008.04365]) and gravitational (Agrawal & PC & Donnay [2506.15526]) perturbations.
  </sup>
- Extremal Kerr-Newman black holes: Horizon is twisting and there is no (simple) CT inversion conformal isometry. E.o.m.'s do have a CT inversion conformal symmetry, which acts non-locally in coordinate space
   ∼ N<sup>(s)</sup><sub>ℓ,m=0</sub> = M<sup>ℓ+s+2</sup>A<sup>(s)</sup><sub>ℓ,m=0</sub>. Agrawal & PC & Donnay [2506.15526]

## Outlook

"Black holes are the hydrogen atom of the 21st century"

't Hooft (2016), EHT (April 10, 2019)

Thank you