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it from the cracks that light gets tw... Anthem-Leonard Cohen

BLACK HOLES:
THE ROSETTA STONE OF GRAVITY

“The black holes of nature are the most perfect macroscopic objects there are in the universe:

the only elements in their.construction are our.concepts ofispace and time.”
tubrahmanyaniEhandrasekhar
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ALBEIT WE ARE NOWADAYS FAMILIAR WITH THE CONCEPT OF
Br.Aack HOLES THEIR ACCEPTANCE AS A PHYSICAL SOLUTION
OF GENERAL RELATIVITY HAS BEEN FAR FROM OBVIOUS.

< KEVEN ONCE WAS UNDERSTOOD THE NATURE OF THE EVENT
HORIZON, BH ARE STILL. CHARACTERISED BY “HARD TO
DIGEST  STRUCTURES

% SINGULARITIES: INFINITE CURVATURE

% (CAUCHY HORIZONS (ASSOCIATED TO TIMELIKE
SINGULARITIES AND TIME MACHINES): END OF
PREDICTABILITY

outer ergosphere inner ergosphere ring singularity inner horizon outer horizon

QG is supposed to “cure” these features:
If it does so just in a hidden QG core of Planck scale then BH will be exactly as in GR.
But what if the “cure” requires long range (in time and / or space) effects?
Then maybe we could test QG using BH... could we?



Singularity

A singularity is where General relativity is no more predictive: we cannot describe spacetime there —> missing points.

Penrose’s theorem is what makes very confident that singularities must form inside black holes generically

Penrose’s singularity theorem
Assumptions

+ The theory of gravity is GR

- singulaijity
>

+ The gravitational collapse becomes enough strong to have convergent light cones (trapped region)

E time
+ Matter gravitates in the standard way (no exotic/quantum matter: if p=w@ w>-1) %
¢ 3
3 B
Implication
Once a trapped region forms the collapse would be unstoppable and has to lead to a singularity v = const.

Avoidance of this conclusion requires at least one of the following

+ The weak energy condition is violated.

+ The Einstein field equations do not hold.

matter

+ Lorentzian geometry does not provide an adequate description of spacetime inside BHs.

+ Global hyperbolicity (Cauchy evolution) breaks down.

We shall be ready to give up the first two and hold the last two...



Focussing on the focussing point

Let’s assume that QG produces a space-time which is regular and entirely predictable in the sense of a Cauchy problem.

No singularities both in the sense of incomplete geodesic as well as curvature singularities (metric is at least C2).

Penrose’ theorem works by proving first that in a collapse a
focussing point for outgoing light rays is reached and then
by showing that this point (or sets of points) cannot be part
of the spacetime. If QG removes such a focussing point
what can happen? We can have

Defocusing point at a finite affine distance, Aper=A¢; LA
Defocusing point at an infinite affine distance, Apgr=c0; ! =
Focusing point at infinity, Aprr=0; e
| >,

still singular at finite affine parameter for ingoing congruence
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null SA SA
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Apart from the above behaviour of the outgoing light rays

we can catalogue all the possible cases by considering the radius R at which defocussing
happens and the behaviour of the ingoing light rays there.
We then get only

4 viable classes:
1. (20, Ro, 8% < 0) 3. (9Rs, 8% < 0)

2. (A9, R0, 8% = 0) 4. (0, Ry, 8% > 0)



Class 1: Evanescent horizons

+ The expansion relative to the outgoing null vector vanish and changes sign.

+ The expansion of the intersecting ingoing radial null geodesics remains negative.

+ We recover the geometry of an evanescent
regular black hole.

+ The geometry possesses an outer and an inner
horizon that merge in finite time.

+ This situation corresponds to a regular BH
with no singularity

» Or to a bounce from a Trapped Region to an
Anti-Trapped Region (where the two region
are separated by an un-trapped, standard
region)

Note: bounce behaviour explicitly found in 2D dilation gravity semiclassical collapse
J. Barenboim, A. V. Frolov, G. Kunstatter
Phys.Rev.D 111 (2025) 10, 104068 e e-Print: 2503.03191 [gr-qc]



Class 2: One way hidden wormholes

In this case

- The expansion relative to the outgoing null rays vanish and changes sign.

