Simplicity and Universality in (Binary) BH dynamics: an integrability f-Airy tale

(An "asymptotic-reasoning" hierarchical research program)

José Luis Jaramillo

Institut de Mathématiques de Bourgogne (IMB) Université Bourgogne Europe Jose-Luis.Jaramillo-Martin@ube.fr (In collaboration with: J. Besson, B. Krishnan, M. Lenzi, O. Meneses-Rojas C.F. Sopuerta, R. Uribe-Vargas, C. Vitel; ...C. Barceló)

Black Holes and their Symmetries

Institut Denis Poisson, Tours, 2-4 July 2025 < 🖘

Simplicity and Universality in BBH dynamics

Tours, 2-4 July 2025

Scheme

- **1** The problem: simplicity and universality of BBH waveforms
 - Simplicity, universality & 'linearity': hints for an Airy/Painlevé-II BBH model
 - A BBH waveform hierarchical program

Pyperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow"

- Cauchy formulation: isospectrality and Lax pairs
- Hyperboloidal framework: "bulk" and "boundary" sectors
- "Fast DoFs": non-normal hyperboloidal dynamics
- "Slow DoFs": the hyperboloidal "Lax-pair" problem

3 Heuristics of BBH dynamics: an "asymptotic" fAiry tale approach

- Universal diffraction patterns on caustics: from rainbows to Airy
- Universality from integrability: the Painlevé-II thread to BBH dynamics
- A "Wave-Mean Flow" approach: scattering on integrable backgrounds

Perspectives

• • • • • • • • • • • •

Scheme

The problem: simplicity and universality of BBH waveforms

- Simplicity, universality & 'linearity': hints for an Airy/Painlevé-II BBH model
- A BBH waveform hierarchical program
- Hyperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow"
 - Cauchy formulation: isospectrality and Lax pairs
 - Hyperboloidal framework: "bulk" and "boundary" sectors
 - "Fast DoFs": non-normal hyperboloidal dynamics
 - "Slow DoFs": the hyperboloidal "Lax-pair" problem
- B Heuristics of BBH dynamics: an "asymptotic" fAiry tale approach
 - Universal diffraction patterns on caustics: from rainbows to Airy
 - Universality from integrability: the Painlevé-II thread to BBH dynamics
 - A "Wave-Mean Flow" approach: scattering on integrable backgrounds

Perspectives

3/62

• • • • • • • • • • • •

The fundamental Problem

The waveform of a binary black hole system...

æ

Image: A mathematical states and a mathem

The fundamental Problem

The waveform of a binary black hole system...

A B > 4
 B > 4
 B
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The fundamental Problem

The waveform of a binary black hole system...

... is elegant or, rather, boring?

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The fundamental Problem

The waveform of a binary black hole system...

... is elegant or, rather, boring?

Elegant and "intriguing": a possible "key/probe" into the structure of the theory?

- The system behaves more "linearly" than expected [Price & Pullin 94; Baker et al. 02; Buonanno et al. 07, Berti et al. 07; ...; Choquet-Bruhat 69, 08, Touati 23 ("transparency" phenomenon in "WKB" treatmenet of gravity/geometric optics); Frauendiener et al. 25... for me Sopuerta!].
- Simplicity and Universality in the BBH merger waveform.

Quest for properties with some kind of **"structural stability"** for **"universality"**.

Asymptotic reasoning: remove details, unveil patterns...[Batterman 01]

A methodological approach to a given theory (or a regime/layer of the theory):

- Typically in certain limits of a small/large 'asymptotic' parameter.
- Explicitly sacrificing precission and exactness by eliminating details.
- Aiming at making underlying **patterns explicitly apparent** in the appropriate range of the asymptotic parameter.
- Often entailing a gain in the mathematical tractability.

< ロ > < 同 > < 回 > < 回 >

Asymptotic reasoning: remove details, unveil patterns...[Batterman 01]

A methodological approach to a given theory (or a regime/layer of the theory):

- Typically in certain limits of a small/large 'asymptotic' parameter.
- Explicitly sacrificing precission and exactness by eliminating details.
- Aiming at making underlying **patterns explicitly apparent** in the appropriate range of the asymptotic parameter.
- Often entailing a gain in the mathematical tractability.

Remarkable examples

- Renormalization group.
- Semi-classical expansions in ODEs/PDEs (WKB(J), micro-local analysis...)
- "Catastrophe optics": diffraction on caustics.

The Devil in the Details

A (significant) example: the Airy function (solution to $\ddot{u} - tu = 0$)

Airy's series (convergent):

$$\operatorname{Ai}(x) = A\left(1 + \frac{9x+3}{2\cdot 3} + \frac{9^2 x^6}{2\cdot 3\cdot 5\cdot 6} + \frac{9^3 x^9}{2\cdot 3\cdot 5\cdot 6\cdot 8\cdot 9} + \dots\right) + B\left(x + \dots\right)$$

Stokes' series (asymptotic!):

Ai(x) ~
$$\frac{1}{\sqrt{\pi}} \frac{1}{(-x)^{1/4}} \cos\left(\frac{2}{3}(-x)^{3/2} - \frac{\pi}{4}\right) (1 + \dots) \quad (x \to -\infty)$$

Ai(x) ~ $\frac{1}{2\sqrt{\pi}} \frac{1}{x^{1/4}} e^{-\frac{2}{3}x^{3/2}} (1 + \dots) \quad (x \to +\infty)$

Plan

The problem: simplicity and universality of BBH waveforms

- Simplicity, universality & 'linearity': hints for an Airy/Painlevé-II BBH model
- A BBH waveform hierarchical program

Byperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow"

- Cauchy formulation: isospectrality and Lax pairs
- Hyperboloidal framework: "bulk" and "boundary" sectors
- "Fast DoFs": non-normal hyperboloidal dynamics
- "Slow DoFs": the hyperboloidal "Lax-pair" problem
- B Heuristics of BBH dynamics: an "asymptotic" fAiry tale approach
 - Universal diffraction patterns on caustics: from rainbows to Airy
 - Universality from integrability: the Painlevé-II thread to BBH dynamics
 - A "Wave-Mean Flow" approach: scattering on integrable backgrounds

Perspectives

6/62

A model: universal wave patterns in dispersive hydrodyn.

PDE "phase transitions" and universality

Universal wave patterns [e.g. Miller 16]:
 a PDE analogue of universality features in (critical) phase transitions.

Example of the Burgers' equation: "All viscous shocks look the same"

 $\partial_t u + u \partial_x u = 0$

Generates shocks, with discontinuous jumps $\Delta(t)$ in u along x = x(t). Regularization with viscosity term:

$$\partial_t u^\epsilon + u^\epsilon \partial_x u^\epsilon = \epsilon \partial_{xx}^2 u^\epsilon$$

Then, the following limit exists

$$U(y,t) = \lim_{\epsilon \to 0} u^{\epsilon}(x(t) + \epsilon y, t) = \bar{u} - \frac{\Delta(t)}{2} \tanh\left(\frac{y - y_o(t)}{4\Delta(t)^{-1}}\right)$$

All viscous shocks "look the same" and are described by the "universal" special function tanh(x), and this special function is independent of the initial data.

Example of universal wave pattern.

(日) (四) (日) (日) (日)

The problem: simplicity and universality of BBH waveforms Simplicity, universality & 'linearity': hints for an Airy/Painlevé-II BBH model

Special function at the (critical) transition: Airy function BBH merger waveform and Airy direct comparison: ignore ringdown and phase

Problem: assess the BBH merger waveform as a modulated Airy function.

Dynamical transition: from oscillatory to decaying behaviour

 $\ddot{u} - tu = 0$ (Airy equation)

interpolating between oscillation and damped regimes

$$\ddot{u} + \omega^2 u = 0$$
 (oscillatory)
 $\ddot{u} - \omega^2 u = 0$ (exponentially "decaying")

Simplicity, universality & 'linearity': hints for an Airy/Painlevé-II BBH model Special function at the (critical) transition: Airy function Universality in (linear) dispersive wave equations: "All caustics look the same" Universality for arbitrary linear dispersive wave PDEs, for arbitrary initial data, near "caustics" for (appropriate) characteristic lines: described by Airy.

Semiclassical ("WKB") treatment, with small parameter ϵ [e.g. Miller 16]

$$\psi(t,x) \sim \frac{e^{-i\pi/4}}{\sqrt{2\pi\epsilon t}} \int_{-\infty}^{\infty} e^{iI(y;x,t)/\epsilon} \sqrt{\rho_0(y)} dy$$

Stationary points I'(y; x, t) = 0 lead to characteristics (and "caustics") above.

Airy and radiation damped orbital: Painlevé-II Damped orbital motion of charged particle in Coulomb potential [Rajeev 08; O. Lisovyy!]

Landau-Lifshitz equations (in the non-relativistic limit) for a charged particle in a Coulomb potential **solved exactly in terms of the Painlevé-II equation**:

Airy and radiation damped orbital: Painlevé-II Damped orbital motion of charged particle in Coulomb potential [Rajeev 08; O. Lisovyyl]

Landau-Lifshitz equations (in the non-relativistic limit) for a charged particle in a Coulomb potential **solved exactly in terms of the Painlevé-II equation**:

Plan

The problem: simplicity and universality of BBH waveforms
 Simplicity, universality & 'linearity': hints for an Airy/Painlevé-II BBH model
 A BBH waveform hierarchical program

Byperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow"

- Cauchy formulation: isospectrality and Lax pairs
- Hyperboloidal framework: "bulk" and "boundary" sectors
- "Fast DoFs": non-normal hyperboloidal dynamics
- "Slow DoFs": the hyperboloidal "Lax-pair" problem
- B Heuristics of BBH dynamics: an "asymptotic" fAiry tale approach
 - Universal diffraction patterns on caustics: from rainbows to Airy
 - Universality from integrability: the Painlevé-II thread to BBH dynamics
 - A "Wave-Mean Flow" approach: scattering on integrable backgrounds

Perspectives

A bottom-up approach to BBH merger waveforms

"Asymptotic reasoning" and "structural stability"

- **Simplicity: Asymptotic reasoning**. Address qualitive mechanisms underlying simplicity, by filtering overload of details encumbering structural features in "full and exact approaches" [Batterman 01]
- Universality: Structural stability. Aim at accounting for universality features, as stable properties in generic configurations.

A bottom-up approach to BBH merger waveform: Airy as a diffraction caustic

[JLJ, Krishnan 22]

	Asymptotic reasoning simplication	Structural stability realisation
Fold-caustic model	Geometric optics	Arnol'd-Thom's theorem
	(ray physics)	classification of stable caustics
Airy function model	Fresnel's diffraction	Universal difraction patterns
(high frequency)	approximation to wave theory	in caustics
	(diffraction on caustics)	(scaling laws)
Airy function model	turning points ODE models	asymptotic theory
(general case)	(linear case)	of ordinary differential equations
(effective) PDE model	?	?

