Killing horizon data

Marc Mars

University of Salamanca

July 2nd 2025

Black holes and their symmetries

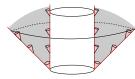
Tours 2025

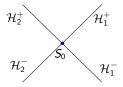
A spacetime (\mathcal{M}, g) admits a Killing horizon \mathcal{H} provided: (i) \mathcal{H} is a null hypersurface. (ii) (\mathcal{M}, g) admits a Killing vector η . (iv) η is null, tangent and non-zero at \mathcal{H} . • Killing generator: $\bar{\eta} := \eta|_{\mathcal{H}}$ • First fundamental form: γ • γ is degenerate $\gamma(\bar{\eta}, \cdot) = 0$, • $\mathcal{L}_{\bar{n}}\gamma = 0$, General properties: • $\nabla_X \eta \stackrel{\mathcal{H}}{=} \sigma(X) \eta$, σ connection one-form, $X, W \in \mathfrak{X}(\mathcal{H})$ • $\mathcal{L}_{\bar{n}}\boldsymbol{\sigma}=0,$ • $\nabla_X W$ is tangent to \mathcal{H} . Surface gravity: $\kappa = \boldsymbol{\sigma}(\eta).$ • κ is constant on \mathcal{H} iff $\operatorname{Ric}_{\sigma}(\eta, X) \stackrel{\mathcal{H}}{=} 0$, $\forall X$ tangent to the horizon.

Characteristic initial value for bifurcate Killing horizons

Characteristic initial value problem:

- Data prescribed on two intersecting null hypersurfaces,
- Data does not involve transverse derivatives,
- Existence of spacetime from such data: [Rendall, '90]





Bifurcate Killing horizon:

• Four Killing horizons of η emanating from a spacelike codimension two surface S_0 .

Theorem (Characteristic IVP Bifurcate KH [Rácz 07'], [Chruściel, Paetz, '13])

Assume: • (S, h): Riemannian manifold of dimension $n \ge 2$, • $\zeta \in \mathfrak{X}^*(S)$.

Then: \exists a λ -vacuum spacetime (\mathcal{M}^{n+2}, g) with boundary admiting a Killing vector η .

•
$$\partial \mathcal{M} = \mathcal{H}_1^+ \cup \mathcal{H}_2^+ \cup \mathcal{S}_0$$
 • \mathcal{H}_1^+ , \mathcal{H}_2^+ Killing horizons of η . • $\overline{\mathcal{H}_1^+} \cap \overline{\mathcal{H}_2^+} = \mathcal{S}_0$

• $(S_0, g|_{S_0})$ isometric to (S, h) • ζ : torsion one-form of S_0 .

 $\mathsf{Recall:} \ \boldsymbol{\zeta}(X) := \boldsymbol{g}(\nabla_X \nu^-, \nu^+), \quad \nu^\pm \text{ null normals}, \quad X \in \mathfrak{X}(\mathcal{S}_0).$

Characteristic IVP: existence is only to the future/past. Existence in the exterior?

Theorem (Analyticity [Chruściel '05])

Assume: $(\mathcal{M}, g) \lambda$ -vacuum with a Killing vector η defining a bifurcate Killing horizon. If η is hypersurface orthogonal, then outside the bifurcate Killing horizon the metric g is analytic up to the boundary

Theorem (Staticity [M. & Chruściel '23])

Assume: $(\mathcal{M}, g) \lambda$ -vacuum with a Killing vector η defining a bifurcate Killing horizon. If the torsion one-form ζ of the bifurcation surface is closed, then η is hyp. orthogonal.

- If data (S, h, ζ) is not analytic and $d\zeta = 0 \rightsquigarrow$ Exterior region cannot be λ -vacuum.
- Expected to be true in the stationary case as well.

In the analytic case, there is an existence result that only needs a non-degenerate Killing horizon

- No bifurcate Killing horizon, just one of the four branches.

[Moncrief '82] In dimension four, an analytic Ricci flat spacetime admitting a non-degenerate Killing horizon $\mathcal{H} = \mathbb{R} \times \mathbb{T}^2$ can be constructed uniquely from six (coordinate dependent) functions on \mathcal{H} .

