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Some basics on black hole uniqueness



Black holes are highly symmetric

There can be isolated stars and planets with different shapes. In fact, 
that is the case. 


Intuition tell us that to generate a Montaigne of a Valley is more difficult 
for objects with bigger surface gravities: ￼ 


In General Relativity a special limit occurs when compactness ￼ 


All theoretical evidence points to a non-hair result for black holes

κ = GM/R2

2GM
c2R

→ 1



Isolated black holes are characterised by only 2 numbers (Mass and 
angular momentum; 3 if they were charged)


As opposed to their progenitors, Black holes comes in only one shape. 


Chandrasekhar: “The black holes of nature are the most perfect 
macroscopic objects there are in the universe: the only elements in their 
construction are our concepts of space and time.”

Black holes are highly special



Why is that so?

The simplest situation in which one can start understanding what is going 
on is the static case.


There we have the first uniqueness result due to Werner Israel 1967. 


Loosely speaking: the only static geometry representing a black hole 
(i.e. with a regular horizon) in an asymptotically flat spacetime is the 
Schwarzschild geometry.



Israel theorem
a) Static


b) Vacuum


c) Asymptotically flat


d) With spheroidal equipotential surfaces, labelled by ￼ 


e) With a regular horizon (non-divergent Kretschmann)


f) The area of the equipotential surfaces taking a finite limit as ￼

ϵ ∈ (0+,1)

ϵ → 0+

The set of geometries that are: 

contains a single member: the Schwarzschild geometry 

￼  ds2 = − 𝒱2(x)dt2 + gij(x)dxidxj

W. Israel, Phys. Rev. 164, 1776 (1967)



By looking just at its enunciation, one would not know what is the reason 
for what


There is a mixture of global and local issues at stake. E.g. regularity of 
the horizon (l); vacuum (g)


In addition it is not clear the role played by assumptions like (d) or (f)

Why is that so?



Israel theorem as a shooting
One can devise different forms for the local geometry of a regular horizon


In fact, it would be possible even to have black holes with arbitrary topologies


The problem comes when integrating Einstein equations outwards assuming vacuum 
equations. Only the purely spherical horizon case matches with a well defined 
asymptotically flat region.


If the integration where made with arbitrary matter contents, then everything would 
be possible



Deforming from the outside

and from the inside: the 

axisymmetric case



￼ds2 = − e2Udt2 + e−2U [e2V (dr2 + dz2) + r2dφ2]

Axisymmetry
Analysing the simpler situation of axisymmetry provides much clarity  

with ￼  satisfyingU(r, z), V(r, z)

￼∂zV = 2r∂rU∂zU

￼∇2U = 0

￼∂rV = r [(∂rU)2 − (∂zU)2]
Solvable by quadrature   

Associated Laplace Problem   

Bach,Weyl, 
Mathematische Zeitschrift 
13 (1922) 134; Gen Relativ 
Gravit 44 (2012) 817



Single objects with a putative horizon

A putative horizon appears when ￼  somewhere  U(r, z) → − ∞
Given the Laplacian equation, we know that this can only happen for:   

For a delta point source 


For a delta ring source


For a delta rod source

Geroch & Hartle, J. Math. Phys. 23, 680 (1982)



Delta point source

Curzon geometry

￼U(R) = − M
R

￼V(R, θ) = − M2 sin2 θ
R2
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Delta ring source
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Delta rod source
￼US(r, z) = 1

2 log ( R+ + R− − 2M
R+ + R− + 2M )

￼VS(r, z) = 1
2 log ( (R+ + R−)2 − 4M2

4R+R− )
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Deforming a BH from inside

￼    with    ￼U = f(z)log r + o (log r) f(z) = 2λ(z)

￼𝒦 = 12( f(z) − 1)2 f(z)2

r4 +
8f′￼(z)2[3f(z)2log2(r) − 3f(z)log2(r) + log2(r) + 2 log(r) + 2]

r2 + finite terms

It is divergent unless  ￼ . Thus, one cannot deform from inside!f(z) = 1

The only real black hole is the rod one, i.e. the Schwarzschild black hole.

Now, the only possible deformation of a Schwarzschild black hole is: 



Deforming a BH from outside
Realistic black holes would not be isolated, they will be surrounded by matter


Gürlebeck showed a non-hair result for this case [PRD90,224041 (2014); PRL 114, 151102 (2015)]


Result: to the asymptotic multipolar structure of a spacetime containing black 
holes, the black holes contribute as if the were isolated Schwarzschild black 
holes. 


 In this way, even though they are distorted by surrounding matter they do 
not acquire proper hair


We have given a different version of this result  



Deforming a BH from outside

￼U(r, z) = USch(r, z) + UDist(r, z)

The presence of external sources add a new analytic piece to the 
potential. This piece is always finite at the horizon. 


Theorem:  Given a regular gravitational environment, there exists only one 
static, axisymmetric and asymptotically flat geometry containing a black 
hole which is non-singular. Moreover, the horizon of the black hole will 
depart from spherical symmetry (the shape when the environment is 
trivial) in a unique and specific manner that is completely dictated by the 
environment.



Regular gravitational environment

￼∮
γ
ω = ∫

S
dzdr r ∂zU ∇2U = 0

Ring in-plane
Ring out-plane

z = + m

z = - m

z = 0



Black holes vs ultracompact objects



Ultracompact objects

Point-like source 


Ring-like source


Rod-like source

Definition: Objects whose innermost equipotential surface 
(outside the object itself) has a very small value ￼ϵ ≪ 1



Ultracompact objects with sub-Planckian curvatures

￼𝒦 ≤ 𝒦P

Imposing that an ultracompact object does not exhibit Planckian curvatures 
results in constraints on the amount of hair they can have

Sub-Planckian-curvature ultracompact objects need to be massive (with respect 
Planck mass), and in the case of Schwarzschild deformations, very close to spherical. 



Curzon-like collapse and UC objects

￼ϵ = exp (− 2M(0)

R0 ) ￼M(0) = 1
2 R0 | log ϵ |

￼ℛ0

ℓP
≳ exp ( [M(0)]2

2R2
0 ) = exp ( 1

8 | log ϵ |2 )

￼𝒦max ∼ 1
ℛ4

0
exp ( 2[M(0)]2

R2
0 )

￼
R0

ℓP
≳ 1

2
| log ϵ |3/2 exp ( 1

8 | log ϵ |2 )





Conclusions and final remarks
We have cleared up the difference between deforming a black 
hole from inside vs deforming from outside


Black holes react to external deformations but cannot be 
deformed from inside without creating non-regular horizons


Ultracompact objects have to be also quite hairless. Here there 
is no sharp distinction between deformations from the outside 
or from the inside.   



Thanks for your attention


