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Killing horizons

A spacetime (M, g) admits a Killing horizon H provided:

(i) H is a null hypersurface. (ii) (M, g) admits a Killing vector η.

(iv) η is null, tangent and non-zero at H.

Killing generator: η̄ := η|H First fundamental form: γ

General properties:

X ,W ∈ X(H)

γ is degenerate γ(η̄, ·) = 0,

Lη̄γ = 0,

∇Xη
H
= σ(X )η, σ connection one-form,

Lη̄σ = 0,

∇XW is tangent to H.

Surface gravity: κ = σ(η).

κ is constant on H iff Ricg (η,X )
H
= 0, ∀X tangent to the horizon.
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Characteristic initial value for bifurcate Killing horizons

Characteristic initial value problem:

Data prescribed on two intersecting null hypersurfaces,

Data does not involve transverse derivatives,

Existence of spacetime from such data: [Rendall, ’90]
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1H+
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Bifurcate Killing horizon:

Four Killing horizons of η emanating from a spacelike
codimension two surface S0.

Theorem (Characteristic IVP Bifurcate KH [Rácz 07’], [Chruściel, Paetz, ’13])

Assume: (S, h): Riemannian manifold of dimension n ≥ 2, ζ ∈ X⋆(S).

Then: ∃ a λ-vacuum spacetime (Mn+2, g) with boundary admiting a Killing vector η.

∂M = H+
1 ∪H+

2 ∪ S0 H+
1 , H+

2 Killing horizons of η. H+
1 ∩H+

2 = S0

(S0, g |S0) isometric to (S, h) ζ: torsion one-form of S0.

Recall: ζ(X ) := g(∇Xν
−, ν+), ν± null normals, X ∈ X(S0).
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Existence outside the horizon?

Characteristic IVP: existence is only to the future/past. Existence in the exterior?

Theorem (Analyticity [Chruściel ’05])

Assume: (M, g) λ-vacuum with a Killing vector η defining a bifurcate Killing horizon.

If η is hypersurface orthogonal, then outside the bifurcate Killing horizon the metric g is
analytic up to the boundary

Theorem (Staticity [M. & Chruściel ’23])

Assume: (M, g) λ-vacuum with a Killing vector η defining a bifurcate Killing horizon.

If the torsion one-form ζ of the bifurcation surface is closed, then η is hyp. orthogonal.

If data (S , h, ζ) is not analytic and dζ = 0 ⇝ Exterior region cannot be λ-vacuum.

Expected to be true in the stationary case as well.

In the analytic case, there is an existence result that only needs a non-degenerate Killing
horizon

- No bifurcate Killing horizon, just one of the four branches.
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Existence and uniqueness from non-degenerate Killing horizons

[Moncrief ’82] In dimension four, an analytic Ricci flat spacetime admitting a
non-degenerate Killing horizon H = R× T2 can be constructed uniquely from six
(coordinate dependent) functions on H.

Uniqueness part reformulated in geometric terms and extended to the smooth case:

[O. Petersen & K. Kroencke ’23] Let (M, g) be Ricci flat and admit a non-degenerate
Killing horizon H. The asymptotic expansion of g at H is determined by

{H, g ,V}

where (H, g) is Riemannian space admitting a unit Killing vector V.

Again, data does not involve transverse derivatives.

Aim of this talk:

Identify the free data on a Killing horizon

Prove existence of a spacetime in the λ-vacuum case

Work intrisically on the null hypersurface (detached from spacetime)

Allow for any topology on H and zeroes of the KV.
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Null manifold

Null manifold (H, γ): manifold H with a symmetric tensor γab of signature
{0,+, · · · ,+}.

TpH has a privileged one-dimensional subspace: The radical of γ:

Radγ |p ⊂ TpH, Radγ |p := {n ∈ TpH, γ(n, ·) = 0}.

(H, γ) is called ruled if there exists a nowhere zero vector field n satisfying n|p ∈ Radp.

Some basic facts:

Any (H, γ) admits a double cover which is ruled.

∃f : H̃ −→ H double cover, such that (H̃, γ̃ := f ⋆(γ)) is ruled.

The geometry of the double cover (H̃, γ̃) is simpler.

Many of the results can be transferred to (H, γ).

A geometry on (H, γ) can be developed in full generality. Here we assume:

(H, γ) is ruled. Lnγ = 0 where n is a generator of the radical.
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Null metric hypersurface data

To study (H, γ): useful to enlarge the definition and introduce an equivalence relation.

Null metric hypersurface data: D = {H, γ, ℓ, ℓ(2)} where ℓ ∈ X⋆(H) and ℓ(2) ∈ F(H),
provided ℓ(n) ̸= 0 everywhere.