• Uniqueness part reformulated in geometric terms and extended to the smooth case:

[O. Petersen & K. Kroencke '23] Let (\mathcal{M}, g) be Ricci flat and admit a non-degenerate Killing horizon \mathcal{H} . The asymptotic expansion of g at \mathcal{H} is determined by

 $\{\mathcal{H},\overline{g},\mathcal{V}\}$

where $(\mathcal{H}, \overline{g})$ is Riemannian space admitting a unit Killing vector \mathcal{V} .

- Again, data does not involve transverse derivatives.
 - Identify the free data on a Killing horizon

Aim of this talk:

- $\bullet\,$ Prove existence of a spacetime in the $\lambda\text{-vacuum case}$
- Work intrisically on the null hypersurface (detached from spacetime)
- \bullet Allow for any topology on ${\cal H}$ and zeroes of the KV.

Null manifold

Null manifold (\mathcal{H}, γ) : manifold \mathcal{H} with a symmetric tensor γ_{ab} of signature $\{0, +, \dots, +\}$.

• $T_{p}\mathcal{H}$ has a privileged one-dimensional subspace: The radical of γ :

$$\mathsf{Rad}_\gamma|_p\subset T_p\mathcal{H},\qquad \mathsf{Rad}_\gamma|_p:=\{n\in T_p\mathcal{H},\gamma(n,\cdot)=0\}.$$

 (\mathcal{H}, γ) is called ruled if there exists a nowhere zero vector field *n* satisfying $n|_{\rho} \in \operatorname{Rad}_{\rho}$.

Some basic facts:

• Any (\mathcal{H}, γ) admits a double cover which is ruled.

 $\exists f: \widetilde{\mathcal{H}} \longrightarrow \mathcal{H} \quad \text{double cover, such that} \quad (\widetilde{\mathcal{H}}, \widetilde{\gamma} := f^{\star}(\gamma)) \quad \text{is ruled}.$

- The geometry of the double cover $(\widetilde{\mathcal{H}},\widetilde{\gamma})$ is simpler.
- Many of the results can be transferred to (\mathcal{H}, γ) .

A geometry on (\mathcal{H}, γ) can be developed in full generality. Here we assume:

• (\mathcal{H}, γ) is ruled. • $\mathcal{L}_n \gamma = 0$ where *n* is a generator of the radical.

To study (\mathcal{H}, γ) : useful to enlarge the definition and introduce an equivalence relation.

Null metric hypersurface data: $\mathcal{D} = \{\mathcal{H}, \gamma, \ell, \ell^{(2)}\}$ where $\ell \in \mathfrak{X}^*(\mathcal{H})$ and $\ell^{(2)} \in \mathcal{F}(\mathcal{H})$, provided $\ell(n) \neq 0$ everywhere.

Equivalence relation:

$$\bullet$$
 Group: $\mathcal{G}:=\mathcal{F}^{\star}(\mathcal{H})\times\mathfrak{X}(\mathcal{H})$ with the product

$$(u, W) \cdot (z, V) = (uz, V + z^{-1}W).$$

• Action of $(z, V) \in \mathcal{G}$ on \mathcal{D} : $\mathcal{G}_{(z,V)}(\gamma) = \gamma$,

 $\mathcal{G}_{(z,V)}(\ell) = z(\ell + \gamma(V, \cdot)), \qquad \qquad \mathcal{G}_{(z,V)}(\ell^{(2)}) = z^2(\ell^{(2)} + 2\ell(V) + \gamma(V, V)).$

Definition: $\mathcal{D}_1 \sim \mathcal{D}_2$ (geometrically equivalent) provided $\mathcal{G}_{(z,V)}(\mathcal{D}_1) = \mathcal{D}_2$.

There is a one-to-one correspondence between ruled null manifold structures on \mathcal{H} and equivalence classes of null metric hypersurface data in \mathcal{H} .

• Given
$$\{\mathcal{H}, \gamma, \ell, \ell^{(2)}\}$$
 fix n by $\ell(n) = 1$ Consequence: $\mathcal{G}_{(z,V)}(n) = z^{-1}n$.

Recall we are assuming $\mathcal{L}_n \gamma = 0$.

