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Killing horizons

A spacetime (M, g) admits a Killing horizon H provided:
(i) H is a null hypersurface. (i) (M, g) admits a Killing vector 7.
(iv) m is null, tangent and non-zero at H.

o Killing generator: 7] := 7|y o First fundamental form:

@ 7 is degenerate  «(7,-) =0,
General properties: @ Liy =0,
X, W e X(H) e Vxn e o(X)n, o connection one-form,
Lzo =0,
o VxW is tangent to H.

Surface gravity: k= o(n). J

o k is constant on H iff  Ricg(n, X) £ 0, VX tangent to the horizon.
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Characteristic initial value for bifurcate Killing horizons

Characteristic initial value problem:
@ Data prescribed on two intersecting null hypersurfaces,

@ Data does not involve transverse derivatives,

o Existence of spacetime from such data: [Rendall, '90]

Hy T . - .
2 M Bifurcate Killing horizon:
@ Four Killing horizons of 77 emanating from a spacelike
_ S0 codimension two surface Sg.
H, H,

Theorem (Characteristic IVP Bifurcate KH [Racz 07'], [Chrusciel, Paetz, '13])

Assume: o (S, h): Riemannian manifold of dimension n > 2, e ¢ € X*(S).
Then: 3 a A\-vacuum spacetime (M"+2, g) with boundary admiting a Killing vector 7.
e OIM=H{UHFUSy e H{, HI Killing horizons of . o HiNHj = So

o (8o, gls,) isometric to (S, h) @ (: torsion one-form of Sp.

Recall: ¢(X) :=g(Vxv~,v"), v* null normals, X € X(S).
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Existence outside the horizon?

Characteristic IVP: existence is only to the future/past.  Existence in the exterior?

Theorem (Analyticity [Chrusciel *05])

Assume: (M, g) A-vacuum with a Killing vector n) defining a bifurcate Killing horizon.

If ) is hypersurface orthogonal, then outside the bifurcate Killing horizon the metric g is
analytic up to the boundary

Theorem (Staticity [M. & Chrusciel '23])

Assume: (M, g) A-vacuum with a Killing vector n defining a bifurcate Killing horizon.

If the torsion one-form ¢ of the bifurcation surface is closed, then n is hyp. orthogonal.

o If data (S, h, ¢) is not analytic and d¢ = 0 ~~ Exterior region cannot be A-vacuum.
@ Expected to be true in the stationary case as well.

In the analytic case, there is an existence result that only needs a non-degenerate Killing
horizon

- No bifurcate Killing horizon, just one of the four branches.
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Existence and uniqueness from non-degenerate Killing horizons

[Moncrief '82] In dimension four, an analytic Ricci flat spacetime admitting a
non-degenerate Killing horizon H = R x T? can be constructed uniquely from six
(coordinate dependent) functions on H.

@ Uniqueness part reformulated in geometric terms and extended to the smooth case:

[O. Petersen & K. Kroencke 23] Let (M, g) be Ricci flat and admit a non-degenerate
Killing horizon 7. The asymptotic expansion of g at H is determined by

{#,g,V}

where (#,g) is Riemannian space admitting a unit Killing vector V.

@ Again, data does not involve transverse derivatives.

o Identify the free data on a Killing horizon
Aim of this talk: © Prove existence of a spacetime in the A-vacuum case
@ Work intrisically on the null hypersurface (detached from spacetime)
o Allow for any topology on H and zeroes of the KV.
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Null manifold

Null manifold (H,~): manifold H with a symmetric tensor ., of signature
{07+7"'5+}' J

o T,H has a privileged one-dimensional subspace: = The radical of ~:

Rad, |, C T, H, Rad,|, := {n € T,H,~(n,-) =0}.

(H,7) is called ruled if there exists a nowhere zero vector field n satisfying n|, € Rad,. J

Some basic facts:
@ Any (H,) admits a double cover which is ruled.

3f:H — H double cover, such that  (H,5 := f*(7)) s ruled.