Equivalence relation:

Group: G := F⋆(H)× X(H) with the product

(u,W ) · (z ,V ) = (uz ,V + z−1W ).

Action of (z ,V ) ∈ G on D: G(z,V )(γ) = γ,

G(z,V )(ℓ) = z(ℓ+ γ(V , ·)), G(z,V )(ℓ
(2)) = z2

(
ℓ(2) + 2ℓ(V ) + γ(V ,V )

)
.

Definition: D1 ∼ D2 (geometrically equivalent) provided G(z,V )(D1) = D2.

There is a one-to-one correspondence between ruled null manifold structures on H and
equivalence classes of null metric hypersurface data in H.
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The metric hypersurface data connection
◦
∇

Given {H, γ, ℓ, ℓ(2)} fix n by ℓ(n) = 1 Consequence: G(z,V )(n) = z−1n.

Recall we are assuming Lnγ = 0.

There exists precisely one torsion-free connection
◦
∇ defined by:

◦
∇aγbc = 0,

◦
∇aℓb +

◦
∇bℓa = 0.

◦
∇ has good behaviour under the gauge group G:

(i)
(
G(u,W ) ◦ G(z,V )

)
(
◦
∇) = G(u,W )·(z,V )(

◦
∇).

(ii) G(z,V )(
◦
∇) =

◦
∇+

1

2z
n ⊗ (LzV γ + ℓ⊗ dz + dz ⊗ ℓ)
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Connection between the detached and the embedded pictures.

So far (H, γ) has been considered on its own.

Need to connect with the geometry of submanifolds.

Link relies on the notion of rigging vector.

[Schouten ’54]: A rigging ξ is a vector field along a
hypersurface N transverse everywhere to N .

Exists iff N is two-sided.

l

N

Definition (Embedded metric hypersurface data)

Null metric hypersurface data {H, γ, ℓ, ℓ(2)} is (Φ, ξ)-embedded in (M, g) if ∃ an
embedding Φ : H ↪→ M and a rigging ξ along Φ(H) such that,

Φ⋆(g) = γ, Φ⋆ (g(ξ, ·)) = ℓ, g(ξ, ξ) = ℓ(2).

Gauge group G is the manifestation of non-uniqueness of the rigging.

D := {H, γ, ℓ, ℓ(2)} is (Φ, ξ)-embedded in (M, g) iff G(z,V )(D) is (Φ, ξ′)-embedded in
(M, g) with ξ′ := zξ +Φ⋆(V ).
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Extrinsic curvature and full hypersurface data

{H, γ, ℓ, ℓ(2)} encodes intrinsic properties of the hypersurface.

Extrinsic properties incorporated in the formalism with an additional tensor:

Null metric hypersurface data {H, γ, ℓ, ℓ(2)} together with a symmetric (0, 2)-tensor Y
defines null hypersurface data provided

G(z,ζ)(Y) := zY + 1
2
(Lzζγ + ℓ⊗ dz + dz ⊗ ℓ) .

The connection ∇ :=
◦
∇− n⊗Y is gauge invariant (relies crucially on Lnγ = 0).

The notion of embeddedness gives geometric meaning to Y.

Null metric hypersurface data is (Φ, ξ)-embedded in (M, g) provided

{H, γ, ℓ, ℓ(2)} is (Φ, ξ)-embedded in (M, g), Y = 1
2
Φ⋆(Lξg).

Relationship between
◦
∇, ∇ and the Levi-Civita connection ∇ of (M, g):

Fix ν: normal to Φ(H) satisfying g(ν, ξ) = 1. Then, along tangential directions to H,

∇ = ∇ and ∇ =
◦
∇− νY.
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The constraint tensor

{γ, ℓ, ℓ(2)} encodes the spacetime metric g along Φ(H).

Hypersurface data encodes g , ∇ and extrinsic curvature of the hypersurface.

What about ambient curvature?

Φ⋆(Ricg ) computable from hypersurface data

- Introduce a tensor defined in terms of the data

Definition (Constraint tensor [M. & M. Manzano ’23])

Let {H, γ, ℓ, ℓ(2),Y} be null hypersurface data. The constraint tensor Rab is

Rab :=−2LnYab − 2κYab − 2
◦
∇(aωb) − 2ωaωb + terms depending on {γ, ℓ, ℓ(2)}

where ωa :=
1
2
Lnℓa − Yabn

b and κ := ω(n).

Gauge behaviour: G(z,V )(R) = R.

By construction, embedded data satisfy Φ⋆(Ricg ) = R.

10 / 19



The Lie derivative of the connection

The difference of connections is a tensor.