< ロ > < 同 > < 回 > < 回 >

The problem: simplicity and universality of BBH waveforms A BBH waveform hierarchical program

A bottom-up approach to BBH merger waveform

A bottom-up approach to the BBH merger waveform: beyond Airy to PDEs

Asymptotic BBH Model	Mathematical/Physical Framework	Key Structures/Mechanisms
Fold-caustic model	Geometric Optics	Arnol'd-Thom's Theorem
	Catastrophe (singularity) Theory	Classification of Stable Caustics
Airy function model	Fresnel's Diffraction	Universal Diffraction Patterns
	Semiclassical Theory	in Caustics
	asymptotic ODE theory	linear ODE turning points
Painlevé-II model	Painlevé Transcendents	Painlevé property
	and Integrability	
	Self-force calculations and EMRBs	Non-linear Turning Points
KdV-like model	Inverse Scattering Transform	Painlevé test, Lax pairs
	and Integrability	Darboux transformations
	Dispersive Non-linear PDEs	Soliton Scattering
	Critical Phenomena	Universal Wave Patterns
	in Dispersive PDEs	Dubrovin's Conjecture
Propagation models on	Ward's Conjecture	(anti-)Self-Dual DoF
(anti)-Self-Dual	and Integrability	Instantons, Tunneling
backgrounds	Twistorial techniques	Penrose Transform, 'Twistor' BBH data

• • • • • • • • • • • •

The problem: simplicity and universality of BBH waveforms A BBH waveform hierarchical program

A bottom-up approach to BBH merger waveform

A bottom-up approach to the BBH merger waveform: beyond Airy to PDEs

Asymptotic BBH Model	Mathematical/Physical Framework	Key Structures/Mechanisms
Fold-caustic model	Geometric Optics	Arnol'd-Thom's Theorem
	Catastrophe (singularity) Theory	Classification of Stable Caustics
Airy function model	Fresnel's Diffraction	Universal Diffraction Patterns
	Semiclassical Theory	in Caustics
	asymptotic ODE theory	linear ODE turning points
Painlevé-II model	Painlevé Transcendents	Painlevé property
	and Integrability	
	Self-force calculations and EMRBs	Non-linear Turning Points
KdV-like model	Inverse Scattering Transform	Painlevé test, Lax pairs
	and Integrability	Darboux transformations
	Dispersive Non-linear PDEs	Soliton Scattering
	Critical Phenomena	Universal Wave Patterns
	in Dispersive PDEs	Dubrovin's Conjecture
Propagation models on	Ward's Conjecture	(anti-)Self-Dual DoF
(anti)-Self-Dual	and Integrability	Instantons, Tunneling
backgrounds	Twistorial techniques	Penrose Transform, 'Twistor' BBH data

The hierarchical BBH program: a "Wittgenstein's ladder" [JLJ, Krishnan & Sopuerta 23]

Resulting proposal: **"Wave-Mean Flow"** approach with "fast" degrees of freedom (DoF) **"linearly"** propagating/interacting on a "slow" degrees of freedom **integrable** background.

José Luis Jaramillo

Simplicity and Universality in BBH dynamics

Scheme

The problem: simplicity and universality of BBH waveforms

- Simplicity, universality & 'linearity': hints for an Airy/Painlevé-II BBH model
- A BBH waveform hierarchical program

Pyperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow"

- Cauchy formulation: isospectrality and Lax pairs
- Hyperboloidal framework: "bulk" and "boundary" sectors
- "Fast DoFs": non-normal hyperboloidal dynamics
- "Slow DoFs": the hyperboloidal "Lax-pair" problem

B Heuristics of BBH dynamics: an "asymptotic" fAiry tale approach

- Universal diffraction patterns on caustics: from rainbows to Airy
- Universality from integrability: the Painlevé-II thread to BBH dynamics
- A "Wave-Mean Flow" approach: scattering on integrable backgrounds

Perspectives

13/62

• • • • • • • • • • • • • •

Plan

The problem: simplicity and universality of BBH waveforms

- Simplicity, universality & 'linearity': hints for an Airy/Painlevé-II BBH model
- A BBH waveform hierarchical program

2 Hyperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow"

- Cauchy formulation: isospectrality and Lax pairs
- Hyperboloidal framework: "bulk" and "boundary" sectors
- "Fast DoFs": non-normal hyperboloidal dynamics
- "Slow DoFs": the hyperboloidal "Lax-pair" problem
- B Heuristics of BBH dynamics: an "asymptotic" fAiry tale approach
 - Universal diffraction patterns on caustics: from rainbows to Airy
 - Universality from integrability: the Painlevé-II thread to BBH dynamics
 - A "Wave-Mean Flow" approach: scattering on integrable backgrounds

Perspectives

14/62

"Integrability": Lax-pairs and late scattering

"Hidden symmetries" in Schwarzschild: Darboux covariance and KdV

- "Vertical" QNM Isospectrality, between axial/polar modes: Darboux transformations, role of algebraically special QNMs [Chandrasekhar & Detweiler 75, Chandrasekhar 83; ...; Glampedakis, Johnson & Kennefick 17, ; Lenzi & Sopuerta 21]
- "Horizontal" QNM Isospectrality, along each axial/polar branch: Schrödinger equation and KdV conserved charges [Chandrasekhar; IST theory...; Lenzi & Sopuerta 21]
- Lax pair, Virasoro underlying bulk symmetry, infinite PDE hierarchy...

[...; Semenov-Tian-Shansky, JLJ, Lenzi & Sopuerta 24]

Hyperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow" Cauchy formulation: isospectrality and Lax pairs

"Integrability": Lax-pairs and late scattering

Quasi-Normal Mode (QNM) ("formal") spectral problem

From equations on master functions Ψ , QNMs satisfy the spectral problem (under outgoing boundary condition) for the "Schrödinger" operator $\mathcal{L} = (\partial_x^2 - V)$:

$$\left(-\partial_t^2 + \partial_x^2 - V\right)\Psi = 0 \implies \mathcal{L}\Psi = \left(\partial_x^2 - V\right)\Psi = -\omega^2\Psi$$

Korteweg-de Vries (KdV) and QNM isospectrality

Deform V and Ψ according to:

$$\partial_{\sigma}V - 6V\partial_{x}V + \partial_{x}^{3}V = KdV[V] = 0$$
$$\partial_{\sigma}\Psi = \left(-4\partial_{x}^{3} + 6V\partial_{x} + 3V_{,x}\right)\Psi = P\Psi$$

 \mathcal{L} and P form a "Lax pair": isospectrality (and integrability)

$$\partial_{\sigma} \mathcal{L} - [P, \mathcal{L}] = -\mathrm{KdV}[V] \cdot \mathrm{Id} = 0$$
$$\partial_{\sigma} \mathcal{L} = [P, \mathcal{L}] \qquad \text{(Lax pair equation)}$$

Plan

- Simplicity, universality & 'linearity': hints for an Airy/Painlevé-II BBH model
- A BBH waveform hierarchical program

Provide the second s

- Cauchy formulation: isospectrality and Lax pairs
- Hyperboloidal framework: "bulk" and "boundary" sectors
- "Fast DoFs": non-normal hyperboloidal dynamics
- "Slow DoFs": the hyperboloidal "Lax-pair" problem
- - Universal diffraction patterns on caustics: from rainbows to Airy
 - Universality from integrability: the Painlevé-II thread to BBH dynamics
 - A "Wave-Mean Flow" approach: scattering on integrable backgrounds

Hyperboloidal slices: geometric outgoing BCs at *#*⁺

Hyperboloidal approach to QNMs

- **Spectral problem**: homogeneous wave equation with purely outgoing boundary conditions.
- Outgoing BCs naturally imposed at \mathscr{I}^+ .
- Outgoing BCs actually "incorporated" at *I*⁺:
 - Geometrically: null cones outgoing.
 - Analytically: BCs encoded into a singular operator, "BCs as regularity conditions".
- Eigenfunctions do not diverge when x → ∞: actually integrable. Key to Hilbert space.

Hyperboloidal slices: geometric outgoing BCs at \mathscr{I}^+

Hyperboloidal approach to QNMs

- B. Schmidt [Schmidt 93; cf. also Friedman & Schutz 75]
- Analysis in the conformally compactified picture ۲ [Friedrich; Frauendiener,...]. Micro. Analysis [Vasy 13]
- Framework for BH perturbations [Zenginoglu 11]. ۲
- QNMs of asymp. AdS spacetimes [Warnick 15]. ۲
- QNM definition as operator eigenvalues [Bizoń...; Bizoń, Chmaj & Mach 20].
- Schwarzschild QNMs [Ansorg & Macedo 16]. (cf. ۲ also Reissner-Nordström [Macedo, JLJ, Ansorg 18]).
- "Gevrey" [Gajic & Warnick 20; Galkowski & Zworski 21].

Hyperboloidal slices: geometric outgoing BCs at \mathscr{I}^+

Hyperboloidal approach to QNMs

- B. Schmidt [Schmidt 93; cf. also Friedman & Schutz 75] ۲
- Analysis in the conformally compactified picture ۲ [Friedrich; Frauendiener,...]. Micro. Analysis [Vasy 13]
- Framework for BH perturbations [Zenginoglu 11]. ۲
- QNMs of asymp. AdS spacetimes [Warnick 15]. ۲
- QNM definition as operator eigenvalues [Bizoń ...; Bizoń, Chmaj & Mach 20].
- Schwarzschild QNMs [Ansorg & Macedo 16]. (cf. ۲ also Reissner-Nordström [Macedo, JLJ, Ansorg 18]).
- "Gevrey" [Gajic & Warnick 20; Galkowski & Zworski 21].

< □ > < 同 >

Hyperboloidal slices: geometric outgoing BCs at \mathscr{I}^+

BH QNM instability: Spacetime asymptotics

- Asymptotically flat [L. Al Sheikh Ph.D thesis 22] [JLJ, R. P. Macedo, L. Al Sheikh 21; E. Gasperin, JLJ 22; ...; K. Destounis et al 21; V. Boyanov et al 22; JLJ 22].
- Asymptotically de Sitter [S. Sarkar, M. Rahman, S. Chakraborty 23; JLJ, R. P. Macedo, L. Al Sheikh 21]
- Asymptotically Anti-de Sitter
 - Hyperboloidal slicing

[D. Areán, D. García-Fariña, K. Landsteiner 23]

Null slicing

[B. Cownden, C. Pantelidou, M. Zilhão 23].