There exists precisely one torsion-free connection $\overset{\circ}{\nabla}$ defined by: $\overset{\circ}{\nabla}_{a}\gamma_{bc} = 0, \qquad \overset{\circ}{\nabla}_{a}\ell_{b} + \overset{\circ}{\nabla}_{b}\ell_{a} = 0.$

• $\stackrel{\circ}{\nabla}$ has good behaviour under the gauge group $\mathcal{G} {:}$

(i)
$$(\mathcal{G}_{(u,W)} \circ \mathcal{G}_{(z,V)})(\overset{\circ}{\nabla}) = \mathcal{G}_{(u,W)\cdot(z,V)}(\overset{\circ}{\nabla}).$$

(ii) $\mathcal{G}_{(z,V)}(\overset{\circ}{\nabla}) = \overset{\circ}{\nabla} + \frac{1}{2z}n \otimes (\mathcal{L}_{zV}\gamma + \ell \otimes dz + dz \otimes \ell)$

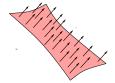
Connection between the detached and the embedded pictures.

So far (\mathcal{H}, γ) has been considered on its own.

• Need to connect with the geometry of submanifolds.

Link relies on the notion of rigging vector.

[Schouten '54]: A rigging ξ is a vector field along a hypersurface \mathcal{N} transverse everywhere to \mathcal{N} .



 $\bullet~\mbox{Exists}$ iff ${\cal N}$ is two-sided.

Definition (Embedded metric hypersurface data)

Null metric hypersurface data $\{\mathcal{H}, \gamma, \ell, \ell^{(2)}\}$ is (Φ, ξ) -embedded in (\mathcal{M}, g) if \exists an embedding $\Phi : \mathcal{H} \hookrightarrow \mathcal{M}$ and a rigging ξ along $\Phi(\mathcal{H})$ such that,

 $\Phi^{\star}(g) = \gamma, \qquad \Phi^{\star}\left(g(\xi,\cdot)\right) = \ell, \qquad g(\xi,\xi) = \ell^{(2)}.$

 $\bullet\,$ Gauge group ${\cal G}$ is the manifestation of non-uniqueness of the rigging.

 $\begin{aligned} \mathcal{D} &:= \{\mathcal{H}, \gamma, \boldsymbol{\ell}, \ell^{(2)}\} \text{ is } (\Phi, \xi) \text{-embedded in } (\mathcal{M}, g) \text{ iff } \mathcal{G}_{(z, V)}(\mathcal{D}) \text{ is } (\Phi, \xi') \text{-embedded in } \\ (\mathcal{M}, g) \text{ with } & \xi' := z\xi + \Phi^*(V). \end{aligned}$

Extrinsic curvature and full hypersurface data

- $\{\mathcal{H},\gamma,\boldsymbol{\ell},\ell^{(2)}\}$ encodes intrinsic properties of the hypersurface.
- Extrinsic properties incorporated in the formalism with an additional tensor:

Null metric hypersurface data $\{\mathcal{H}, \gamma, \ell, \ell^{(2)}\}$ together with a symmetric (0, 2)-tensor Y defines null hypersurface data provided

$$\mathcal{G}_{(z,\zeta)}(\mathsf{Y}) := z\mathsf{Y} + \frac{1}{2} \left(\mathcal{L}_{z\zeta}\gamma + \boldsymbol{\ell} \otimes dz + dz \otimes \boldsymbol{\ell} \right).$$

• The connection $\overline{\nabla} := \overset{\circ}{\nabla} - n \otimes Y$ is gauge invariant (relies crucially on $\mathcal{L}_n \gamma = 0$). The notion of embeddedness gives geometric meaning to Y.

Null metric hypersurface data is (Φ, ξ) -embedded in (\mathcal{M}, g) provided

- $\{\mathcal{H}, \gamma, \boldsymbol{\ell}, \ell^{(2)}\}$ is (Φ, ξ) -embedded in (\mathcal{M}, g) , $Y = \frac{1}{2} \Phi^*(\mathcal{L}_{\xi}g)$.
- Relationship between $\overset{\circ}{\nabla}$, $\overline{\nabla}$ and the Levi-Civita connection ∇ of (\mathcal{M}, g) :

Fix ν : normal to $\Phi(\mathcal{H})$ satisfying $g(\nu, \xi) = 1$. Then, along tangential directions to \mathcal{H} , $\nabla = \overline{\nabla}$ and $\nabla = \overset{\circ}{\nabla} - \nu Y$.

- $\{\gamma, \ell, \ell^{(2)}\}$ encodes the spacetime metric g along $\Phi(\mathcal{H})$.
- Hypersurface data encodes g, ∇ and extrinsic curvature of the hypersurface.

