Symmetries and peeling in the extreme Reissner-Nordström spacetime

Éric Gourgoulhon

Laboratoire d'étude de l'Univers et des phénomènes eXtrêmes (LUX) Observatoire de Paris - PSL, CNRS, Sorbonne Université, Meudon, France and

Laboratoire de Mathématiques de Bretagne Atlantique CNRS, Université de Bretagne Occidentale, Brest, France

based on a collaboration with Jack Borthwick (Montreal) and Jean-Philippe Nicolas (Brest)

Black holes and their symmetries Institut Denis Poisson, Tours 2 - 4 July 2025

Outline

- Symmetries of the extreme Reissner-Nordström black hole
- The peeling property and its variants
- Peeling for the wave equation in ERN spacetime
- Peeling at the ERN horizon

Outline

- 1 Symmetries of the extreme Reissner-Nordström black hole
- 2 The peeling property and its variants
- Peeling for the wave equation in ERN spacetime
- Peeling at the ERN horizon

The extreme Reissner-Nordström (ERN) black hole

ERN = static and spherically symmetric solution $(\mathcal{M}, \boldsymbol{g}, \boldsymbol{F})$ to the electrovacuum Einstein-Maxwell equations defined in a patch $\mathbb{R} \times (0, +\infty) \times \mathbb{S}^2$ spanned by Schwarzschild-like coordinates (t, r, θ, φ) by

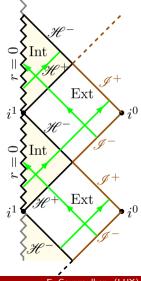
$$\mathbf{g} = -\left(1 - \frac{M}{r}\right)^2 \mathbf{d}t^2 + \left(1 - \frac{M}{r}\right)^{-2} \mathbf{d}r^2 + r^2 \left(\mathbf{d}\theta^2 + \sin^2\theta \mathbf{d}\varphi^2\right)$$

$$\mathbf{F} = -\frac{Q}{r^2}\,\mathbf{d}t \wedge \mathbf{d}r + P\sin\theta\,\mathbf{d}\theta \wedge \mathbf{d}\varphi$$

where the electric charge Q and the magnetic charge P obey $\sqrt{Q^2 + P^2} = M$.

 \implies describes a black hole with the event horizon located at r=M.

Carter-Penrose diagram of ERN maximal analytic extension



Compactified diagram of the maximal analytic extension of the ERN spacetime [Carter, Phys. Lett. 21, 423 (1966)]

Eddington-Finkelstein-type (EF) coordinates:

- outgoing:
$$u:=t-r_*$$
, $r_*:=rac{r(r-2M)}{r-M}+2M\ln\left|rac{r}{M}-1
ight|$

- ingoing: $v := t + r_*$

Compactified coordinates:
$$U := \arctan\left(\frac{u}{2M}\right)$$
, $V = \arctan\left(\frac{v}{2M}\right)$

 i^0 : spatial infinity

 i^1 : internal infinity (infinitely long throat along any t = const hypersurface)

The degenerate event horizon

The black hole event horizon \mathscr{H}^+ is the hypersurface r=M in a ingoing patch (v,r,θ,φ) . \mathscr{H}^+ is a degenerate Killing horizon with respect to the Killing vector $\boldsymbol{\xi}=\boldsymbol{\partial}_t$

degenerate Killing horizon \iff surface gravity κ , defined by $\nabla_{\xi} \xi \stackrel{\mathscr{H}^+}{=} \kappa \xi$, is vanishing:

$$\kappa = 0$$

- \implies ξ is a geodesic vector field on \mathcal{H}^+ : $\nabla_{\xi}\xi \stackrel{\mathcal{H}^+}{=} 0$
- $\implies t$ is an affine parameter along the null geodesic generators of \mathscr{H}^+
- \implies the null geodesic generators of \mathscr{H}^+ are complete geodesics (no bifurcation surface); internal infinity $i^1 = \text{limit } t \to -\infty$ along the null geodesic generators

 ξ is null on \mathscr{H}^+ and is timelike both in the black hole exterior and in the black hole interior (contrary to Schwarzschild)

Near-horizon geometry

"Near-horizon magnifying" coordinates
$$(\varepsilon \neq 0)$$
:
$$\begin{cases} T := \varepsilon \frac{t}{M} \\ R := \frac{r - M}{\varepsilon M} \end{cases} \iff \begin{cases} t =: M \frac{T}{\varepsilon} \\ r =: M(1 + \varepsilon R) \end{cases}$$