• Structural assessments [V. Boyanov et al 23].

Hyperboloidal slices: geometric outgoing BCs at \mathscr{I}^+

BH QNM instability: Spacetime asymptotics

- Asymptotically flat [L. Al Sheikh Ph.D thesis 22] [JLJ, R. P. Macedo, L. Al Sheikh 21; E. Gasperin, JLJ 22; ...; K. Destounis et al 21; V. Boyanov et al 22; JLJ 22].
- Asymptotically de Sitter [S. Sarkar, M. Rahman, S. Chakraborty 23; JLJ, R. P. Macedo, L. Al Sheikh 21]
- Asymptotically Anti-de Sitter
 - Hyperboloidal slicing [D. Areán, D. García-Fariña, K. Landsteiner 23] Null slicing [B. Cownden, C. Pantelidou, M. Zilhão 23]. • Structural assessments [V. Boyanov et al 23].

1. Wave problem in spherically symmetric asymptotically flat case

As starting point, consider the problem for a $\phi_{\ell m}$ mode in tortoise coordinates:

$$\left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial r_*^2} + V_\ell\right)\phi_{\ell m} = 0 \quad , \quad t \in]-\infty, \infty[\ , \ r^* \in]-\infty, \infty[$$

QNM: (spherically symm.) "general case" [JLJ, Macedo, AI Sheikh 21]

Starting point: (scalar) wave equation in "tortoise" coordinates

On a stationary spatime (with timelike Killing ∂_t):

$$\left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial r_*^2} + V_\ell\right)\phi_{\ell m} = 0 \ ,$$

Dimensionless coordinates: $\bar{t} = t/\lambda$ and $\bar{x} = r_*/\lambda$ (and $\bar{V}_{\ell} = \lambda^2 V_{\ell}$),

Hyporboloidal approach

$$\begin{cases} \bar{t} = \tau - h(x) \\ \bar{x} = f(x) \end{cases}$$

- h(x): implements the hyperboloidal slicing, i.e. τ = const. is a horizon-penetrating hyperboloidal slice Σ_τ intersecting future *I*⁺.
- f(x): spatial compactification between $\bar{x} \in [-\infty, \infty]$ to [a, b].
- Timelike Killing: $\lambda \partial_t = \partial_{\overline{t}} = \partial_{\tau}$.

QNM: (spherically symm.) "general case" [JLJ, Macedo, AI Sheikh 21]

First-order reduction: $\psi_{\ell m} = \partial_{\tau} \phi_{\ell m}$

$$\partial_{\tau} u_{\ell m} = iLu_{\ell m}$$
 , with $u_{\ell m} = \begin{pmatrix} \phi_{\ell m} \\ \psi_{\ell m} \end{pmatrix}$

where

$$L = \frac{1}{i} \left(\begin{array}{c|c} 0 & 1 \\ \hline L_1 & L_2 \end{array} \right)$$

 $L_{1} = \frac{1}{w(x)} \left(\partial_{x} \left(p(x)\partial_{x}\right) - q(x)\right) \quad \text{(Sturm-Liouville operator)}$ $L_{2} = \frac{1}{w(x)} \left(2\gamma(x)\partial_{x} + \partial_{x}\gamma(x)\right) = \frac{1}{w(x)} \left(\gamma(x)\partial_{x} + \partial_{x}(\gamma(x)\cdot)\right)$

with
$$w(x) = \frac{f'^2 - h'^2}{|f'|} > 0$$
 , $p(x) = \frac{1}{|f'|}$, $q(x) = |f'| V_\ell$, $\gamma(x) = \frac{h'}{|f'|}$.

Hyperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow" Hyperboloidal framework: "bulk" and "boundary" sectors
QNM: (spherically symm.) "general case" [JLJ, Macedo, Al Sheikh 21]
Spectral problem

Taking Fourier transform, dropping (ℓ, m) (convention $u(\tau, x) \sim u(x)e^{i\omega\tau}$):

 $L v_n = \omega_n v_n$.

with v_n the "right-eigenvectors", where

$$L = \frac{1}{i} \left(\begin{array}{c|c} 0 & 1 \\ \hline L_1 & L_2 \end{array} \right)$$

 $L_{1} = \frac{1}{w(x)} \left(\partial_{x} \left(p(x) \partial_{x} \right) - q(x) \right)$ (Sturm-Liouville operator) $L_{2} = \frac{1}{w(x)} \left(2\gamma(x) \partial_{x} + \partial_{x} \gamma(x) \right)$

Hyperboloidal approach: No boundary conditions

It holds p(a) = p(b) = 0, L_1 is "singular": **BCs "in-built"** in L.

José Luis Jaramillo

Simplicity and Universality in BBH dynamics

Hyperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow" Hyperboloidal framework: "bulk" and "boundary" sectors QNM: (spherically symm.) "general case" [JLJ, Macedo, Al Sheikh 21]

A "natural" scalar product: initial value problem and physical content

Natural scalar product (where $ilde{V}_\ell := q(x) > 0$):

$$\langle u_1, u_2 \rangle_E = \frac{1}{2} \int_a^b \left(w(x) \bar{\psi}_1 \psi_2 + p(x) \partial_x \bar{\phi}_1 \partial_x \phi_2 + \tilde{V}_\ell \bar{\phi}_1 \phi_2 \right) dx ,$$

associted with the "total energy" of ϕ on Σ_t , defining the "energy norm"

$$||u||_{E}^{2} = \langle u, u \rangle_{E} = \int_{\Sigma_{\tau}} T_{ab}(\phi, \partial_{\tau}\phi) t^{a} n^{b} d\Sigma_{\tau} ,$$

Spectral problem of a non-selfadjoint operator

- Full operator *L*: not selfadjoint.
- L_2 : dissipative term encoding the energy leaking at \mathscr{I}^+ .

• Energy flux at
$$\mathscr{I}^+$$
: $F(\tau) = \int_{\mathcal{S}^{\mathcal{H}}} \gamma |\partial_\tau \phi|^2 dS + \int_{\mathcal{S}^{\infty}} \gamma |\partial_\tau \phi|^2 dS$

L selfadioint in the non-dissipative $L_2 = 0$ case. José Luis Jaramillo

QNM: (spherically symm.) "general case" [JLJ, Macedo, Al Sheikh 21]

Adjoint operator

$$L^{\dagger} = \frac{1}{i} \left(\begin{array}{c|c} 0 & 1 \\ \hline L_1 & L_2 + L_2^{\partial} \end{array} \right)$$

where

$$L_2^{\partial} = 2\frac{\gamma}{w} \bigg(\delta(x-a) - \delta(x-b) \bigg)$$

Loss of "self-adjointness" happens at the boundaries (as expected)

Loss of "self-adjointness": an "infrared" phenomenon

 "Ultraviolet" QNM overtone instability connected with a essentially asymptotic ("infrared") structure.

"Missing degrees of freedom and asymptotic symmetries".

< ロ > < 同 > < 回 > < 回 >
Black Hole QNM spectral instability

Schwarzschild ($s = 2, \ell = 2$):

Spectral QNM overtone instability

Low regularity phenomenon, need to control high-derivatives: Sobolev H^p spaces

Towards a geometric description of QNMs

Compactified hyperboloidal slicing: geometric data

- i) Choose a slicing $\{S^{\infty}_{\tau}\}$ of \mathscr{I}^+ . Given the generator k^a along \mathscr{I}^+ consider, at each slice S^{∞}_{τ} , the only null normal ℓ^a to S^{∞}_{τ} satisfying $k^a \ell_a = -1$. Repeat on the BH horizon.
- ii) Choose a function γ on null infinity sections S_{τ}^{∞} (respectively, also a function γ on $\mathcal{S}^{\mathcal{H}}_{\tau}$ in BH spacetimes) and consider the null vector $\gamma^a = \gamma \ell^a$, outgoing from M.

Repeat on the BH horizon.

- iii) Extend the vector γ^a arbitrarily to the bulk (under appropriate conditions).
- iv) Slices Σ_{τ} in $\tilde{\mathcal{M}}$ are compact manifolds with boundary, with boundaries given by spheres.
- v) Resulting data:

 $(\{\Sigma_{\tau}\}, \gamma_{ab}, K_{ab}, w; \{\mathcal{S}_{\tau}^{\infty}\}, \{\mathcal{S}_{\tau}^{\mathcal{H}}\}, \boldsymbol{\gamma})$

20 / 62

Bulk and Boundary algebraic-structures separation

Evolution equations

$$\partial_{\tau} u = iLu$$
, $u = \begin{pmatrix} \phi \\ \psi = \partial_{\tau} \phi \end{pmatrix}$, $L = \frac{1}{i} \begin{pmatrix} 0 & 1 \\ L_1 & L_2 \end{pmatrix}$

$$L_1 = \frac{1}{w} \left(\tilde{\Delta} - \tilde{V}(x) \right), \qquad L_2 = \frac{1}{w} \left(2\gamma \cdot \tilde{D} + \tilde{D} \cdot \gamma \right)$$

Bulk + Boundary separation

• L_1 controls de "bulk" degree of freedom V. QNM-isospectral (adiabatic?) deformations of V [JLJ, Lenzi & Sopuerta 24:

KdV - Virasoro - Schwarzian derivative

• L_2 controls the boundary, where the energy leaking happens.

21/62

The adjoint operator and adjoint spectral problem

Adjoint infinitesimal evolution operator

$$L^{\dagger} = L + L^{\partial}$$
, $L^{\partial} = \frac{1}{i} \left(\begin{array}{c|c} 0 & 0 \\ \hline 0 & L_2^{\partial} \end{array} \right)$

$$L_2^{\partial} = -2 rac{\gamma^a k_a}{w} \left(\delta_{S^{\mathcal{H}}} - \delta_{S^{\infty}}
ight) = -2 rac{(\gamma k^a) \ell_a}{w} \left(\delta_{S^{\mathcal{H}}} - \delta_{S^{\infty}}
ight)$$

Adjoint eigenvalue problem ("left-eigenvectors")

Note that the spectral problem can be (and must be) written also in terms of the adjoint L^{\dagger}

$$L^{\dagger} \, \alpha_n = \bar{\omega}_n \, \, \alpha_n$$

Missing degrees of freedom and BMS symmetry

Non-selfadjointness and missing degrees of freedom

- Non-selfadjointness in dynamical problems generically reflects that some degrees of freedom are missing or are being lost: the system is not isolated or is part of a larger system, leading to non-conservative dynamics.
- To cast such systems in terms of a selfadjoint problem, one must "complete" the system by adding an appropriate set of degrees of freedom.