» The expansion of the intersecting ingoing radial null rays changes sign as well.

» The geometry possesses a minimum radius
throat that resembles the one of a wormhole;

« The throat 1s inside a trapping horizon and can be
traversed only in one direction.

« Problematic creation from gravitational collapse
as topology change 1s incompatible with global
hyperbolicity. However, if one gives up (at least
in two points) metric analyticity requirement then
possible to conceive a geometry with minimum
finite radius locally.




Asymptotic resolutions: Cases 3,4

* These are (idealised?) cases in which the defocussing point is
pushed at infinity.

Everlasting horizons Asymptotic hidden wormholes




Viability summary
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+  Asymptotic resolutions of the sngularity are rather unphysical. So, we shall not deal with
these asymptotic cases (Case 3 and 4) any further...
* We shall focus instead on the finite time resolutions

P.S.: same analysis can be done to regularise the Big Bang in FRW...
Raul Carballo-Rubio, Stefano Liberati, Vania Vellucci (Apr 19, 2024)

Published in: Phys.Rev.D 110 (2024) 4, 044055 e e-Print: 2404.13112 [gr-qc]
Result: a bouncing universe, an emergent universe, and an asymptotically emergent universe



First “take-home™ message

The analysis of the singularity
resolutions tells us that
substantially, once a trapping
horizon forms, there are two
classes of singularity free solutions
(local in space and time) available:

Simply connected topology:
Regular black holes (and
bounces) with inner horizons.

Non-simply connected
topology: Hidden Wormholes
(wormholes shielded by a
trapping horizons) OH

Regular BH Hidden WH

Figures by courtesy of R. Carballo-Rubio



R.~Carballo-Rubio, F.~Di Filippo, S.~Liberati and M.~Visser,
JHEP 08 (2023), 046

Limiting cases - BH Mimickers

* In both these cases one can ask what happens if the defocussing happens before an horizon is formed
Ry > 13,pri.0n- ANswer: one gets two corresponding new classes of objects of horizonless objects.

* Horizonless BH Mimickers

* Naked wormholes

BH Mimickers
Let us define a static and spherically symmetric quasi-black hole
as a spacetime satisfying: 9 —
(i) there are no event or trapping horizons.
(ii) Still sufficiently compact to have a light ring (as seen by EHT) OH
Naked Wormhole

The hidden wormhole spacelike trout becomes so large to engulf the
trapped region and leave a traversable wormhole (timelike throat)

Theorem: such horizonless configurations are characterised by an pair of light rings (or none).
See e.g. F. Di Filippo. Phys.Rev.D 110 (2024) 8, 084026
The usual unstable one plus an inner stable one (for the naked wormhole on the WH throat) which
tends to accumulate massless excitations (an instability source?)



50 1n summary...

unstable light ring unstable light ring unstable light ring

wormbhole throat/

stable
light ring

inner horizon /
wormhole throat

GR BH Regular BH/ BH Mimicker/
Hidden wormhole Traversable wormhole

This is the general structure of the regularised BH.
But so far our analysis is local.
How about the global metric associated to these categories?



Class 1: Stationary Metrics

Let starts with the Evanescent Horizons class.
A one parameter family of static metrics embodying this category is

om(r) = Model m(r)
e 2 r DR pEr e D ) 2
dsii— (1 - )dt = (1 = 2m(r)> = [dé’ + sin 9dq§] : e M(r2+j2)3/2
T
Hayward [45] M M—BMKQ
o 7“3

m(r)=Misner-Sharp Mass e e [1 = eXp(f_?’)}

Fan—Wang [47] ﬁ

Requirements for the mass function
m(r) - M asr — o~ and m(r) = O(r3) as r — 0 (at least)
Asympt. flatness+Regularity at the core+Outer Horizon imply also Inner Horizon (actually Cauchy).
The position of the inner and outer horizons and their surface gravity depend on m(r)
Within GR, RBHs are non-vacuum solutions, the effective stress-energy tensor can be read off from
the Einstein tensor; several interpretations in terms of non-linear electrodynamics.
In general, they imply violations of the strong energy condition (not of NEC).
Remember Hawking-Penrose theorem
Rotating regular black holes (Kerr-like) can be constructed e.g. using
generalised Janis-Newman procedure (albeit care is required...)