@ The geometry of the double cover (#,7) is simpler.
@ Many of the results can be transferred to (#, 7).

A geometry on (H,~) can be developed in full generality. Here we assume:

o (H,7) is ruled. @ L,y =0 where n is a generator of the radical. )
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Null metric hypersurface data

To study (H,~y): useful to enlarge the definition and introduce an equivalence relation.

Null metric hypersurface data: D = {H,~, £,£?} where £ € X*(H) and /@ € F(H),
provided £(n) # 0 everywhere. J

Equivalence relation:
o Group: G := F*(H) x X(H) with the product

(u, W) - (z,V) = (uz, V+ z'W).

@ Action of (z,V) € G on D: Gvy(Y) =
Gzwv)(€) = z(€+~y(V,)), G (£9) = 22 (07 + 26(V) + 7(V, V)).
Definition: D1 ~ D, (geometrically equivalent) provided G, vy(D1) = Ds. J

There is a one-to-one correspondence between ruled null manifold structures on H and
equivalence classes of null metric hypersurface data in H. J
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o
The metric hypersurface data connection V

o Given {H,~,£,¢?} fix n by £(n) =1 Consequence: G, v)(n) =z 'n.

Recall we are assuming L,y = 0.

There exists precisely one tor5|on free connection V defined by:
Va'}’bc—o VEb+Vb£ = (0. J

° % has good behaviour under the gauge group G:
() (Guw) © Gzv)) (V) = Gu,wy-(zv) (V).
. o o 1
(i) Gev)(V) =V + -n® (Layy + L@ dz + dz @ 0)
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Connection between the detached and the embedded pictures.

So far (H,~) has been considered on its own.
@ Need to connect with the geometry of submanifolds.

Link relies on the notion of rigging vector.

[Schouten '54]: A rigging € is a vector field along a
hypersurface A transverse everywhere to N. J

o Exists iff NV is two-sided.

Definition (Embedded metric hypersurface data)

Null metric hypersurface data {#,, £,£®} is (®,&)-embedded in (M, g) if 3 an
embedding ® : H — M and a rigging & along ®(H) such that,

**(g) =1, d* (g(&,7)) = ¢, g(&,&) =@,

o Gauge group G is the manifestation of non-uniqueness of the rigging.

D = {H,,£ (P} is (,£)-embedded in (M, g) iff G, vy(D) is (P, &’)-embedded in
(M, g) with ¢ = 26 + O (V). J
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Extrinsic curvature and full hypersurface data

o {H,7,£,¢P} encodes intrinsic properties of the hypersurface.

@ Extrinsic properties incorporated in the formalism with an additional tensor:

Null metric hypersurface data {#,, £,¢®} together with a symmetric (0, 2)-tensor Y
defines null hypersurface data provided

Gz)(Y) :=2Y + 3 (L7 +LRdz+ dz® ).

o The connection V=V —n®Y is gauge invariant (relies crucially on L,y = 0).

The notion of embeddedness gives geometric meaning to Y.

Null metric hypersurface data is (®, £)-embedded in (M, g) provided
o {M,7,£,(P} is (®,¢)-embedded in (M,g), o Y =;0"(Leg). J

o Relationship between %, V and the Levi-Civita connection V of (M, g):

Fix v: normal to ®(H) satisfying g(v,&) = 1. Then, along tangential directions to #,
V=V and V= % —vY. J
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The constraint tensor

o {7,£,0®} encodes the spacetime metric g along ().

@ Hypersurface data encodes g, V and extrinsic curvature of the hypersurface.
What about ambient curvature?

®*(Ricg) computable from hypersurface data

- Introduce a tensor defined in terms of the data

Definition (Constraint tensor [M. & M. Manzano '23])

Let {H,7,£,£?,Y} be null hypersurface data. The constraint tensor R.p is

Rab :=—2L2Yap — 25¢Yap — 2%(3(.%) — 2w,wp + terms depending on {7, £, £®}

where Wa 1= 3 Lnls — Yapn® and » = w(n).