How could we render our BH perturbation problem selfadjoint?

- In our scattering case, degrees of freedom flow to infinity and through the BH horizon.
- Consider adding formal degrees of freedom at future null infinity \mathscr{I}^+ and at the BH horizon \mathcal{H} , in such a way that they account for the degrees of freedom and energy leaving the system.
- Placing "Geiger counters" at the infinite and horizon boundaries, such that the total number of degrees of freedom is conserved.

< □ > < □ > < □ > < □ > < □ >

Hyperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow" Hyperboloidal framework: "bulk" and "boundary" sectors

Coupling boundary and bulk degrees of freedom

Being anchored to the boundary, such boundary degrees of freedom would be non-propagating ones (in the bulk)

• Flux at boundaries:

$$F(\tau) = \int_{\mathcal{S}^{\mathcal{H}}} \gamma |\partial_{\tau}\phi|^2 dS + \int_{\mathcal{S}^{\infty}} \gamma |\partial_{\tau}\phi|^2 dS$$

Bondi-Sachs flux of energy-momentum at null infinity if: i) γ is built from the $\ell = 0, 1$ spherical harmonics and ii) we identify $\partial_{\tau} \phi$ as a news function \mathcal{N} .

• Here, γ arbitrary function on $\mathcal{S}_{\tau}^{\infty}$: supertranslation in the asymptotic BMS group.

$$\xi^a = \gamma k^a \quad , \quad \mathcal{L}_k \gamma = 0$$

corresponds to a supertranslation in the asymptotic BMS group.

• Flux term (arbitrary $\gamma(x)$) ["Coupling" action: BCs as action boundary terms (Roberto!!!]:

$$H_{\xi} = \int_{\mathscr{I}^+} \left(\gamma \partial_{\tau} \phi \partial_{\tau} \phi + \gamma \partial_{\tau} \phi + \partial_{\tau} \phi \Delta_{\mathcal{S}^{\infty}} \gamma \right) d\tau dS$$

corresponding to the BMS supertranslation ξ^a and generating symplectomorphisms in the (appropriate) phase space of degrees of freedom that "live on the boundary".

losé Luis Jaramillo

Missing degrees of freedom and BMS symmetries

A "heuristic" proposal

Missing degrees of freedom can be encoded in BMS supertranslation degrees of freedom:

- i) BMS supertranslations ξ^a would stand as a dynamical symmetry, acting on (and generating) the phase space of degrees of freedom on the **boundary** (the "clicks" in the Geiger counter analogy), with γ a degree of freedom living on the null boundaries.
- ii) The whole geometric construction starts from the **choice of slicing of null** boundaries. This is arbitrary, but all choices are related by an appropriate **BMS** supertranslation.
- iii) The set of degrees of freedom (ϕ, γ) would be complete. By this we mean that, as ϕ flows away, degrees of freedom γ are "activated" through a coupling controlled by the Hamiltonian (1), so a total energy of the type $E_{o} = E(\phi, \psi) + H_{\varepsilon}$ would be conserved.

イロト イヨト イヨト

Missing degrees of freedom and BMS symmetries

"Hopes":

• From the perspective of the extended space of degrees of freedom (ϕ, γ) , one could gain insight into the observed instability of BH QNMs.

Paraphrasing this in terms of inverse scattering theory: additional BMS degrees of freedom could provide necessary additional data at the **boundaries** —complementary to (transmission and) reflection coefficients and (possible) bound energy levels— needed to determine the scattering potential [cf. Ashtekar's "Gravitational Wave Tomography"].

- Conservative formulation of the dynamics can be constructed in the extended space of degrees of freedom (ϕ, γ) , then a notion of **global spacetime** normal modes, as eigenfunctions of the time evolution generator, could be envisaged. This could be of interest both from a phenomenological and from a fundamental (quantization) perspective.
- Role of "metriplectic (Leibniz) structures" in geometry of dissipative systems? [Kabel & Wieland 22, Wieland 24...].

Plan

- Simplicity, universality & 'linearity': hints for an Airy/Painlevé-II BBH model
- A BBH waveform hierarchical program

Provide the second s

- Cauchy formulation: isospectrality and Lax pairs
- Hyperboloidal framework: "bulk" and "boundary" sectors
- "Fast DoFs": non-normal hyperboloidal dynamics
- "Slow DoFs": the hyperboloidal "Lax-pair" problem
- - Universal diffraction patterns on caustics: from rainbows to Airy
 - Universality from integrability: the Painlevé-II thread to BBH dynamics
 - A "Wave-Mean Flow" approach: scattering on integrable backgrounds

Non-normal dynamics

Hyperboloidal (linear) evolution problem

$$\left[\begin{array}{l} \partial_\tau u = iLu \ , \\ u(\tau=0,x) = u_0(x) \ , \ ||u_0|| < \infty \ , \end{array} \right.$$

Non-normal dynamics: non-modal analysis

$$[L,L^\dagger] \neq 0$$

- No spectral theorem: no "normal modes" (no Hilbert basis).
- Eigenfunctions of *L* non-orthornormal.
- Non-modal (linear) transient growths.
- Tools such as the ϵ -Pseudospectrum, essentially the norm of resolvent $||R_L(\omega)||$, and the Growth function $G(\tau)$.

• • • • • • • • • • • •

Hyperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow"

"Fast DoFs": non-normal hyperboloidal dynamics

Pseudospectrum and non-modal analysis

Growth factor $G(t) = ||e^{itL}||$ and pseudospectrum (eg. Poiseuille flow [Schmid 07])

Growth function $G(\tau)$: maximum possible amplification

$$G(\tau) = \sup_{u_0 \neq 0} \frac{||u(\tau)||}{||u_0||} = \sup_{u_0 \neq 0} \frac{||e^{i\tau L}u_0||}{||u_0||} = ||e^{i\tau L}||$$

Optimal excitation u_0 : eigenfunction of the maximum (generalised) eigenvalue in the Singular Value Decomposition (eigenfunction of the $\max \sigma[(e^{i\tau L})^{\dagger}e^{i\tau L})]$.

José Luis Jaramillo

28 / 62

Pseudospectrum and non-modal analysis Beyond spectral analysis: some elements

- QNM spectrum $\sigma(L)$: possibility of spectral instabilities.
- Numerical range W(L) and numerical abscisa $\omega(L)$ -

$$W(L) = \{ \langle u, Lu \rangle, \text{with } ||u|| = 1, u \in H \}$$

$$\omega(L) = \sup \operatorname{Im}(W(L))$$

$$\omega(L) = \frac{d}{dt} ||e^{tL}||\Big|_{t=0}$$

• Intermediate/maximum transient, Kreiss constant $\mathcal{K}(L)$:

$$\sup_{t \ge 0} G(t) = \sup_{t \ge 0} ||e^{tL}|| \ge \mathcal{K}(L)$$
$$\mathcal{K}(L) = \sup_{\mathrm{Im}(z) > 0} \{|\mathrm{Im}(z)| \cdot ||(L - zI)^{-1}||\}$$

• Pseudo-resonances:

$$R_{\max}(\omega) = \sup_{s \neq 0} \frac{||u^{(2)}||}{||s||} = e^{-\operatorname{Im}(\omega)\tau} ||R_L(\omega)||$$

Hyperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow" "Fast DoFs": non-normal hyperboloidal dynamics

Pseudospectrum and non-modal analysis

Growth factor $G(t) = ||e^{itL}||$ and pseudospectrum (eg. Poiseuille flow [Schmid 07])

Spectral instability, Transients and Pseudoresonances [Trefethen et al. 93, Tref. & Embrée 05, ...]

- Late times: QNM spectrum $\sigma(L)$.
- **Transients** (no source, $u^{(1)}$): consequence of non-orthogonality of QNMs.
 - Initial times: numerical range W(L) and spectral abscisa $\omega(L)$.
 - Intermediate/maximum: pseudospectrum $\sigma_{\epsilon}(L)$ and Kreiss constant $\mathcal{K}(L)$.

[JLJ 22, Boyanov, Destounis et al. 23, J. Carballo & B. Withers: Transient dynamics of QNM sums, 24, J.-N. Chen,L.-B. Wu & Z.-K. Guo 24, Besson et al (in prep.) 24; cf. J. Redondo-Yuste's talk]

Pseudo-resonances (source present, $u^{(2)}$): $R_{\max}(\omega)$ (with $\omega \in \text{Re}(\omega)$).

José Luis Jaramillo

Hyperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow" "Fast DoFs": non-normal hyperboloidal dynamics

Keldysh QNM decomposition [Besson & JLJ 25]

Dual spectral problems: vectors and covectors

$$Lv_n = \omega_n v_n$$
, $L^t \alpha_n = \omega_n \alpha_n$, $v_n \in \mathcal{H}, \alpha_n \in \mathcal{H}^*$

If a scalar product available: spectral and adjoint spectral problem

$$L\hat{v}_n = \omega_n \hat{v}_n$$
 , $L^{\dagger} \hat{w}_n = \overline{\omega}_n \hat{w}_n$, $\hat{v}_n, \hat{w}_n \in \mathcal{H}$

Keldysh expansion [Besson & JLJ 25]

$$\begin{split} u(\tau, x) &= \sum_{n=0}^{N_{\text{QNM}}} e^{i\omega_n \tau} \langle \alpha_n, u_0 \rangle v_n(x) + E_{N_{\text{QNM}}}(\tau; u_0) \\ &= \sum_{n=0}^{N_{\text{QNM}}} e^{i\omega_n \tau} \kappa_n \langle \hat{w}_n, u_0 \rangle_G \hat{v}_n(x) + E_{N_{\text{QNM}}}(\tau; u_0) \\ \text{with} & ||E_{N_{\text{QNM}}}(\tau; u_0)|| \le C(N_{\text{QNM}}, L) e^{-a_{N_{\text{QNM}}} \tau} ||u_0|| \end{split}$$

Keldysh QNM decomposition [Besson & JLJ 25]

Keldysh QNM decomposition [Besson & JLJ 25]

イロト イヨト イヨト イヨ

æ

Non-normal transient growths and distributions [Besson & JLJ 25]

Hyperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow" "Fast DoFs": non-normal hyperboloidal dynamics

Non-normal transient growths and distributions [Besson & JLJ 25]

H^p growth transients: distributions at large p

$$\begin{array}{ccc} \tau_{\max} \sim \frac{1}{p} & , & G_{\max} \sim p \\ \text{In the limit } p \rightarrow \infty : & & \\ & & \\ & & \\ & & \\ Distributional (in time) 'impulsive disturbance': key in "response function" in linear response theory. \end{array}$$

José Luis Jaramillo

Simplicity and Universality in BBH dynamics

Optimal initial data

Hyperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow" "Fast DoFs": non-normal hyperboloidal dynamics

Co-modes \hat{w}_n of L^{\dagger} : disctributions peaked at the boundary

José Luis Jaramillo

Simplicity and Universality in BBH dynamics

Tours, 2-4 July 2025

32 / 62

Main message to retain: role of "co-modes" and "dual spectral problem" for L^{\dagger}

Relevance of distributions, dual space, in the hyperboloidal scattering problem

- For the study of purely dynamical features of the "fast" DoF it is crucial to take into account "distributional functions" in the dual space.
- Relevant objects with $\delta(t t_o)$ and $\delta(x x_o)$ structure: distributional structure peaked at the integration boundary.
- This will impact the guideline in the Lax pair problem.