R.~Carballo-Rubio, F.~Di Filippo, S.~Liberati and M.~Visser,
JHEP 08 (2023), 046

Class 1: Regular-BH limit

Mr3
r3+202M°
* The effective stress energy tensor takes the form associated with an anisotropic perfect fluid
3% (m(r) ? 362 P =M [ m(r) 2 23— 202M
7 ( 3 > == SRR ey, ( > T P 420°M

+ 2m(r) = r has 2 roots for M/ > 3\/§ /4 a degenerate/double root for M/ = 3\/5 (4 (at = \/5 ¢ ) and no roots for M/ < 3\/5 /4

¢(r) = 0.

. Let us take Hayward RBH for concreteness: m(r) =

p(r).

p(r) = 3

Typical structure of a RBH with dS core

’_,

Assuming M/¢ > 3\/§ /4 and M > ¢ one has a RBH a

ultra compact object with 4 “zones”
+ The (approximately isotropic) dS core [r ~ £ < 2M]:

)= -p @) =—1-0(eiM)| == p2).
P& = —p&) = (2/1M) 3pt( )
 The (mildly anisotropic) crust [r ~ L, =/ 27 2M]:

A A

P = ~pL) == [1+0(em)|.  pay = = |1+ 0 (zm))].
+ The (grossly anisotropic) atmosphere [r ~ 2M]:

f = =
p(M) = — p,(M) = A, (W) [1 +6 (f2/M2)], pM) = 2p)| 1+ 0 (£21m7)] .
 The (approximately vacuum) asymptotic region [r ~ R > M]:

LN OV : -
P(R) = —p,(R) = A <ﬁ> <7> l1+@(f2M/R3)], pt(R)=2p(R)_1+@(f2M/R3)_.

Note: RBH with AdS cores are also possible. Arrechea, Neshat, SL, Vellucci. To Appear soon.



R.~Carballo-Rubio, F.~Di Filippo, S.~Liberati and M.~Visser,
JHEP 08 (2023), 046

Class 1: BH Mimicker limit

7'3 2
$(r) = 0.

. Let us take Hayward RBH for concreteness: m(r) = .
r3+262M

+ The effective stress energy tensor takes the form associated with an anisotropic perfect fluid

322 (m(r)\* - = 372 B 2M (m()\® 23 = 20°M
= r), ) = =
2 L Pr 3+ 202M 3+ 202M

+ 2m(r) = r has 2 roots for M/ > 3\/§ /4 a degenerate/double root for M/¢ = 3\/5 /4 and no roots for M/ < 3\/5 /4

p(r) =

p(r).

r3 r3

Assuming M/ < 3\/§ /4. In this case, the different scales £ and M coalesce, the
horizons disappear, with the dS-like core growing in size and the crust and
atmosphere shrinking.

Vacuum

BH Mimicker region Ny
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Problem: Mass inflation instability

Problem: The inner horizon is
generically classically unstable

mu(rov) | _ ) y el

Without fine tuning there is an instability at inner horizon (mass
inflation) in QG time scale, while evaporation time is generically
infinite.

Note also that possible cosmological constant relevant only after a

time v ~ 1/\/K.