@ Gauge behaviour: G, \)(R) = R.
@ By construction, embedded data satisfy ¢*(Ric;) = R.
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The Lie derivative of the connection

@ The difference of connections is a tensor.
@ The Lie derivative of a connection V is a tensor. Notation X[n] := £,V

Basic properties:

@ X[n] is symmetric if V torsion-free, e X[fn] = fX[n] + Hess f @ n + 2V ®;s Vn.
o ,Can'Cab = VCZ[’I]]Cab — Vb):[’n]cac

Application to the connection V: Define s = %ll,,é.

[M. & M. Manzano '23]

{H,~,£,£@}: metric hypersurface data satisfying £,y = 0. The tensor £,V is
(£a9)2 = 1 (Vasb + Vosa — LaYas )
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Abstract notion of horizon (1)

@ A spacetime (M, g) with a horizon A/ admits a privileged vector field 7.
- At NV, nis null and tangent.

Detached level: assume {#,~, £,¢®} admits a privileged vector 7 satisfying (7, -) = 0.
o Define o € F(H) by 77 = an, o We allow fixed points (vanishing «),
° Gz () =1, ° Gz v(a) = za.
If {H,7,£,¢?} is enlarged to {H,,£,¢?,Y}: Two key notions associated to 7.
Surface gravity: k1= aw(n) + n(«a) (recall w=s—Y(n,-))

LV =ne@N®: N =g,V + 25,V + 20V 555 + n(0)Yas — LanYab

Gauge properties: Givy(k) =K, g(z’v)(n(ﬁ)) = zn™,

Assume {H,, £, £?,Y} (satisfying £,y = 0) to be (¥, £)-embedded.

Embedded Let 1 be any extension of ®,(77). Then

interpretation:

nm — _%q;* (LeLng + Lweg), W .= §6£nga6

N vanishes for a Killing horizon.
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Abstract notion of horizon (Il)

o Combining with constrant tensor ~~  algebraic expression for Y:

Master identity [M. & M. Manzano]

o o o o )
VaVba + 2wV o + o (V(awb) + wawb + 3Rab — 3 Ricas) +3V(aSp) — %Sasb)
o ey L = (1)

By comparison with the characteristic IVP:
@ Data should involve metric hypersurface data + a one-form

@ We cannot prescribe the full extrinsic tensor Y.

Idea: Use the master identity to trade information on R with information on Y. J

Requires non-degenerate case: x # 0 everywhere.
o Degenerate case k = 0: Master identity already restricts the data {#,~, o, w}.
Generalizes the Near Horizon Geometry equation in three directions
(i) No topological assumption H =R x S,
(i) Allows for fixed points: a = 0,
(iii) Applies to general M:  (e.g. conformal or homothetic horizons).
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Consequences of the master identity and prescribed data

Contraction of M and the master identity with n yields the following two identities:

(a) N™(n,.) = Lanw — d(La(a)) (b) N™(n,.) = aR(n,-) + dk J

@ We defined w in terms of Y, but Y cannot be prescribed.
- View w as an a priori independent object.
o View M and R also as prescribed quantities (e.g. ™ =0and R = \v).
Prescribed data {H,~,w, «, I'I(”),R} cannot be given arbitrarily:

Certainly one must satisfy (a), (b) and, in the degenerate case, the master identity. )

Basic existence question:  Given data {H,~, o, w, I'I("),R} with k # 0

Can the data be completed with Y so that it can be embedded in a spacetime fulfilling
the prescribed quantities? J
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Basic existence result

@ The expression of Y is dictacted by the master identity:

Y _1 nm _ o v.o — o — 1 _1R RS _1
b= M VaVha — 2w,V — a | Viqwp) + waws + 5Rab — 5 Ricap) +5V (aSp) — 55a5b