Algebraically special QNM

More to be said (next time) concerning:

- Relation to Darboux generating function between axial/polar modes.
- Evolution by m-KdV.
- Keldysh decomposition and role in premerger dynamics.

33 / 62

(日) (四) (日) (日) (日)

Plan

- Simplicity, universality & 'linearity': hints for an Airy/Painlevé-II BBH model
- A BBH waveform hierarchical program

Provide the second s

- Cauchy formulation: isospectrality and Lax pairs
- Hyperboloidal framework: "bulk" and "boundary" sectors
- "Fast DoFs": non-normal hyperboloidal dynamics
- "Slow DoFs": the hyperboloidal "Lax-pair" problem
- - Universal diffraction patterns on caustics: from rainbows to Airy
 - Universality from integrability: the Painlevé-II thread to BBH dynamics
 - A "Wave-Mean Flow" approach: scattering on integrable backgrounds

Hyperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow"

"Slow DoFs": the hyperboloidal "Lax-pair" problem

The hyperboloidal "Lax-pair" problem [ongoing work C. Vitel 25]

The problem

Find a Lax pair P for the non-selfadoint generator L:

 $\partial_{\sigma}L = [P, L]$

(日) (四) (日) (日) (日)

The hyperboloidal "Lax-pair" problem [ongoing work C. Vitel 25]

The problem

Find a Lax pair P for the non-selfadoint generator L:

 $\partial_{\sigma}L = [P, L]$

Aiming at integrable dynamics:

- KdV-like dynamics for bulk V.
- Dynamics for boundary γ .
- Dynamics on extra fields...?
- Algebraic (symmetry) structures in the bulk and boundary, semidirect action of the bulk of the boundary:

 $Sym = Sym_{Bulk} \otimes_{s} Sym_{Boundary}$

< ロ > < 同 > < 回 > < 回 >

The hyperboloidal "Lax-pair" problem [ongoing work C. Vitel 25]

The problem

Find a Lax pair P for the non-selfadoint generator L:

 $\partial_{\sigma}L = [P, L]$

Aiming at integrable dynamics:

- KdV-like dynamics for bulk V.
- Dynamics for boundary γ .
- Dynamics on extra fields...?
- Algebraic (symmetry) structures in the bulk and boundary, semidirect action of the bulk of the boundary:

 $Sym = Sym_{Bulk} \otimes_{\varsigma} Sym_{Boundary}$

The (alternative) equivalent adjoint Lax-pair problem

Find a Lax pair \vec{P} for the non-selfadoint generator L^{\dagger} :

$$\partial_{\sigma}L^{\dagger} = [\tilde{P}, L^{\dagger}]$$

The hyperboloidal "Lax-pair" problem [ongoing work C. Vitel 25]

The problem

Find a Lax pair P for the non-selfadoint generator L:

 $\partial_{\sigma}L = [P, L]$

Note "resonances" with other appaoches [Marios Petropoulos, Wolfgang Wieland]:

- Search for (radiative) dynamics on the boundary: fields & conjugate momenta (phase space).
- (Finite) radiative sector, (Infinite) flat sector: Wave-Mean Flow.
- Integrability sector (link to electric-magnetic duality).

The (alternative) equivalent adjoint Lax-pair problem

Find a Lax pair \vec{P} for the non-selfadoint generator L^{\dagger} : $\partial_{\sigma}L^{\dagger} = [\tilde{P}, L^{\dagger}]$

Lax pair and hyperboloidal function flows [C. vite]

"Weak" adjoint Lax-pair problem: hierarchy of deformations [Vitel 25]

Defining a (integrated) weak spectral problem from $\partial_{\sigma}L^{\dagger} = [\tilde{P}, L^{\dagger}]$, and introducing

$$u_0=- ilde V$$
, $u_1=-\gamma_{,\xi}$, $u_2=\gamma^2-1$

the resulting Lax-pair equation is equivalent to the hierarchy [Antonowicz & Fordy 89] of equations

$$\begin{cases} u_{2,\sigma_m} = J_0 P_{m-2} + J_1 P_{m-1} + J_2 P_m \\ u_{1,\sigma_m} = J_0 P_{m-1} + J_1 P_m \\ u_{0,\sigma_m} = J_0 P_m \end{cases}$$

where $J_0P_{k-2} + J_1P_{k-1} + J_2P_k = 0$ and the J_k are known.

Integrable hierarchy on V, γ and $\partial_x \gamma$ [Vitel 25]

- For m = 1: KdV for V and flow for γ and $\partial_x \gamma$.
- Zero-curvature formulation.

Scheme

The problem: simplicity and universality of BBH waveforms
 Simplicity, universality & 'linearity': hints for an Airy/Painlevé-II BBH model
 A BBH waveform biorarchisal program

• A BBH waveform hierarchical program

Hyperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow"

- Cauchy formulation: isospectrality and Lax pairs
- Hyperboloidal framework: "bulk" and "boundary" sectors
- "Fast DoFs": non-normal hyperboloidal dynamics
- "Slow DoFs": the hyperboloidal "Lax-pair" problem

B Heuristics of BBH dynamics: an "asymptotic" fAiry tale approach

- Universal diffraction patterns on caustics: from rainbows to Airy
- Universality from integrability: the Painlevé-II thread to BBH dynamics
- A "Wave-Mean Flow" approach: scattering on integrable backgrounds

Perspectives

37 / 62

An "asymptotic-reasoning" hierarchical research program

A bottom-up approach to the BBH merger waveform [JLJ, Krishnan & Sopuerta 22, 23]

Asymptotic BBH Model	Mathematical/Physical Framework	Key Structures/Mechanisms
Fold-caustic model	Geometric Optics	Arnol'd-Thom's Theorem
	Catastrophe (singularity) Theory	Classification of Stable Caustics
Airy function model	Fresnel's Diffraction	Universal Diffraction Patterns
	Semiclassical Theory	in Caustics
	asymptotic ODE theory	linear ODE turning points
Painlevé-II model	Painlevé Transcendents	Painlevé property
	and Integrability	
	Self-force calculations and EMRBs	Non-linear Turning Points
KdV-like model	Inverse Scattering Transform	Painlevé test, Lax pairs
	and Integrability	Darboux transformations
	Dispersive Non-linear PDEs	Soliton Scattering, "Soliton Resolution"
	Critical Phenomena	Universal Wave Patterns
	in Dispersive PDEs	Dubrovin's Conjecture
Propagation models on	Ward's Conjecture	(anti-)Self-Dual DoF
(anti)-Self-Dual	and Integrability	Instantons, Tunneling
backgrounds	Twistorial techniques	Penrose Transform, 'Twistor' BBH data

Plan

The problem: simplicity and universality of BBH waveforms
 Simplicity, universality & 'linearity': hints for an Airy/Painlevé-II BBH model
 A BBH waveform hierarchical program

• A BBH waveform hierarchical program

Hyperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow"

- Cauchy formulation: isospectrality and Lax pairs
- Hyperboloidal framework: "bulk" and "boundary" sectors
- "Fast DoFs": non-normal hyperboloidal dynamics
- "Slow DoFs": the hyperboloidal "Lax-pair" problem

BHeuristics of BBH dynamics: an "asymptotic" fAiry tale approach

- Universal diffraction patterns on caustics: from rainbows to Airy
- Universality from integrability: the Painlevé-II thread to BBH dynamics
- A "Wave-Mean Flow" approach: scattering on integrable backgrounds

Perspectives

1. "Geometric optics": examples of caustics

(Cusp) caustic in an Axisymmetric lens

- "State" variable: a.
- "Control" variable: x_1, x_2 .

.∋⇒

• • • • • • • •

1. "Geometric optics": examples of caustics

(Fold) caustic in the rainbow

- "State" variable: b.
- "Control" variable: θ (or D).

1. "Geometric optics": examples of caustics

(Fold) caustic in the rainbow

- "State" variable: b.
- "Control" variable: θ (or D).

1. "Geometric optics": examples of caustics

(Fold) caustic in the rainbow

イロト イヨト イヨト イ

1. "Geometric optics": examples of caustics

(Fold) caustic in the rainbow

Key points here

- Only observable: intensity of light.
- Caustic "interior" higher intensity of light.
- Intensity grows towards the caustic.
- Intensity diverges at the caustic.