Similarly, ingoing Hawking flux can become relevant (see
Buonanno et al. 2022) but too late for astrophysical black holes

R.Carballo-Rubio, EDi Filippo, SL, C.Pacilio and M. Visser,
JHEP 1807, 023 (2018). [arXiv:1805.02675 [gr-qcll.
JHEP 05 (2021) 132 ¢ e-Print: 2101.05006 [gr-qc]
Phys.Rev.D 108 (2023) 12, 12 ¢ e-Print: 2212.07458

An open issue was if this instability is characteristic of any

trapping (dynamical) inner horizon or just of Cauchy horizons.
The latter, as event horizons, are just abstractions associated to

eternal black holes.

Trapping horizons are instead physically relevant.


https://arxiv.org/abs/2101.05006
https://arxiv.org/abs/2212.07458

Raul R. Carballo-Rubio, F. Di Filippo, S. Liberati, M. Visser
Phys.Rev.Lett. 133 (2024) 18, 181402 e e-Print: 2402.14913 [gr-qc]

Mass inflation without Cauchy horizons

[t can be shown that finite (but often large) exponential buildups of energy are generically present for
dynamical geometries endowed with slowly-evolving inner trapping horizons, even in the absence of
Cauchy horizons, if the following conditions are satisfied

e Adiabatic condition for radius of the inner horizon: These are conditions on the first and second derivatives of r m(V) b

drin (v) and thus can be violated or satisfied independently of each other.
w0 < @)l Ir@) — @)l (@)
.
M,
o Adiabatic condition for surface gravity of the inner 20 """""""""""

horizon:

drin(0) 4
Rin (U .
0| < (o) ®) ;
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Figure 2. Left: Specific realization of Fig. 1 for the Misner-Sharp mass in Eq. (18) and parameters Mo, = 10, ¢ =1, § =
1,v=2,v; = =20, vy = 300, s1 = 1, s = 1/40. Outer and inner horizons are indicated by the blue dotted line and the red
dashed line, respectively, and the outgoing null thin shell by the solid black line. The radius of the outgoing shell is set initially
at R(v = 30) = 5. The shaded region marks the interval of time for which My (v) is plotted in the right-hand panel. Right:
Misner-Sharp mass M4 (v) in the region interior to the outgoing shell for the the initial condition m_(v = 30) = M +1 = 11.
The dashed line corresponds to the exponential mass inflation for a stationary regular black hole with the same parameters.

The exponential buildup of M (v) pushes the linear approximation beyond its regime of validity in a short interval of time, as
in the stationary case.

This imply that black hole geometries with non-extremal inner horizons, including the Kerr geometry in general
relativity, and non-extremal regular black holes in theories beyond general relativity, can describe dynamical
transients but not the long-lived endpoint of gravitational collapse! (at least in their interior)



Stable regular black holes?

Basic idea: a possible stable endpoint is a Regular BH with zero surface gravity at the IH
but non zero one at the outer horizon given that mass inflation is exponential in x_
— k=0

/7
0’0

----- k=102 k=107

R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio and M. Visser, "Regular black
holes without mass inflation instability,”* JHEP 09 (2022), 118.

104

ds? = —e 20 P(r)de? + 2e7dudr + r2dQ2,

100

Misner-Sharp quasi-local mass m Fr)=1- 2”;‘0(7“)
e e ) (i) e =0, -
(r—r_) (r—ry)+2Mr3+fag —3r_(ry +r_)]r?
subject to - Taming of mass inflation as k_ — 0
e gt a2 2 %hrr_' 10 h 1000 105 107 '

r_ L ry ~2M;

* Generalisation to rotating black holes.

0’0

E. Franzin, S.Liberati, J. Mazza and V. Vellucci, “Stable Rotating Regular Black Holes,”. [arXiv:2207.08864 [gr-qc]].
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However... semiclassical instability

S. Hollands, R.M. Wald and J. Zahn,
Class. Quant. Grav. 37 (2020) no.11, 115009

T. McMaken,
Phys. Rev. D107 (2023) no.12, 125023

C. Barcelo, V. Boyanov, R. Carballo-Rubio and L.J. Garay,
Phys. Rev. D106 (2022) no.12, 124006

R. Balbino, A Fabbri.
Universe 10 (2024) 18 « e-Print: 2311.09943

* Zero surface gravity at the inner horizon might not be enough to stabilise a regular
black hole: there is a divergence in the SET at the Cauchy horizon ruled by
1
lim < U|T,,|U>= —K(KE—K_%_)

r—r_ T

“ Still this divergence might be absent in a dynamical geometry as it is strictly
associated to Cauchy horizons. (Carballo-Rubio, Di Filippo, SL, Visser. In Preparation)

* In any case a large back reaction is expected also such from semiclassical instability.