The Lie derivative of a connection ∇ is a tensor. Notation Σ[η] := Lη∇
Basic properties:

Σ[η] is symmetric if ∇ torsion-free, Σ[f η] = fΣ[η] + Hess f ⊗ η + 2∇f ⊗s ∇η.

LηRicab = ∇cΣ[η]
c
ab −∇bΣ[η]

c
ac

Application to the connection ∇: Define s = 1
2
Lnℓ.

[M. & M. Manzano ’23]

{H, γ, ℓ, ℓ(2)}: metric hypersurface data satisfying Lnγ = 0. The tensor Ln∇ is

(Ln∇)cab = nc
( ◦
∇asb +∇bsa − LnYab

)
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Abstract notion of horizon (I)

A spacetime (M, g) with a horizon N admits a privileged vector field η.

- At N , η is null and tangent.

Detached level: assume {H, γ, ℓ, ℓ(2)} admits a privileged vector η̄ satisfying γ(η̄, ·) = 0.

Define α ∈ F(H) by η̄ = αn,

G(z,V )(η̄) = η̄,

We allow fixed points (vanishing α),

G(z,V )(α) = zα.

If {H, γ, ℓ, ℓ(2)} is enlarged to {H, γ, ℓ, ℓ(2),Y}: Two key notions associated to η̄.

Surface gravity: κ := αω(n) + n(α) (recall ω = s − Y(n, ·))

Lη̄∇ := n ⊗ Π(η) : Π
(η)
ab =

◦
∇a

◦
∇bα+ 2s(a∇b)α+ 2α

◦
∇(asb) + n(α)Yab − LαnYab

Gauge properties: G(z,V )(κ) = κ, G(z,V )(Π
(η)) = zΠ(η),

Embedded
interpretation:

Assume {H, γ, ℓ, ℓ(2),Y} (satisfying Lnγ = 0) to be (Φ, ξ)-embedded.
Let η be any extension of Φ⋆(η̄). Then

Π(η) = − 1
2
Φ⋆ (LξLηg + LW g) , W α := ξβLηg

αβ

Π(η) vanishes for a Killing horizon.
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Abstract notion of horizon (II)

Combining with constrant tensor ⇝ algebraic expression for Y:

Master identity [M. & M. Manzano]

◦
∇a

◦
∇bα+ 2ω(a

◦
∇b)α+ α

(
∇(aωb) + ωaωb +

1
2
Rab − 1

2

◦
Ric(ab) +

1
2

◦
∇(asb) − 1

2
sasb

)
+ κYab − Π

(η)
ab = 0.

By comparison with the characteristic IVP:

Data should involve metric hypersurface data + a one-form

We cannot prescribe the full extrinsic tensor Y.

Idea: Use the master identity to trade information on R with information on Y.

Requires non-degenerate case: κ ̸= 0 everywhere.

Degenerate case κ = 0: Master identity already restricts the data {H, γ, α, ω}.
Generalizes the Near Horizon Geometry equation in three directions

(i) No topological assumption H = R× S,
(ii) Allows for fixed points: α = 0,

(iii) Applies to general Π(η): (e.g. conformal or homothetic horizons).

13 / 19



Consequences of the master identity and prescribed data

Contraction of Π(η) and the master identity with n yields the following two identities:

(a) Π(η)(n, ·) = Lαnω − d(Ln(α)) (b) Π(η)(n, ·) = αR(n, ·) + dκ

We defined ω in terms of Y, but Y cannot be prescribed.

- View ω as an a priori independent object.

View Π(η) and R also as prescribed quantities (e.g. Π(η) = 0 and R = λγ).

Prescribed data {H, γ, ω, α,Π(η),R} cannot be given arbitrarily:

Certainly one must satisfy (a), (b) and, in the degenerate case, the master identity.

Basic existence question: Given data {H, γ, α, ω,Π(η),R} with κ ̸= 0

Can the data be completed with Y so that it can be embedded in a spacetime fulfilling
the prescribed quantities?

14 / 19



Basic existence result

The expression of Y is dictacted by the master identity:

Yab =
1

κ

(
Π

(η)
ab −

◦
∇a

◦
∇bα− 2ω(a

◦
∇b)α− α

(
∇(aωb) + ωaωb +

1
2
Rab − 1

2

◦
Ric(ab) +

1
2

◦
∇(asb) − 1

2
sasb

))
First step: show existence of (M, g) where {H, γ, ℓ, ℓ(2),Y} can be embedded.

Tasks:

(i) Prove (Lη̄∇)(X ,W ) = ν Π(η)(X ,W ), X ,W ∈ X(H)

(ii) Prove Y(n, ·) = s − ω

(iii) Prove Φ⋆(Ricg ) = R
(i) is consequence of Φ(H) being totally geodesic (so, ∇XY is intrinsic to Φ(H)).