1. "Geometric optics": caustics in singularity theory

Caustics in a nutshell (catastrophe theory approach)

- State space $S: \mathbf{R} = (R_1, \dots, R_m)$. Control space $D: \mathbf{X} = (X_1, \dots, X_n)$.
- Generating function: $\Phi: S \times D \to \mathbb{R}$. $\Phi(\mathbf{R}, \mathbf{X}) = \sum_{\alpha=1}^{m} R_{\alpha} X_{\alpha} + f(\mathbf{R}; X_{m+1}, \dots, X_n)$
- Stationary, solution or catastrophe manifold M (n-dimensional): $\nabla_{R_{\alpha}} \Phi = 0$, $\alpha \in \{1, \dots, m\}$, $X_{\alpha} = -\nabla_{R_{\alpha}} f$, $\alpha \in \{1, \dots, m\}$
- Magnification matrix $\mathcal{M}_{lphaeta}(oldsymbol{X})$:

$$\mathcal{M}_{\alpha\beta}(\boldsymbol{X}) = \left(\frac{\partial X_{\alpha}}{\partial R_{\beta}}\right)_{(X_{m+1},\dots,X_n)}^{-1} (\boldsymbol{R}(\boldsymbol{X})) = -\left(\frac{\partial^2 \Phi}{\partial R_{\alpha} \partial R_{\beta}}\right)_{(X_1,\dots,X_n)}^{-1} (\boldsymbol{R}(\boldsymbol{X}))$$

• Intensity I:

$$I(\boldsymbol{X}) = \sum_{i} |\mathrm{det}\mathcal{M}_{\alpha\beta}|(\boldsymbol{R}_{i}(\boldsymbol{X}))|$$

• Caustic C:

set in D where $|\det \mathcal{M}_{\alpha\beta}|$ diverges or where $\left(\frac{\partial^2 \Phi}{\partial R_\alpha \partial R_\beta}\right)^{-1}(\mathbf{R}(\mathbf{X}))$ has a kernel. More precisely: Given the projection $\pi: M \to D$, C is the image (by π) of the critical values of π (i.e. where $d\pi$ has a kernel).
1. "Geometric optics": caustics in singularity theory

$$\begin{split} \Phi_{\text{lens}}(a; x_1, x_2) \\ &= \frac{(a - x_2)^2 \omega}{2f x_1 c} \left(f - x_1 + \frac{a^2 x_1}{2s^2} \right) \end{split}$$

$$\Phi_{\text{rainbow}}(\delta; \Delta)_{\text{lens}} = -\frac{1}{3}\alpha\beta\delta^3 + \beta\delta\Delta$$

where $\delta = b - b_{\text{rainbow}}\Delta = D - D_{\text{rainbow}}$

A D > <
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +

Heuristics of BBH dynamics: an "asymptotic" fAiry tale approach Universal diffraction patterns on caustics: from rainbows to Airy

1. "Geometric optics": universality of caustics

Elementary (stable) caustics (Arnol'd-Thom theorem)

Co-dimension	Caustic name	Generating function $\phi(m{r},m{x})$
1	Fold	$r_1x_1 + \frac{1}{3}r_1^3$
2	Cusp	$r_1x_1 + rac{1}{2}x_2r_1^2 + rac{1}{4}r_1^4$
3	Swallow tail	$r_1x_1 + rac{1}{2}x_2r_1^2 + rac{1}{3}x_3r_1^3 + rac{1}{5}r_1^5$
3	Elliptic umbilic	$-r_1x_1 - r_2x_2 - x_3(r_1^2 + r_2^2) - 3r_1r_2^2 + r_1^3$
3	Hyperbolic umbilic	$-r_1x_1 - r_2x_2 + x_3r_1r_2 + r_1^3 + r_2^3$

"Elementary (stable) catastrophes" classifying, in particular, structurally stable caustics with co-dimension $n \leq 3$.

More state variables can be introduced in each case, but they "irrelevant".

The fold caustic

The only stable caustic with a **only one control variable** x_1 is **the fold**, and has only one ("irreducible") state variable r_1 .

Heuristics of BBH dynamics: an "asymptotic" fAiry tale approach Universal diffraction patterns on caustics: from rainbows to Airy

2. "Diffraction on caustics": stationary point approximation (WKB)

Between geometric optics and full wave theory: Fresnel diffraction

Fresnel representation of wave field, superposition of ray contributions [Duistermaat 74, Berry 86, Kravtsov & Orlov, Guillemin & Sternberg,...]

$$\psi(\boldsymbol{X}) = \left(\frac{k}{2\pi}\right)^{\frac{m}{2}} \int d^{m} \boldsymbol{R} \; e^{ik\Phi(\boldsymbol{R},\boldsymbol{X})} a(\boldsymbol{R},\boldsymbol{X})$$

with $k = 2\pi/\lambda$, $\Phi(\mathbf{R}, \mathbf{X})$ generating function accounting for the phase delay, $a(\mathbf{R}, \mathbf{X})$ slowly varying function in (\mathbf{R}, \mathbf{X}) .

Diffraction on non-degenerate stationary points

For $k \gg 1$, stationary phase point evaluation

$$\psi(\boldsymbol{X}) \sim \sum_{i} \frac{e^{i(kS_{i}(\boldsymbol{X}) + \alpha_{i}\pi/4)}}{|\text{det}(\mathcal{M}_{\alpha\beta}^{-1}(\boldsymbol{X}))|^{\frac{1}{2}}} a(\boldsymbol{R}_{i}(\boldsymbol{X}), \boldsymbol{X})$$

2. "Diffraction on caustics": universal diffraction patterns on caustics

Uniform approximation: "elementary diffraction caustics" [Berry 76, Berry & Upstill, Kravtsov & Orlov... ; Torres et al.22]

- The stationary point approximation fails at the caustics, where stationary points merge.
- A "uniform asymptotic approximation", depending on the topological features of stationary point, reduces the evaluation to canonical $\phi(\mathbf{r}, \mathbf{x})$

$$j(\boldsymbol{x}) = \left(\frac{k}{2\pi}\right)^{\frac{m}{2}} \int d^m \! \boldsymbol{r} \; e^{ik\phi(\boldsymbol{r},\boldsymbol{x})}$$

Universal diffraction patterns on caustics: Arnol'd-Thom theorem

Topological equivalence of generating func. Φ and canonical ϕ [e.g. Poston & Stewart] $\Phi(\mathbf{R}, \mathbf{X}) = C(\mathbf{X}) + \phi(\mathbf{r}(\mathbf{R}), \mathbf{x}(\mathbf{X}))$

Wave field $\psi({m X})$ in terms of the elementary $j({m x})$ and its derivatives

$$\psi(oldsymbol{X}) = e^{ikC(oldsymbol{X})} \left(g_0(oldsymbol{x}(oldsymbol{X})) j(oldsymbol{x}(oldsymbol{X})) + rac{g_1(oldsymbol{x}(oldsymbol{X}))}{ik} \cdot
abla_{oldsymbol{x}} j(oldsymbol{x}(oldsymbol{X}))
ight)$$

Interference regularizes the caustic divergence through universal diffraction patterns that "clothe the skeleton provided by stable caustics". [Berry 76]

2. "Diffraction on caustics": the fold caustic and Airy Diffraction catastrophe scaling laws (Arnol'd index)

Introducing the k-independent function $J(\mathbf{x})$

$$\mathcal{T}(\boldsymbol{x}) = \left(\frac{1}{2\pi}\right)^{\frac{m}{2}} \int d^m \boldsymbol{r} \; e^{i\phi(\boldsymbol{r}, \boldsymbol{x})}$$

elementary j(x) presents the following (self-similar) law: $j(x) = k^{\beta} J(k^{\sigma_i} x_i)$

The elementary fold integral caustic: the Airy function

For the fold caustic, $\phi = \frac{1}{2}r^3 + xr$, and from this $J(x) = \left(\frac{1}{2\pi}\right)^{\frac{1}{2}} \int_{-\infty}^{\infty} dr \; e^{ik(\frac{1}{3}r^3 + xr)} \sim \operatorname{Ai}(x) \quad \text{ and } \quad j(x) = k^{\frac{1}{6}}(2\pi)^{\frac{1}{2}}\operatorname{Ai}(k^{\frac{2}{3}}x)$ Then, for a Φ topologically equivalent to a fold (and making $x \to t$ and $k \to \omega$)

$$h(t) := \psi(t) = e^{i\omega C(t)} \left(\omega^{\frac{1}{6}} \tilde{g}_0(t) \operatorname{Ai}(\omega^{\frac{2}{3}} \tilde{t}(t)) - i\omega^{-\frac{1}{6}} \tilde{g}_1(t) \operatorname{Ai}'(\omega^{\frac{2}{3}} \tilde{t}(t)) \right)$$

The wave field diffracted on a fold-caustic can be written as a modulation of the Airy function Ai and its derivative Ai'.

José Luis Jaramillo

3. "Turning point equations": linear case

Beyond "geometric optics" limit $k \gg 1$: "asymptotic reasoning"

The tenet of asymptotic reasoning is that the asymptotic limits unveil the structural patterns. Here, the "geometric optics" limit identify the Airy function. **Claim**: the Airy function pattern extends to lower frequencies.

Oscillation-to-damped transition: linear "turning points"

Airy as archetype of linear "turning point"

$$\frac{u^2u}{u^2} - tu = 0$$

A more general linear ODEs describing, in an effective way, a turning point problem

$$\epsilon^2 rac{d^2 u}{d au^2} - \left(au \phi(au) - \epsilon \psi(au, \epsilon)
ight) u = 0 \ , \ \phi(0)
eq 0$$

This equation can always be solved in terms of Ai and Ai'

 $h(t) := u(t) = M(t) \left(P_1 \operatorname{Ai}(\phi(t)) + P_2(t) \operatorname{Ai}'(\phi(t)) \right)$

Plan

The problem: simplicity and universality of BBH waveforms
 Simplicity, universality & 'linearity': hints for an Airy/Painlevé-II BBH model
 A BBH waveform hierarchical program

• A BBH waveform hierarchical program

Hyperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow"

- Cauchy formulation: isospectrality and Lax pairs
- Hyperboloidal framework: "bulk" and "boundary" sectors
- "Fast DoFs": non-normal hyperboloidal dynamics
- "Slow DoFs": the hyperboloidal "Lax-pair" problem

Heuristics of BBH dynamics: an "asymptotic" fAiry tale approach
 Universal diffraction patterns on caustics: from rainbows to Airy

- Universality from integrability: the Painlevé-II thread to BBH dynamics
- A "Wave-Mean Flow" approach: scattering on integrable backgrounds

Perspectives

Heuristics of BBH dynamics: an "asymptotic" fAiry tale approach Universality from integrability: the Painlevé-II thread to BBH dynamics

Painlevé-II BBH inspiral (EMRI) dynamics Damped orbital motion of a charged particle in a Coulomb potential [Rajeev 08]

Landau-Lifshitz equations (in the non-relativistic limit) for a charged particle in a Coulomb potential **solved exactly in terms of the Painlevé-II equation**:

Heuristics of BBH dynamics: an "asymptotic" fAiry tale approach Universality from integrability: the Painlevé-II thread to BBH dynamics

Painlevé-II BBH inspiral (EMRI) dynamics Damped orbital motion of a charged particle in a Coulomb potential [Rajeev 08]

Landau-Lifshitz equations (in the non-relativistic limit) for a charged particle in a Coulomb potential **solved exactly in terms of the Painlevé-II equation**:

Painlevé-II and BBH waveform

BBH dynamics and Painlevé-II

In the EMRI limit, part of the dynamics captured by so-called Painlevé transcendents.

Oscillation-to-damped transition: Painlevé-II non linear "turning points"

Non linear "turning points" equation, non-linear version of Airy:

$$\frac{d^2w}{dt^2} - tw - 2w^3 = 0 \qquad (Painlevé-II)$$

Tantalizing proposal for the BBH waveform, $P_{II}(t) = w(t)$:

$$h(t) = M(t) \left(P_1 P_{II}(\phi(t)) + P_2(t) P'_{II}(\phi(t)) \right)$$

It does offer an avenue for the phase issue... [BUT!]