Take home message: RBH are most probably dynamical objects at most metastable.
Compeatibility of this metastability with observations is an open issue.
Let’s see more in detail what we know so far...


https://arxiv.org/abs/2311.09943

Class 1: a conundrum of Instabilities

Preliminary investigations (see Barcel6 et al. Phys.Rev.D 106 (2022) 12, 124006) seems to suggest that

classical mass inflation would push the inner
horizon inwards

the quantum instability would push the inner
horizon outwards and actually dominate over
mass inflation.

The position of the IH is basically set by £, so the
semiclassical instability suggests that one
effectively gets £ — £(v)

So, this chain of instabilities may lead the RBH to
end up extremal or a quasi-BH...

But extremal black holes seems to suffer from the
Aretakis instability: higher radial derivatives of a
field propagating on the horizon unboundedly
grow in time. [Open question if it does apply also
to inner extremal horizons... work in progress with
L. Donnay group]

But quasi-BH have necessarily an inner stable light
ring! — possibly unstable again?
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So what is going to be the end point?!



Class 2: The Simpson-Visser Black-Bounce

oM oM 7! - :
d32 s (1 = ) dt2 e (1 = ) dT2 = (7“2 i 52) {d92 X Sin2 qubﬂ 7 A.Simpson, M.stselr. JCAP 02 (2019) 042
r2 + (2 VR e-Print: 1812.07114 [gr-qc]
e a two-way, traversable wormhole a la Morris-Thorne for ¢ > 2M,
RN extension:
e a one-way wormhole with a null throat for ¢ = 2M, and E.Franzin,SL, ].Mazza, A.Simpson, M. Visser. JCAP 07 (2021) 036.

e-Print: 2104.11376 [gr-qc]
e a regular black hole, in which the singularity is replaced by a bounce to a different

universe, when ¢ < 2M; the bounce happens through a spacelike throat shielded by
an event horizon and is hence dubbed “black-bounce” in [6] or “hidden wormhole” as
per [4].

Rotating counterpart
palides (1 e 2M\/;2 —|—€2>

J.Mazza, E.Franzin, SL. JCAP 04 (2021) 082 e e-Print: 2102.01105 [gr-qc]

.2 2 1 72 .92
AM a sin Z:9\/7’ +/ dtd¢—|—AS;1 0

N
de? + S dr? + 2d6? —

do?
(2.16)
with

{/M
Y =12+ 0% + % cos? 6, A=7r2+0%4+a>—-2M\r2+ 02,

A= (2 4+ a?)? — Ad®sin®0. d Woy
WoH traversable wormhole; WoH

nWoH null WoH, i.e. one-way wormhole with null throat;

RBH-I regular black hole with one horizon (in the r > 0 side, plus its mirror image in the 1 RBH-I
r < 0 side);

RBH-II regular black hole with an outer and an inner horizon (per side);

eRBH extremal regular black hole (one extremal horizon per side); nRBH RBH-II

nRBH null RBH-I, i.e. a regular black hole with one horizon (per side) and a null throat. 0 0.5 1 a/M


https://arxiv.org/abs/2102.01105
https://arxiv.org/abs/1812.07114
https://arxiv.org/abs/2104.11376

*

E. Franzin, S. Liberati, J. Mazza, R. Dey and S.Chakraborty,

Phys. Rev. D105, no.12, 124051 (2022)