(ii) is consequence of the data compatibility conditions

(a) Π(η)(n, ·) = Lαnω − d(Ln(α)) (b) Π(η)(n, ·) = αR(n, ·) + dκ

(iii) not true in general. Necessary and sufficient conditions can be found to ensure it.

Consequence of the following general identity:

(Ln + κ) Π
(η)
ab −

◦
∇(aΠ

(η)
b)cn

c − Π(η)(n, n)Yab − 1
2
LnRab − 1

2
κ(Φ⋆(Ricg )−R)ab = 0
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Necessary and sufficient condition and definiton of Killing Horizon Data

To ensure Φ⋆(Ricg ) = R, the prescribed data needs to satisfy an extra condition

(Ln + κ) Π
(η)
ab −

◦
∇(aΠ

(η)
b)cn

c − Π(η)(n, n)Yab −
1

2
LnRab = 0

Automatically satisfied for Killing horizon (Π(η) = 0)+ λ-vacuum (R = λγ).

Killing horizon data

{H, γ, ℓ, ℓ(2), α, ω} defines (abstract or detached) Killing horizon data (KHD) provided

(i) {H, γ, ℓ, ℓ(2)} is null metric hypersurface data with Lnγ = 0

(ii) Gz,V (α) = zα, Gz,V (ω) = ω − z−1dz

(iv) κ := αω(n) + Lnα is constant.

(iii) Lαnω − d(Ln(α)) = 0

(v) If κ = 0, master equation holds:
◦
∇a

◦
∇bα+2ω(a

◦
∇b)α+α

(
∇(aωb) + ωaωb +

1
2
λγab − 1

2

◦
Ric(ab) +

1
2

◦
∇(asb) − 1

2
sasb

)
= 0

KHD can be embedded in (M, g) satisfying Lη̄∇|Φ(H) = 0, (Ricg − λg)|Φ(H) = 0.

Going to all higher orders requires substantial additional work: [M. & Sánchez-Pérez]
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Existence and asymptotic uniqueness from KHD data

KHD non-degenerate: κ is non-zero.

Theorem (Existence [M. & G. Sánchez-Pérez ’25)

Let K = {Hn, γ, ℓ, ℓ(2), α, ω} be non-degenerate KHD. Then, there exists a spacetime
(Mn+1, g) and a smooth extension η of η = αn off Φ(H) such that:

K is (Φ, ξ)-embedded in (M, g), η is a Killing vector of g ,

(M, g) satisfies the Λ-vacuum equations to all orders on Φ(H).

Two KHD K, K′ are isometric when ∃ diffeomorphism ψ : H → H′ and (z ,V ) ∈ G s.t.

ψ⋆({γ′, ℓ′, ℓ(2)
′
, α′, ω′}) = G(z,V )({γ, ℓ, ℓ(2), α, ω}).

Theorem (Asymptotic uniqueness [M. & G. Sánchez-Pérez ’24])

Assume: K and K′ are isometric, non-degenerate KHD embedded in spacetimes (M, g)
and (M′, g ′) whose existence is established in the previous theorem.

Then: ∃ neighbourhoods U ⊃ Φ(H) and U ′ ⊃ Φ′(H′) and a diffeo Ψ : U → U ′ such that

Ψ⋆(L(k)
ξ′ g

′) =
(
L(k)

ξ g
)

k ∈ N ∪ {0}, Ψ⋆(η) = η′.
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Example: Schwarzschild-de Sitter/Nariai black hole in d dimensions

The SdS metric in advanced Eddington-Finkelstein coordinates:

gSdS = −
(
1−

( r0
r

)d−3

− λ

d − 3

(
1−

( r0
r

)d−1
))

dv 2 + 2dvdr + r 2γSd−2

Horizon at r = r0 is:
Black hole horizon

Cosmological horizon

Degenerate horizon

if λr 20 < d − 3

if λr 20 > d − 3

if λr 20 = d − 3.

The Nariai metric has a horizon of radius r 20 = d−3
λ

(degenerate & non-degenerate).

Form adapted to non-degenerate KV: gNariai = u (1 + λu) dv 2 + 2dvdu +
d − 3

λ
γSd−2

Theorem ([M. & Sánchez-Pérez ’24])

Let (M, g) be a d-dimensional spacetime satistfying Ric(g) = λg , λ > 0.

Assume:
(i) (M, g) admits a non-degenerate Killing horizon H with spherical

sections of radius r0.

(ii) The corresponding KHD data satisfies ω ∧ dω = 0.

Then: Near H, (M, g) is isometric to SdS if λr 20 ̸= d − 3 and to Nariai if λr 20 = d − 3.
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Thank you for your attention
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