Airy-like model: restricted to inspiral-merger

- Caustic-diffraction mechanism: only valid for the **inspiral-merger** transition, at the "catastrophe/coalescence" point.
- For ringdown, need of another mechanism: perturbation of a finite object.

Hidden symmetries: Darboux covariance and KdV [Lenzi & Sopuerta]

- "Vertical" QNM Isospectrality, between axial/polar modes: Darboux transformations, role of algebraically special QNMs. '
- **"Horizontal" QNM Isospectrality**, along each axial/polar branch: Schrödinger equation and KdV conserved charges [Chandrasekhar, ...; Lenzi & Sopuerta]
- Lax pair, Virasoro, infinite PDE hierarchy...

Quasi-Normal Mode (QNM) ("formal") spectral problem

From equations on master functions Ψ , QNMs satisfy the spectral problem (under outgoing boundary condition) for the "Schrödinger" operator $\mathcal{L} = (\partial_x^2 - V)$:

$$\left(-\partial_t^2 + \partial_x^2 - V\right)\Psi = 0 \implies \mathcal{L}\Psi = (\partial_x^2 - V)\Psi = -\omega^2\Psi$$

Korteweg-de Vries (KdV) and QNM isospectrality

Deform V and Ψ according to:

$$\partial_{\sigma}V - 6V\partial_{x}V + \partial_{x}^{3}V = KdV[V] = 0$$
$$\partial_{\sigma}\Psi = \left(-4\partial_{x}^{3} + 6V\partial_{x} + 3V_{,x}\right)\Psi = P\Psi$$

 \mathcal{L} and P form a "Lax pair": isospectrality (and integrability)

$$\partial_{\sigma} \mathcal{L} - [P, \mathcal{L}] = -\mathrm{KdV}[V] \cdot \mathrm{Id} = 0$$
$$\partial_{\sigma} \mathcal{L} = [P, \mathcal{L}] \qquad (\mathsf{Lax \ pair \ equation})$$

Guideline for passage from ODEs to PDEs: Painlevé test

"Painlevé test" for PDE integrability by inverse scattering: integrable PDE reducible by (self-similar) Ansatz to a "Painlevé transcendent", solution to one of the six Painlevé equations.

Idea to explore for BBH merger

BBH merger described by effective integrable PDE, admitting self-similar solutions satisfying Painlevé-II.

José Luis Jaramillo

Simplicity and Universality in BBH dynamics

Tours. 2-4 July 2025

< ロ > < 同 > < 回 > < 回 >

50 / 62

Painlevé-II: structural thread between pre-merger and post-merger BBH dynamics, passing through the merger

- i) The orbital (in particular, EMRB-type) dynamics in the inspiral phase.
- ii) The self-similar (part of the) solutions to KdV-like equations through the merger.
- iii) The rationale to understand the KdV-related hidden symmetries.

Main ingredientes to retain

Main ingredients in our BBH problem: a brainstorm

- Effective Dispersive character: feature of Airy (Fourier transf.: $e^{\frac{i}{3}(2\pi k)^3}$). Consequence of (asymptotic) "filtering" degrees of freedom.
- Effective linear dynamics: linearization around an (effective) soliton-like metastable (instanton?) non-linear configuration?
 - Effective dynamics are simple: "inverse scattering transform" to reconstruct effective potential [Gelfand & Levitan 51, Marchenko 55]. GLM equation, role in soliton theory [Gardner et al. 67, "KdV"].
- Transition between two dynamical regimes (phases): possibility of approaching the "universality" features in terms of "critical phase transitions"?
 - *"Phase transitions" in PDE problems*: **universality** features (e.g. dispersive hydrodynamics).
- Integrable systems: universality classes contain a representative that is integrable. "Conserved quantities" explaining the simplicity of the waveform?
 - Asymptotic reasoning: filtering of "irrelevant" features for approximation: effective equations quasi-integrable?

Plan

The problem: simplicity and universality of BBH waveforms

- Simplicity, universality & 'linearity': hints for an Airy/Painlevé-II BBH model
- A BBH waveform hierarchical program

Byperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow"

- Cauchy formulation: isospectrality and Lax pairs
- Hyperboloidal framework: "bulk" and "boundary" sectors
- "Fast DoFs": non-normal hyperboloidal dynamics
- "Slow DoFs": the hyperboloidal "Lax-pair" problem

B Heuristics of BBH dynamics: an "asymptotic" fAiry tale approach

• Universal diffraction patterns on caustics: from rainbows to Airy

- Universality from integrability: the Painlevé-II thread to BBH dynamics
- A "Wave-Mean Flow" approach: scattering on integrable backgrounds

Perspectives

52 / 62

The Painlevé-II integrability thread to dispersive PDEs: KdV-like BBH models

"Wave-mean flow" approach

- i) Fast degrees of freedom (Ψ): linear (wave) dynamics on a background.
- ii) Slow degrees of freedom (u): non-linear integrable systems, constituting the background for the propagation of slow degree of freedom.

Integrability: non-linear background dynamics

Ingredients:

- Weakly dispersive.
- Weakly non-linear PDE dynamics.

Leading-order asymptotic equations "universally given" [Ablowitz] by Korteweg-De Vries equation:

$$\partial_t u - 6u\partial_x u + \partial_{xxx}^3 u = 0$$

"Indeed, we now know that both the KdV and NLS equations are "universal" models. It can be shown that KdV-type equations arise whenever we have weakly dispersive and weakly nonlinear systems as the governing system." [Ablowitz 11]

Painlevé-II: from critical phenomena to Inverse Scattering

Universal wave patterns in dispersive (non-linear) PDEs: PDE critical phenomena

PDE-like critical phenomenon: profile of the PDE solution 'at the critical point' is independent of the initial data and given by a **universal special function** (cf. Dubrovin's(-like) conjectures).

BBH context: Painlevé-II as universal special functions, is the main motivation for an effective non-linear dispersive PDE BBH model

Painlevé test and the Inverse Scattering Transform (IST): Self-similarity and modified KdV

Modified-KdV (m-KdV), from KdV through Miura transformation: $u = \partial_x \tilde{u} + \tilde{u}^2$:

$$\tilde{u}_t - 6\tilde{u}^2 \partial_x \tilde{u} + \partial_{xxx}^3 \tilde{u} = 0$$

"Self-similar" Ansatz $\tilde{u}(t,x) \sim \frac{1}{(3t^p)} u\left(\frac{x}{(3t)^q}\right)$ fixes p = q = 1/3 and reduces m-KdV to the Painlevé-II equation.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Painlevé-II: from critical phenomena to Inverse Scattering

Scattering problem

Consider the one-dimensional scattering problem:

$$-\frac{d^2}{dx^2} + V(x)\bigg)\phi(x) = k^2\phi(x)$$

with asymptotic conditions

$$\frac{\phi(x,k)}{a(k)} \sim \begin{cases} \frac{e^{-ikx}}{a(k)} , & (x \to -\infty) \\ e^{-ikx} + \frac{b(k)}{a(k)} e^{ikx} & (x \to \infty) \end{cases}$$

Transmission and reflection coefficients are given by

$$t(k) = \frac{1}{a(k)}$$
, $r(k) = \frac{b(k)}{a(k)}$

Consider the possible presence of (finite number of) bound states:

$$\left(-\frac{d^2}{dx^2} + V(x)\right)\phi_n(x) = -\chi_n^2\phi_n(x)$$

with ϕ_n square-integrable.

< □ > < / >

Painlevé-II: from critical phenomena to Inverse Scattering

Inverse scattering: Gelfand-Levitan-Marchenko (GLM) algorithm

Scattering data: reflection coefficients and energy levels:

 $r(k), \{\chi_1, \ldots, \chi_N\}$

GLM algorithm:

1. Set:

$$F(x) = \sum_{n=1}^{N} \frac{b_n e^{-\chi_n x}}{ia'(i\chi_n)} + \frac{1}{2\pi} \int_{-\infty}^{\infty} r(k) e^{ikx} dk$$

2. GLM integral equation for
$$K(x,y)$$
:

$$K(x,y) + F(x+y) + \int_x^{\infty} K(x,z)F(z+y)dz = 0$$

3. Then:

$$V(x) = -2\frac{d}{dx}K(x,x)$$

Application to the test-screen approach to the BBH problem?

Can an effective potential V(x) (in some "appropriate coordinates") be retrieved from data h_{inn} an h_{out} on "inner" and "outer" screens? In which sense is V(x) meaningful?

< ロ > < 同 > < 回 > < 回 >

Effective Wave-Mean Flow: Scattering on solitons

Non-linear dispersive hydrodynamics effective picture: scattering on solitons

Effective separation of slow degrees of freedom u(t, x):

 $\left\{ \begin{array}{l} (-\Box + V_{\mathrm{even,odd}}(t,x;u)) \, \Psi_{\mathrm{even,odd}} = S_{\mathrm{even,odd}}(t,x;u) \\ \partial_t u = F(t,x;u,u_x,u_{xx},\ldots) \end{array} \right.$

- Integrability is only on slow DoF, u.
- Fast DoF subject to "catastrophe-caustic" PDE critical phenomena.
- Relying ultimate in "soliton resolution" picture [T. Tao, P. Bizoń...].

< ロ > < 同 > < 回 > < 回 >

Effective Wave-Mean Flow: Scattering on solitons

Non-linear dispersive hydrodynamics effective picture: scattering on solitons Separation of slow degrees of freedom u(t, x):

 $u(t,x) \sim u_{\text{conservative}}(t,x) + u_{\text{dispersive}}(t,x) \sim u_{\text{solitonic}}^{\text{potential}}(t,x) + u_{\text{self-similar}}^{P_I}(t,x)$

Then, the methodological approach is to address the problem as:

$$\begin{cases} \left(-\Box + V_{\text{even,odd}}(t, x; u_{\text{solitonic}}^{\text{potential}})\right) \Psi_{\text{even,odd}} = S_{\text{even,odd}}(t, x; u_{\text{self-similar}}^{P_{II}}) \\ \partial_t u = F(t, x; u, u_x, u_{xx}, \ldots) \end{cases}$$

55 / 62

イロト イヨト イヨト イヨト

Effective Wave-Mean Flow: Scattering on solitons

Non-linear dispersive hydrodynamics effective picture: scattering on solitons Separation of slow degrees of freedom u(t, x):

$$u(t,x) \sim u_{\text{conservative}}(t,x) + u_{\text{dispersive}}(t,x) \sim u_{\text{solitonic}}^{\text{potential}}(t,x) + u_{\text{self-similar}}^{P_{II}}(t,x)$$

Then, the methodological approach is to address the problem as:

$$\begin{cases} \left(-\Box + V_{\text{even,odd}}(t, x; u_{\text{solitonic}}^{\text{potential}})\right) \Psi_{\text{even,odd}} = S_{\text{even,odd}}(t, x; u_{\text{self-similar}}^{P_{II}}) \\ \partial_t u = F(t, x; u, u_x, u_{xx}, \ldots) \end{cases}$$

Why this? Lesson from turbulence in geophysical fluids

- Turbulence appears in full simulations Navier-Stokes/Boussinesq.
- Understanding of turbulence out of reach.
- Asymptotic models by filtering DoF: Quasi-Geostrophic equations.
- Turbulence (inverse) cascades understood by conservation of "enstrophy" in the asymptotic effective theory: asymptotic reasoning.