First step: show existence of (M, g) where {H,~,£,£®,Y} can be embedded.
(i) Prove (L;V)(X,W)=vNM(X, W), X, W e X(H)
o Tasks: (i) Prove Y(n,-)=s—-w
(iii) Prove  ®*(Ricg) =R
(i) is consequence of ®(#) being totally geodesic (so, Vx Y is intrinsic to ®(H)).
(ii) is consequence of the data compatibility conditions
(a) N(n,) = Lanw — d(Ln(@))  (b) N(n,-) = aR(n,-) + dr
(i) not true in general. Necessary and sufficient conditions can be found to ensure it.

o Consequence of the following general identity:

(Lo + RN = FME)n = N0, 0)Yo — 3,Rop — (" (Ricg) ~R)p =0 |
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Necessary and sufficient condition and definiton of Killing Horizon Data

To ensure ®,(Ricg) = R, the prescribed data needs to satisfy an extra condition

°o 1
(Ln+ k) I'I(a:’)) — V(al'lz’;ch — I'I(”)(n, nYap — §£"Rab =0

o Automatically satisfied for Killing horizon (1M = 0)+ A-vacuum (R = \y).

Killing horizon data

{H,v,£,0? a,w} defines (abstract or detached) Killing horizon data (KHD) provided
(i) {#H,v,£,£?} is null metric hypersurface data with £,y =0

(i) Gov(@) =za, Gov(w)=w—z""dz (i) Lanw — d(La(a)) =0

(iv) & := aw(n)+ Ly« is constant. (v) If K =0, master equation holds:

VaVsa+2w(Va+a | Viaws) + w.ws + 2A7ap — 3 Ricap) +3V(aSs) — %Sa5b> =0

i

@ KHD can be embedded in (M, g) satisfying L;V|o) =0, (Ricg — Ag)|ow) = 0.

Going to all higher orders requires substantial additional work: [M. & Sanchez-Pérez]
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Existence and asymptotic uniqueness from KHD data

@ KHD non-degenerate: k is non-zero.

Theorem (Existence [M. & G. Sénchez-Pérez '25)

Let K = {H",7,£,¢?, o,w} be non-degenerate KHD. Then, there exists a spacetime
(M™* g) and a smooth extension 1 of j = an off ®(H) such that:

o K is (,&)-embedded in (M, g), e 1 is a Killing vector of g,

o (M, g) satisfies the A-vacuum equations to all orders on ®(H).

Two KHD K, K’ are isometric when 3 diffeomorphism ¢ : H — H’ and (z, V) € G s.t.

w*({’7/>el7 E(z)lv a,7 w/}) = g(Z,V)({r)/v £, E(2)> «, w})

Theorem (Asymptotic uniqueness [M. & G. Sanchez-Pérez '24])

Assume: K and K' are isometric, non-degenerate KHD embedded in spacetimes (M, g)
and (M', g') whose existence is established in the previous theorem.

Then: 3 neighbourhoods U D ®(H) and U’ D ®'(H') and a diffeo W : U — U’ such that

v (£Wg') = (V) keNU{0},  W,(y) =7
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Example: Schwarzschild-de Sitter/Nariai black hole in d dimensions

@ The SdS metric in advanced Eddington-Finkelstein coordinates:

o = (1 (3 (- () o e

@ Black hole horizon ifAd<d—3
Horizon at r = ro is: e Cosmological horizon if \rd >d —3
@ Degenerate horizon if \rg =d — 3.

@ The Nariai metric has a horizon of radius r = % (degenerate & non-degenerate).

@ Form adapted to non-degenerate KV: guaisi = u (1 + Au) dv® + 2dvdu + d Y 3’Y§d—2

Theorem ([M. & Sénchez-Pérez '24])

Let (M, g) be a d-dimensional spacetime satistfying Ric(g) = Ag, A > 0.

(i) (M, g) admits a non-degenerate Killing horizon H with spherical
Assume: sections of radius ro.

(ii) The corresponding KHD data satisfies w A dw = 0.
Then:  Near H, (M, g) is isometric to SdS if \r§ # d — 3 and to Nariai if \rf = d — 3.
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Thank you for your attention
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