What about ambient curvature?

 $\Phi^*(\operatorname{Ric}_g)$ computable from hypersurface data

- Introduce a tensor defined in terms of the data

Definition (Constraint tensor [M. & M. Manzano '23])

Let $\{\mathcal{H}, \gamma, \ell, \ell^{(2)}, \mathsf{Y}\}$ be null hypersurface data. The constraint tensor \mathcal{R}_{ab} is

 $\mathcal{R}_{ab} := -2\mathcal{L}_n \mathsf{Y}_{ab} - 2\varkappa \mathsf{Y}_{ab} - 2\overset{\circ}{\nabla}_{(a}\omega_{b)} - 2\omega_a\omega_b + \text{ terms depending on } \{\gamma, \boldsymbol{\ell}, \ell^{(2)}\}$

where $\omega_a := \frac{1}{2} \mathcal{L}_n \ell_a - Y_{ab} n^b$ and $\varkappa := \omega(n)$.

- Gauge behaviour: $\mathcal{G}_{(z,V)}(\mathcal{R}) = \mathcal{R}$.
- By construction, embedded data satisfy $\Phi^*(\operatorname{Ric}_g) = \mathcal{R}$.

• The difference of connections is a tensor.

• The Lie derivative of a connection ∇ is a tensor. Notation $\Sigma[\eta] := \mathcal{L}_{\eta} \nabla$ Basic properties:

• $\Sigma[\eta]$ is symmetric if ∇ torsion-free,

•
$$\mathcal{L}_{\eta} Ric_{ab} = \nabla_{c} \Sigma[\eta]^{c}{}_{ab} - \nabla_{b} \Sigma[\eta]^{c}{}_{ac}$$

Application to the connection $\overline{\nabla}$: Define $s = \frac{1}{2} \mathcal{L}_n \ell$.

[M. & M. Manzano '23]

 $\{\mathcal{H}, \gamma, \boldsymbol{\ell}, \boldsymbol{\ell}^{(2)}\}: \text{ metric hypersurface data satisfying } \mathcal{L}_n \gamma = 0. \text{ The tensor } \mathcal{L}_n \overline{\nabla} \text{ is } \\ (\mathcal{L}_n \overline{\nabla})_{ab}^c = n^c \left(\stackrel{\circ}{\nabla}_a \boldsymbol{s}_b + \nabla_b \boldsymbol{s}_a - \mathcal{L}_n \boldsymbol{Y}_{ab} \right)$

•
$$\Sigma[f\eta] = f\Sigma[\eta] + \text{Hess } f \otimes \eta + 2\nabla f \otimes_s \nabla \eta$$
.

Abstract notion of horizon (I)

• A spacetime (\mathcal{M}, g) with a horizon \mathcal{N} admits a privileged vector field η . - At \mathcal{N} , η is null and tangent.

Detached level: assume $\{\mathcal{H}, \gamma, \ell, \ell^{(2)}\}$ admits a privileged vector $\bar{\eta}$ satisfying $\gamma(\bar{\eta}, \cdot) = 0$.

- Define $\alpha \in \mathcal{F}(\mathcal{H})$ by $\bar{\eta} = \alpha n$, • We allow fixed points (vanishing α),
- $\mathcal{G}_{(z,V)}(\bar{\eta}) = \bar{\eta},$ • $\mathcal{G}_{(z,V)}(\alpha) = z\alpha$.

If $\{\mathcal{H}, \gamma, \ell, \ell^{(2)}\}$ is enlarged to $\{\mathcal{H}, \gamma, \ell, \ell^{(2)}, \mathsf{Y}\}$: Two key notions associated to $\bar{\eta}$.

Surface gravity: $\kappa := \alpha \omega(n) + n(\alpha)$ (recall $\omega = s - Y(n, \cdot)$) $\mathcal{L}_{\bar{n}}\overline{\nabla} := \mathbf{n} \otimes \Pi^{(\eta)} : \quad \Pi_{ab}^{(\eta)} = \overset{\circ}{\nabla}_{a}\overset{\circ}{\nabla}_{b}\alpha + 2\mathbf{s}_{(a}\nabla_{b)}\alpha + 2\alpha\overset{\circ}{\nabla}_{(a}\mathbf{s}_{b)} + \mathbf{n}(\alpha)\mathbf{Y}_{ab} - \mathcal{L}_{\alpha\alpha}\mathbf{Y}_{ab}$ $\mathcal{G}_{(z,V)}(\kappa$