Class 2 limiting case: traversable wormholes

]
0 =~ (1- o) ot + (1= op) 07+ + 6 [00 +s?oa?],
r r

(1 —2M/(\1r* + f2> = 0 has no roots for £ > 2M

(similarly for the rotating case)

Energy conditions violation at the WH throat

Also in this case the naked WH will sport for 2M < £ < 3M a

stable light-ring at the WH throat.

other universe

throat G

“X gt

our universe

=

7

throat - —

(a) The regular black hole. The maximally
extended spacetime continues above and below
the portion shown by repetition of this
fundamental block.

s
other universe
other universe
g i
2
=
our universe
our universe > 5/
T
1 1
(b) The null-throat wormhole. The analytically (c) The traversable wormhole.

extended spacetime continues above and below

by repetition of this fundamental block.

Figure 1. Penrose diagrams of regular black hole, null-throat wormhole and traversable wormhole. The white area represents “our universe”

while the gray area is the “other universe”.

For £ > 3M there is only an unstable light-ring again at the

wormhole throat.
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Take home message: In spite of being “more exotic” the Black Bounces appear to be
less prone to instabilities (e.g. no mass inflation instability if £ > r_).
Still less studied... more to do.



R. Carballo-Rubio, F. Di Filippo, S. Liberati and M. Visser,
Phys. Rev. D98, no.12, 124009 (2018)

Phenomenology: parametrising the uncertainties

Size, R = rg(1 + A): the value of the radius below which the modifications to the classical geometry are O(1). A > 0.
Note the compactness parameter p = A/(1 + A). So for A <« 1 one has u = A

T_-formation K-Absorption I'-Elastic T -Inelastic

UeF - Liftitts time M~ compactness Coeft. reflection Coeff. reflection Coeff. S(I)- fails
Classical
CR BH 00 ~10 M 0 1 0 0 0
Trapped
regions undertermined "'10 M O 1 O O NOH—ZeI' O
(RBH+Hidden WH)
Q . BH 238 Model Model Model Model Model Model
L dependent dependent dependent dependent dependent  dependent
Bouncing
: . Model non-zero and
Geometries g1 deperient 0 1 0 0 Ol
(long lived)
Traversable Model Model
Wormholes = oy >0 dependent L 0 dependent

NOTE: ONE OF THE PARAMETERS IS NOT INDEPENDENT: E.G. INELASTIC INTERACTION PARAMETER MUST SATISFY I = 1 — x =T

INCLUDING ADDITIONAL INDEPENDENT PARAMETERS WOULD PROVIDE MORE FREEDOM TO PLAY WITH THE OBSERVATIONAL DATA BUT LESS
CONSTRAINING POWER. THE SET INTRODUCED IS MINIMAL, BUT STILL ABLE TO ASSES THE OBSERVATIONAL STATUS OF BLACK HOLES.



E.~Franzin, S.~Liberati and V.~Vellucci,

““From regular black holes to horizonless objects: quasi-normal modes, instabilities and spectroscopy, '’

[arXiv:2310.11990 [gr-qcl].

Cases 1 & 2: Quasi-normal modes analysis

Let us we study test- field and linear gravitational perturbations in such spacetimes,
varying the regularization parameters so to pass smoothly from RBHs to the ultracompact horizonless objects.

Bardeen RBH Bardeen Quasi-BH
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Figure 2. Quadrupolar / = 2 fundamental QNMs of the Bardeen metric for test-field perturbations, s = 0 (blue), s = 1 (light purple) and s = 2
(red). On the left results for values of ¢ in the RBH branch that is from ¢ = 0 (Schwarzschild) to £ = £o = %M (extremal RBH). On the

right results for values of ¢ in the horizonless branch. Note that for values of the regularization parameter near the extremal case the imaginary
part is extremely small and thus we have very long living modes.