Moral: focus on the phenomenon and filter the non-relevant degrees of freedom.

José Luis Jaramillo

Slow dynamics in the BBH setting: the stationary pool

Dual frame: corrotating and non-rotating frame

Need of choosing coordinates: not a covariant formulation.

- Fast degrees of freedom Ψ : described in a non-rotating (with respect to infinity) coordinate system.
- Slow degrees of freedom u: described in a corrotation system

"Near-zone" stationary pool: stationarity independent of boundary conditions [Whelan, Price...] (ellucidate the role of light cylinder).

Bottom-up and Top-down stationary dynamics

- Bottom-up: Disperssive non-linear (hydro-like) PDEs (KdV et al...)
- Top-Down: Hellical Killing vector and "adiabatics":
 - i) Two commuting Killings: Ernst equation, sigma model.
 - ii) One hellical Killing: Gravity with matter given by $SL(2,\mathbb{R})/SO(1,1)$ sigma model [Klein 04].

Full (Conformal) Einstein equations: semi-linear system with "Wave-Mean Flow" structure [Friedrich...; Frauendiener...; Valiente-Kroon;

here: Frauendiener, Stevens & Thwala 25]

Subsystem 1, "Slow" degrees of freedom: transport equations

$$\begin{aligned} e_a(c_b^{\mu}) - e_b(c_a^{\mu}) &= \hat{\Gamma}_{ab}{}^c c_c^{\mu} - \hat{\Gamma}_{ba}{}^c c_c^{\mu}, \\ e_a(\hat{\Gamma}_{bc}{}^d) - e_b(\hat{\Gamma}_{ac}{}^d) &= (\hat{\Gamma}_{ab}{}^e - \hat{\Gamma}_{ba}{}^e)\hat{\Gamma}_{ec}{}^d \\ &- \hat{\Gamma}_{bc}{}^e \hat{\Gamma}_{ae}{}^d + \hat{\Gamma}_{ac}{}^e \hat{\Gamma}_{be}{}^d \\ + \Theta K_{abc}{}^d - 2\eta_{c[a}\hat{P}_{b]}{}^d + 2\delta_{[a}{}^d \hat{P}_{b]c} - 2\hat{P}_{[ab]}\delta_c{}^d, \\ \hat{\nabla}_a \hat{P}_{bc} - \hat{\nabla}_b \hat{P}_{ac} &= b_e K_{abc}{}^e, \end{aligned}$$

Subsystem 2, "Fast" degrees of freedom: symmetric hyperbolic system

$$\hat{\nabla}_e K_{abc}{}^e = b_e K_{abc}{}^e,$$

Wittgenstein's ladder in action

Forget the rest of the talk and just solve "Subsystem 1" + "Subsystem 2", with "Subsystem 1" enforced to be (quasi-)integrable.

José Luis Jaramillo

Integrability and Ward's conjecture: BBH scattering over self-dual backgrounds (instantons and twistors)

"First-principles" separation of (slow) background and (fast) dynamics?

Ward's conjecture: integrability and self-duality

Conjecture: fundamental relation between integrable (or solvable) differential equation systems and reductions of (anti-)self-dual Yang-Mills equations. In GR setting:

- Connection between self-dual Einstein vacuum equations and the self-dual Yang-Mills equations [Mason& Newman; Woodhouse; Dunajski...].
- Ansatz: 'Backgrounds' in the (anti-)self-dual sector of GR. [Compare approach by Mason et al.]

Scattering on instantons: self-dual sector controlled by "twistor tools"

Gravitational (anti-)self-dual solutions, either complex or real in Euclidean GR:

- The notion of 'background' needs to be relaxed/generalised.
- Idea: BBH merger waveforms addressed in terms of an appropriate notion of classical scattering on a (anti-)self-dual gravitational instanton.

Scheme

The problem: simplicity and universality of BBH waveforms
 Simplicity, universality & 'linearity': hints for an Airy/Painlevé-II BBH model

• A BBH waveform hierarchical program

Byperboloidal approach to scattering: a zeroth-order "Wave-Mean Flow"

- Cauchy formulation: isospectrality and Lax pairs
- Hyperboloidal framework: "bulk" and "boundary" sectors
- "Fast DoFs": non-normal hyperboloidal dynamics
- "Slow DoFs": the hyperboloidal "Lax-pair" problem

B Heuristics of BBH dynamics: an "asymptotic" fAiry tale approach

- Universal diffraction patterns on caustics: from rainbows to Airy
- Universality from integrability: the Painlevé-II thread to BBH dynamics
- A "Wave-Mean Flow" approach: scattering on integrable backgrounds

Perspectives

59 / 62

A B A B A B A

Asymptotic reasoning: a hierarchical approach to BBH

"Boring or Elegant?": Actually, perhaps both...

Universality because:

- "Nothing happens" (boring): Airy as universal behaviour through a "caustic" ("fast DoF").
- Something very special (and elegant) happens: integrability extending through the whole BBH dynamics (Painlevé-II...), but critically at the transition merger-ringdown ("slow DoF").

Asymptotic reasoning: universal patterns and degrees of freedom

- Phenomenological application: Airy BBH waveforms.
- Fundamental degrees of freedom in Gravity:
 - Bottom-up: hydrodynamic flavour, multiscale expansions, self-dual sector.
 - Top-down: start from the full theory and "filter" (multiscale asymptotic expansion"), using fundamental structures to "zoom".
 Reduce full Einstein equations to effective (quasi-)integrable PDE system (KdV-like?) by appropriate (asymptotic) approximations in the BBH problem.

Asymptotic reasoning: a hierarchical approach to BBH

"Asymptotic reasoning circularity"

Bottom-up:

Asymptotic reasoning \rightarrow Universal patterns \rightarrow Fundamental structures,

Top-down:

Universal patterns \leftarrow Asymptotic reasoning \leftarrow Fundamental structures.

60 / 62

イロト イポト イヨト イヨト

Asymptotic reasoning: a hierarchical approach to BBH

"Asymptotic reasoning circularity"

Bottom-up:

Asymptotic reasoning \rightarrow Universal patterns \rightarrow Fundamental structures,

Top-down:

Universal patterns \leftarrow Asymptotic reasoning \leftarrow Fundamental structures.

Asymptotic reasoning and fundamental structures

"To understand these things is to have a pattern and a model, and to understand the pattern and the model is mysterious power."

Lao Tzu, Tao Te Ching ("translation" /adaptation by Ursula K. Le Guin)

< ロ > < 同 > < 回 > < 回 >

Towards a top-down approach to BBH merger waveforms

Integrability and Fundamental Gravity: a brainstorm (revisiting elegance...)

- Gravitational wave detection as a caustic in time.
- Caustic diffraction patterns and Airy function BBH waveform model.
- Painlevé-II turning point model and EMRIs. Painlevé-II-thread though all BBH dynamics ("hidden symmetry").
- "Wave-Mean Flow" methodology:
 - Non-linear dispersive PDE integrability, universal waveforms and scattering on solitons ('soliton resolution conjecture').
 - Conformal Einstein equations as semi-linear PDE system, enforcing integrable "mean flow" sector.
 - Scattering in non-linear (integrable) self-dual backgrounds (twistors).
- Current Problem: Lax pair in the hyperboloidal linear scattering picture

Ablowitz and Segur (1981):

"Certain nonlinear problems have a surprisingly simple underlying structure, and can be solved by essentially linear methods".

Application to simplicity and universality in BBH dynamics?

José Luis Jaramillo

Simplicity and Universality in BBH dynamics

"Golden" (self-similar) spirals, Fairies and Rainbows

José Luis Jaramillo

Simplicity and Universality in BBH dynamics

Tours, 2-4 July 2025

"Golden" (self-similar) spirals, Fairies and Rainbows

José Luis Jaramillo

Simplicity and Universality in BBH dynamics

Tours, 2-4 July 2025

03/06/202

"Golden" (self-similar) spirals, Fairies and Rainbows

Bibliography

- Lenzi, M., & Sopuerta, C. F. (2021a). Darboux covariance: A hidden symmetry of perturbed Schwarzschild black holes. Physical Review D, 104(12), 124068.
- Lenzi, M., & Sopuerta, C. F. (2021b). Master functions and equations for perturbations of vacuum spherically symmetric spacetimes. Physical Review D, 104(8), 084053.
- Jaramillo, J. L., & Krishnan, B. (2022a). Airy-function approach to binary black hole merger waveforms: The fold-caustic diffraction model. arXiv:2206.02117.
- Jaramillo, J. L., & Krishnan, B. (2022b). Painlevé-II approach to binary black hole merger dynamics: Universality from integrability. arXiv:2211.03405.
- Jaramillo, J. L., Krishnan, B., & Sopuerta, C. F. (2023). Universality in binary black hole dynamics: An integrability conjecture. International Journal of Modern Physics D, 32(14), 2342005.
- Lenzi, M., & Sopuerta, C. F. (2023a). Black hole greybody factors from Korteweg-de Vries integrals: Theory. Physical Review D, 107(4), 044010.
- Lenzi, M., & Sopuerta, C. F. (2023b). Black hole greybody factors from Korteweg-de Vries integrals: Computation. Physical Review D, 107(8), 084039.
- Lenzi, M., & Sopuerta, C. F. (2024). Gauge-independent metric reconstruction of perturbations of vacuum spherically-symmetric spacetimes. arXiv:2402.10004.
- Jaramillo, J.L., Lam, V. (2024). Asymptotic Reasoning and Universality in (Space)Time Dynamics. In: De Bianchi, S., Forgione, M., Marongiu, L. (eds) Time and Timelessness in Fundamental Physics and Cosmology. Fundamental Theories of Physics, vol 216. Springer,
- Besson, J. Jaramillo, J.L. (2025). Quasi-normal mode expansions of black hole perturbations: a hyperboloidal Keldysh's approach, arXiv:2412.02793: accepted in Gen. Rel. Grav.