Gauge properties:

$$\mathcal{G}_{(z,V)}(\Pi^{(\eta)}) = z\Pi^{(\eta)}$$

Embedded interpretation: Assume $\{\mathcal{H}, \gamma, \ell, \ell^{(2)}, Y\}$ (satisfying $\mathcal{L}_n \gamma = 0$) to be (Φ, ξ) -embedded. Let η be any extension of $\Phi_{\star}(\bar{\eta})$. Then $\Pi^{(\eta)} = -\frac{1}{2} \Phi^{\star} \left(\mathcal{L}_{\mathcal{E}} \mathcal{L}_{\eta} g + \mathcal{L}_{W} g \right),$ $W^{\alpha} := \xi_{\beta} \mathcal{L}_{n} g^{\alpha \beta}$

 $\Pi^{(\eta)}$ vanishes for a Killing horizon.

 \bullet Combining with constrant tensor $~\rightsquigarrow~~$ algebraic expression for Y:

Master identity [M. & M. Manzano]

$$\overset{\circ}{\nabla}_{a}\overset{\circ}{\nabla}_{b}\alpha + 2\omega_{(a}\overset{\circ}{\nabla}_{b)}\alpha + \alpha \left(\nabla_{(a}\omega_{b)} + \omega_{a}\omega_{b} + \frac{1}{2}\mathcal{R}_{ab} - \frac{1}{2}\overset{\circ}{\mathsf{Ric}}_{(ab)} + \frac{1}{2}\overset{\circ}{\nabla}_{(a}\boldsymbol{s}_{b)} - \frac{1}{2}\boldsymbol{s}_{a}\boldsymbol{s}_{b} \right)$$
$$+ \kappa \mathbf{Y}_{ab} - \Pi_{ab}^{(\eta)} = \mathbf{0}.$$

By comparison with the characteristic IVP:

- Data should involve metric hypersurface data + a one-form
- We cannot prescribe the full extrinsic tensor Y.

Idea: Use the master identity to trade information on \mathcal{R} with information on Y.

Requires non-degenerate case: $\kappa \neq 0$ everywhere.

• Degenerate case $\kappa = 0$: Master identity already restricts the data $\{\mathcal{H}, \gamma, \alpha, \omega\}$.

Generalizes the Near Horizon Geometry equation in three directions

- (i) No topological assumption $\mathcal{H} = \mathbb{R} \times \mathcal{S}$,
- (ii) Allows for fixed points: $\alpha = 0$,
- (iii) Applies to general $\Pi^{(\eta)}$: (e.g. conformal or homothetic horizons).

Contraction of $\Pi^{(\eta)}$ and the master identity with *n* yields the following two identities:

(a) $\Pi^{(\eta)}(n,\cdot) = \mathcal{L}_{\alpha n}\omega - d(\mathcal{L}_n(\alpha))$ (b) $\Pi^{(\eta)}(n,\cdot) = \alpha \mathcal{R}(n,\cdot) + d\kappa$

 \bullet We defined ω in terms of Y, but Y cannot be prescribed.

- View ω as an a priori independent object.

• View $\Pi^{(\eta)}$ and \mathcal{R} also as prescribed quantities (e.g. $\Pi^{(\eta)} = 0$ and $\mathcal{R} = \lambda \gamma$). Prescribed data $\{\mathcal{H}, \gamma, \omega, \alpha, \Pi^{(\eta)}, \mathcal{R}\}$ cannot be given arbitrarily:

Certainly one must satisfy (a), (b) and, in the degenerate case, the master identity.

Basic existence question: Given data $\{\mathcal{H}, \gamma, \alpha, \omega, \Pi^{(\eta)}, \mathcal{R}\}$ with $\kappa \neq 0$

Can the data be completed with Y so that it can be embedded in a spacetime fulfilling the prescribed quantities?