Regular Black holes Horizonless compact objects
Bardeen Simpson—Visser Bardeen  Simpson—Visser

Test s=2 Axial  Polar Test s=2 Axial  Polar Test s=2 Test s=2
(/M =0.2 6 =0.05

Ag 0.0075 -0.0012 0.0037 -3-107° —0.0002 —0.0005 Ag 0.1380 —0.1801

Ay 0.0045  0.0090 0.0090 0.0022  0.0044 0.0044 A 0.9712 0.9970
{/M = 0.6 6 =0.10

Ag 0.0808  0.0069 0.0297 —-0.0003 -0.0163 —0.0067 Ag 0.3613 —-0.0310

A; 0.0674  0.0776 0.0810 0.0236  0.0292 0.0292 A 0.6441 0.9015
(/M =1.6 0=0.20

Ag —0.0053 -0.0690 —0.0428 Ag 0.0482

A, 0.1798 0.1854 0.1776 A; 0.5913

w, —lA)S /
Table I. Relative deviations from the quadrupolar fundamental Schwarzschild frequency Az, = MR with wSM = 0.37367 — 0.088964, for

Iy 1
s = 2 test-field and linear gravitational perturbations, both in the axial and polar sectors, for select];él valued of the regularization parameter.
Results are shown for the Bardeen and SV spacetimes, on the left for the RBH branch and on the right for horizonless configurations. For the
Bardeen metric there are no results for £/M = 1.6 and § = 0.2, with § = /£ — 1, since for those values of compactness the spacetime not
only lose the presence of the horizon but even of a photon sphere. For both spacetimes results for axial and polar gravitational perturbations
are not reported for horizonless configurations because of the numerical issues present in this branch. Looking at the test field case, it is easy
to see the large increment A; passing from the RBH configurations to the horizonless ones for small Js.

Figure 3. Quadrupolar / = 2 fundamental QNMs of the SV metric for test-field perturbations, s = 0 (blue), s = 1 (light purple) and s = 2 (red).
On the left results for values of £ in the RBH branch, that is from ¢ = 0 (Schwarzschild) to £ = 2M (one-way wormhole with an extremal null
throat). On the right results for values of ¢ in the horizonless branch. It is worth noticing the relative flatness of the real part curves which
highlights weak deviations from the singular GR solution behaviour recovered for £ = 0. On the left results for values of the regularization
parameter near the extremal case ({ex, = 2M): the imaginary part is extremely small and thus we have very long living modes.

Summary
3 For £ < M both the RBH and SV BB show deviations for the
Schwarzschild QNM
¢ SV BB tends to show smaller deviations.

+  Third generation GW detector with enough statistics might see this
if £//M ~ O(107")!
*  Quasi-BH configurations show marked longer perturbations lifetimes
(tiny imaginary part) for £ 2 £,
This is a sufficient condition to expect non-linear instability and
appears to be related to the presence of the inner-stable-light-ring
+  However, note that the imaginary part becomes comparable with the
Schwarzschild one very rapidly as the compactness decreases even

before the inner-light ring disappear.

“ A non-linear analysis is definitely needed...

(and what about matter interactions?)




GW channel: Echoes tfrom BH Mimickers

e In the case of a black hole GW scattered back at the potential barrier (usually close to the light ring) are lost
inside the horizon.
e For an horizonless object (quasi-BH or traversable wormhole) instead the wave can go through the center and
bounce again at the potential barrier with a part transmitted at infinity and one par reflected.
This generates “echoes”.

Key point: even for ultra compact objects the delay between such echoes is macroscopic
(logarithmic scaling).
Time delay for an object of compactness A = r/2M, — 1

rpeak%?’MO dl’
Atecho =2 J
re=2My(1+A) 1 —2M,/r

Signal

~ 2M, [1 — 2A — 21n(2A)| —

0.06

0.04

1° echo 2° echo :

* Note that we neglect above the time to cross the object, but 0.02 | | |
there are example of very “deep potential well'" cores which . /\/\/\/MMM |
would generate a huge time delay and make the effect | |
observationally irrelevant: Arrechea, SL, vellucci. JCAP 12 ~0.02|
(2024) 004, Semiclassical stars with AdS cores.

=30M,)

w(r.