Tasks:

• The expression of Y is dictacted by the master identity:

$$\mathbf{Y}_{ab} = \frac{1}{\kappa} \left(\Pi_{ab}^{(\eta)} - \overset{\circ}{\nabla}_{a} \overset{\circ}{\nabla}_{b} \alpha - 2\omega_{(a} \overset{\circ}{\nabla}_{b)} \alpha - \alpha \left(\nabla_{(a} \omega_{b)} + \omega_{a} \omega_{b} + \frac{1}{2} \mathcal{R}_{ab} - \frac{1}{2} \overset{\circ}{\mathsf{Ric}}_{(ab)} + \frac{1}{2} \overset{\circ}{\nabla}_{(a} \boldsymbol{s}_{b)} - \frac{1}{2} \boldsymbol{s}_{a} \boldsymbol{s}_{b} \right) \right)$$

First step: show existence of (\mathcal{M}, g) where $\{\mathcal{H}, \gamma, \ell, \ell^{(2)}, Y\}$ can be embedded.

(i) Prove $(\mathcal{L}_{\bar{\eta}}\nabla)(X,W) = \nu \Pi^{(\eta)}(X,W), \quad X, W \in \mathfrak{X}(\mathcal{H})$ (ii) Prove $Y(n, \cdot) = s - \omega$

(iii) Prove
$$\Phi^*(\operatorname{Ric}_g) = \mathcal{R}$$

(i) is consequence of $\Phi(\mathcal{H})$ being totally geodesic (so, $\nabla_X Y$ is intrinsic to $\Phi(\mathcal{H})$).

(ii) is consequence of the data compatibility conditions

(a)
$$\Pi^{(\eta)}(n,\cdot) = \mathcal{L}_{\alpha n}\omega - d(\mathcal{L}_n(\alpha))$$
 (b) $\Pi^{(\eta)}(n,\cdot) = \alpha \mathcal{R}(n,\cdot) + d\kappa$

(iii) not true in general. Necessary and sufficient conditions can be found to ensure it.

• Consequence of the following general identity:

$$(\mathcal{L}_n+\kappa)\Pi_{ab}^{(\eta)}-\overset{\circ}{\nabla}_{(a}\Pi_{b)c}^{(\eta)}n^c-\Pi^{(\eta)}(n,n)\mathsf{Y}_{ab}-\tfrac{1}{2}\mathcal{L}_n\mathcal{R}_{ab}-\tfrac{1}{2}\kappa(\Phi^{\star}(\mathsf{Ric}_g)-\mathcal{R})_{ab}=0$$

Necessary and sufficient condition and definiton of Killing Horizon Data

To ensure $\Phi_{\star}(\operatorname{Ric}_g) = \mathcal{R}$, the prescribed data needs to satisfy an extra condition

$$(\mathcal{L}_n+\kappa)\Pi_{ab}^{(\eta)}-\overset{\circ}{\nabla}_{(a}\Pi_{b)c}^{(\eta)}n^c-\Pi^{(\eta)}(n,n)Y_{ab}-\frac{1}{2}\mathcal{L}_n\mathcal{R}_{ab}=0$$

• Automatically satisfied for Killing horizon $(\Pi^{(\eta)} = 0) + \lambda$ -vacuum $(\mathcal{R} = \lambda \gamma)$.

Killing horizon data

 $\{\mathcal{H}, \gamma, \boldsymbol{\ell}, \ell^{(2)}, \alpha, \omega\} \text{ defines (abstract or detached) Killing horizon data (KHD) provided }$ (i) $\{\mathcal{H}, \gamma, \boldsymbol{\ell}, \ell^{(2)}\}$ is null metric hypersurface data with $\mathcal{L}_n \gamma = 0$ (ii) $\mathcal{G}_{z,V}(\alpha) = z\alpha, \quad \mathcal{G}_{z,V}(\omega) = \omega - z^{-1}dz$ (iii) $\mathcal{L}_{\alpha n}\omega - d(\mathcal{L}_n(\alpha)) = 0$ (iv) $\kappa := \alpha\omega(n) + \mathcal{L}_n\alpha$ is constant. (v) If $\kappa = 0$, master equation holds: $\mathring{\nabla}_a \mathring{\nabla}_b \alpha + 2\omega_{(a} \mathring{\nabla}_b) \alpha + \alpha \left(\nabla_{(a}\omega_{b)} + \omega_{a}\omega_{b} + \frac{1}{2}\lambda\gamma_{ab} - \frac{1}{2} \overset{\circ}{\operatorname{Ric}}_{(ab)} + \frac{1}{2} \overset{\circ}{\nabla}_{(a} s_{b)} - \frac{1}{2} s_a s_b \right) = 0$

• KHD can be embedded in (\mathcal{M}, g) satisfying $\mathcal{L}_{\bar{\eta}} \nabla|_{\Phi(\mathcal{H})} = 0$, $(\operatorname{Ric}_{g} - \lambda g)|_{\Phi(\mathcal{H})} = 0$.

Going to all higher orders requires substantial additional work: [M. & Sánchez-Pérez]

Existence and asymptotic uniqueness from KHD data

• KHD non-degenerate: κ is non-zero.

Theorem (Existence [M. & G. Sánchez-Pérez '25)

Let $\mathcal{K} = \{\mathcal{H}^n, \gamma, \ell, \ell^{(2)}, \alpha, \omega\}$ be non-degenerate KHD. Then, there exists a spacetime (\mathcal{M}^{n+1}, g) and a smooth extension η of $\overline{\eta} = \alpha n$ off $\Phi(\mathcal{H})$ such that:

- \mathcal{K} is (Φ, ξ) -embedded in (\mathcal{M}, g) , η is a Killing vector of g,
- (\mathcal{M}, g) satisfies the Λ -vacuum equations to all orders on $\Phi(\mathcal{H})$.

Two KHD \mathcal{K} , \mathcal{K}' are isometric when \exists diffeomorphism $\psi : \mathcal{H} \to \mathcal{H}'$ and $(z, V) \in \mathcal{G}$ s.t.

$$\psi^{\star}(\{\gamma',\boldsymbol{\ell}',\boldsymbol{\ell}^{(2)'},\alpha',\omega'\})=\mathcal{G}_{(\boldsymbol{z},\boldsymbol{V})}(\{\gamma,\boldsymbol{\ell},\boldsymbol{\ell}^{(2)},\alpha,\omega\}).$$

Theorem (Asymptotic uniqueness [M. & G. Sánchez-Pérez '24])

Assume: \mathcal{K} and \mathcal{K}' are isometric, non-degenerate KHD embedded in spacetimes (\mathcal{M}, g) and (\mathcal{M}', g') whose existence is established in the previous theorem.

Then: \exists neighbourhoods $\mathcal{U} \supset \Phi(\mathcal{H})$ and $\mathcal{U}' \supset \Phi'(\mathcal{H}')$ and a diffeo $\Psi : \mathcal{U} \rightarrow \mathcal{U}'$ such that

$$\Psi^{\star}ig(\mathcal{L}^{(k)}_{\xi'}g'ig) = ig(\mathcal{L}^{(k)}_{\xi}gig) \quad k\in\mathbb{N}\cup\{0\}, \qquad \Psi_{\star}(\eta)=\eta'.$$

Example: Schwarzschild-de Sitter/Nariai black hole in d dimensions

• The SdS metric in advanced Eddington-Finkelstein coordinates:

$$g_{\text{SdS}} = -\left(1 - \left(\frac{r_0}{r}\right)^{d-3} - \frac{\lambda}{d-3}\left(1 - \left(\frac{r_0}{r}\right)^{d-1}\right)\right) dv^2 + 2dvdr + r^2\gamma_{\mathbb{S}^{d-2}}$$

Horizon at $r = r_0$ is:
Black hole horizon if $\lambda r_0^2 < d-3$
Cosmological horizon if $\lambda r_0^2 > d-3$
Degenerate horizon if $\lambda r_0^2 = d-3$.

• The Nariai metric has a horizon of radius $r_0^2 = \frac{d-3}{\lambda}$ (degenerate & non-degenerate).

• Form adapted to non-degenerate KV: $g_{ ext{Nariai}} = u \left(1 + \lambda u\right) dv^2 + 2 dv du + rac{d-3}{\lambda} \gamma_{\mathbb{S}^{d-2}}$

Theorem ([M. & Sánchez-Pérez '24])

Let (\mathcal{M}, g) be a d-dimensional spacetime satistfying $Ric(g) = \lambda g$, $\lambda > 0$.

(i) (\mathcal{M}, g) admits a non-degenerate Killing horizon \mathcal{H} with spherical sections of radius r_0 .

(ii) The corresponding KHD data satisfies $\omega \wedge d\omega = 0$.

Then: Near \mathcal{H} , (\mathcal{M}, g) is isometric to SdS if $\lambda r_0^2 \neq d-3$ and to Nariai if $\lambda r_0^2 = d-3$.

Thank you for your attention