-0.04
* The amplitude of gravitational wave echoes would be e - R
proportional to I'. A non-observation of echoes can only 0 0 199 t};‘; 200 290 300
constrain this parameter. A positive detection of echoes could
be used in order to determine also A.

So far searches for quasi-periodic signals...



Echos and Non-linear back reaction

NON-LINEAR INTERACTIONS BETWEEN THE GW AND THE CENTRAL OBJECT t

* These are neglected in extant analyses. However, this appears to be inconsistent
* For quasi-BH even modest amounts of accretion will generate a trapped region

* The formation of a trapping horizon might be avoided by nonlinear interactions
Example: If vacuum polarisations supports a Quasi-BH in Boulware vacuum

=2
2M
RSET o — [ 1. ——— so even tiny change 2M—r can generate huge back-reaction.
r

* The more compact the central object is, the larger is the fraction of
the energy stored in the gravitational waves to be transferred
through nonlinear interactions. I.e. large absorption

S e DI D O ey =
V. Vellucci, E. Franzin and S. Livberati,
* A model-independent outcome of these interactions has to be the e S L R ek
expansion of the central object in order to avoid the formation of | |
trappinghorZonst = e ter sl e Dl sl g L st e | o

0.10L —— k=0.01%

* For very compact objects, very small AM corresponds to large
variations in the compactness. Changes in compactness are
sufficient to destroy the periodicity of the echos... 000

0.05¢

30My)

w(r,

* So, even for k ~ 0.01 % one get noticeable delays between echoes R

0 50 100 150 200 250 300

given that the compactness of the object has to increase e



R. Carballo-Rubio, F. Di Filippo, S.L. and M.Visser,
JCAPO8 (2022) no.08, 055.[arXiv:2205.13555 [astro-ph.HE]].

EH'T Constraints from Reemission

The minimum surface luminosity expected at infinity Leo can be estimated as
L. > nM where n = E/M

An upper bound on the observed luminosity can then be translated into a
constraint on the 5 parameter. From ETH we know 7 < 1072

How this translates on a bound on the relative compactness y =1 —2M/r, ? =~ Compactodlest :‘.‘A
Assuming that all the kinetic energy of infalling matter is converted to outgoing . a-n(1-52)¢1=¢
- 5 5 ~(\‘~~
radiation, leads to the naive resulty = 1 — \/;_4 3
However, this does not take into account lensing (AQ/2z = 27u/8 + O(u?)) and . A a (')
the possibility that part of the radiation is absorbed by the Quasi-BH. __(_1:@(%“ ' e
S > !

I.e. the case k # 0.

Indeed, one can model the quasi-BH—matter interaction as a series of bounces of the
radiation over the surface which have to be summed up.
B AG () t/T AQN YT t=time over which SGrA* has been accreting
= ) 1—(1-k) == .

i . 2
7 = time for each bounce ~ O(10M) ~ 10° s

The net effect is n(t) =

Al L SOl tonlE—Sl— )= ()

For the physical limit 7/7T < k < 1 N = : :
2m /$+%—7?(1—"3) orforll=1-x=10%2=pu <1

So no meaningful upper-bound constraints can be placed for objects with large absorption coefficients



Closure

%* BH are the new frontier for testing classical and quantum deviations from GR

% Basic arguments from Penrose singularity theorem show that regular spacetime resolutions of
singularities are divide in two families depending on the absence/presence of a minimal radius

2 For both these families there are related horizonfull and horizonless solutions.

% Ensuing instabilities of inner trapping and extremal horizons are crucial to understand the actual
long living end points of such models...

% In any case: avoiding the central singularity appears to generically lead to long range effects (in
time or space).

% The resulting black hole mimickers are very hard to exclude with current observations but they
are not hopeless and better modelling plus multimessanger astrophysics will be the key to test
them.

Are we at the dawn of a new form of

PPSEIVAIONSY




THANK YOU!

£ sure we have seen so many
X GR black holes!

“‘

-

Haven’t we?