At fixed
$$(T,R)$$
, $\lim_{arepsilon o 0} t = +\infty$ and $\lim_{arepsilon o 0} r = M$

$$\begin{array}{ll} \text{At fixed } (T,R), \ \lim_{\varepsilon \to 0} t = +\infty \ \text{and} \ \lim_{\varepsilon \to 0} r = M \\ \Longrightarrow \ \ \boldsymbol{g} = M^2 \left[-\frac{R^2}{(1+\varepsilon R)^2} \mathbf{d} T^2 + (1+\varepsilon R)^2 \frac{\mathbf{d} R^2}{R^2} + (1+\varepsilon R)^2 \left(\mathbf{d} \theta^2 + \sin^2 \theta \mathbf{d} \varphi^2 \right) \right] \end{array}$$

Near-horizon geometry

"Near-horizon magnifying" coordinates
$$(\varepsilon \neq 0)$$
:
$$\begin{cases} T := \varepsilon \frac{t}{M} \\ R := \frac{r-M}{\varepsilon M} \end{cases} \iff \begin{cases} t =: M \frac{T}{\varepsilon} \\ r =: M(1+\varepsilon R) \end{cases}$$

At fixed
$$(T,R)$$
, $\lim_{\epsilon \to 0} t = +\infty$ and $\lim_{\epsilon \to 0} r = M$

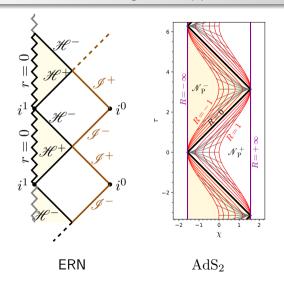
$$\begin{array}{ll} \text{At fixed } (T,R), \ \lim_{\varepsilon \to 0} t = +\infty \ \text{and} \ \lim_{\varepsilon \to 0} r = M \\ \\ \Longrightarrow \ \ \boldsymbol{g} = M^2 \left[-\frac{R^2}{(1+\varepsilon R)^2} \mathbf{d} T^2 + (1+\varepsilon R)^2 \frac{\mathbf{d} R^2}{R^2} + (1+\varepsilon R)^2 \left(\mathbf{d} \theta^2 + \sin^2 \theta \mathbf{d} \varphi^2 \right) \right] \end{array}$$

Near-horizon (NHERN) metric: $h = \lim_{\varepsilon \to 0} g \Longrightarrow$ product metric of $AdS_2 \times \mathbb{S}^2$ [Carter 1973]:

$$h = M^{2} \left(\underbrace{-R^{2} dT^{2} + \frac{dR^{2}}{R^{2}}}_{\text{AdS}_{2}} + \underbrace{d\theta^{2} + \sin^{2}\theta d\varphi^{2}}_{\mathbb{S}^{2}} \right)$$

also known as Bertotti-Robinson metric — another solution (1959) of the electrovacuum Einstein-Maxwell equations.

Near-horizon region mapped to AdS₂



(T,R) are Poincaré coordinates in a Poincaré patch \mathcal{N}_{P}^{\pm} of AdS_{2} , bounded by the Poincaré horizon \mathscr{H}_{P} at R=0.

Global
$$\mathrm{AdS}_2$$
 coordinates: $(\tau,\chi) \in \mathbb{R} \times \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ such that
$$\begin{cases} T := \frac{\sin \tau}{\cos \tau + \sin \chi} \\ R := \frac{\cos \tau + \sin \chi}{\cos \chi} \end{cases}$$

Both the ERN horizon and the Poincaré horizon are degenerate Killing horizons.

Near-horizon enhanced symmetries

NHERN metric:
$$\boldsymbol{h} = M^2 \left(-R^2 \mathbf{d} T^2 + \frac{\mathbf{d} R^2}{R^2} + \mathbf{d} \theta^2 + \sin^2 \theta \mathbf{d} \varphi^2 \right)$$

Killing vectors of the AdS_2 sector:

- ullet $oldsymbol{\xi}_1 = oldsymbol{\partial}_T \quad \leftarrow$ inherited from ENR stationarity
- $\xi_2 = T\partial_T R\partial_R \quad \leftarrow \text{ generates the isometries } (T,R) \mapsto \left(\alpha T, \frac{R}{\alpha}\right), \ \alpha > 0$
- $\boldsymbol{\xi}_3 = \frac{1}{2} \left(T^2 + \frac{1}{R^2} \right) \boldsymbol{\partial}_T RT \boldsymbol{\partial}_R \quad \leftarrow$ from the global stationarity of AdS_2 : $\boldsymbol{\xi}_3 = \boldsymbol{\partial}_\tau \frac{1}{2} \boldsymbol{\xi}_1$

One has

$$[\boldsymbol{\xi}_2, \boldsymbol{\xi}_1] = -\boldsymbol{\xi}_1, \quad [\boldsymbol{\xi}_2, \boldsymbol{\xi}_3] = \boldsymbol{\xi}_3, \quad [\boldsymbol{\xi}_1, \boldsymbol{\xi}_3] = \boldsymbol{\xi}_2 \quad \Longrightarrow \quad \mathfrak{sl}(2, \mathbb{R}) \text{ algebra}$$

Near-horizon enhanced symmetries

NHERN metric:
$$\boldsymbol{h} = M^2 \left(-R^2 \mathbf{d}T^2 + \frac{\mathbf{d}R^2}{R^2} + \mathbf{d}\theta^2 + \sin^2\theta \mathbf{d}\varphi^2 \right)$$

Killing vectors of the AdS_2 sector:

- ullet $oldsymbol{\xi}_1 = oldsymbol{\partial}_T \quad \leftarrow ext{inherited from ENR stationarity}$
- $\xi_2 = T\partial_T R\partial_R \quad \leftarrow \text{ generates the isometries } (T,R) \mapsto \left(\alpha T, \frac{R}{\alpha}\right), \ \alpha > 0$
- $\boldsymbol{\xi}_3 = \frac{1}{2} \left(T^2 + \frac{1}{R^2} \right) \boldsymbol{\partial}_T RT \boldsymbol{\partial}_R \quad \leftarrow \text{ from the global stationarity of } \mathrm{AdS}_2$: $\boldsymbol{\xi}_3 = \boldsymbol{\partial}_\tau \frac{1}{2} \boldsymbol{\xi}_1$

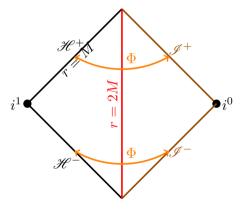
One has

$$[\boldsymbol{\xi}_2, \boldsymbol{\xi}_1] = -\boldsymbol{\xi}_1, \quad [\boldsymbol{\xi}_2, \boldsymbol{\xi}_3] = \boldsymbol{\xi}_3, \quad [\boldsymbol{\xi}_1, \boldsymbol{\xi}_3] = \boldsymbol{\xi}_2 \quad \Longrightarrow \quad \mathfrak{sl}(2, \mathbb{R}) \text{ algebra}$$

Isometry groups

$$G_{\text{ERN}} = \mathbb{R} \times \text{SO}(3)$$
 | $G_{\text{NHERN}} = \text{SL}(2, \mathbb{R}) \times \text{SO}(3)$
 $\dim G_{\text{ERN}} = 4$ | $\dim G_{\text{NHERN}} = 6$

A peculiar feature of ERN: the Couch-Torrence inversion



The map $\Phi : \operatorname{Ext} \to \operatorname{Ext}$ defined by

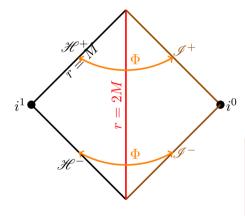
$$\Phi(t, r, \theta, \varphi) = \left(t, \frac{rM}{r - M}, \theta, \varphi\right)$$

or equivalently by

$$\Phi(t, r_*, \theta, \varphi) = (t, -r_*, \theta, \varphi)$$

is an involution that fixes the photon sphere $\{r=2M\}$ and interchanges \mathscr{H}^+ and \mathscr{I}^+ , as well as \mathscr{H}^- and \mathscr{I}^- .

A peculiar feature of ERN: the Couch-Torrence inversion



The map $\Phi : \operatorname{Ext} \to \operatorname{Ext}$ defined by

$$\Phi(t, r, \theta, \varphi) = \left(t, \frac{rM}{r - M}, \theta, \varphi\right)$$

or equivalently by

$$\Phi(t, r_*, \theta, \varphi) = (t, -r_*, \theta, \varphi)$$

is an involution that fixes the photon sphere $\{r=2M\}$ and interchanges \mathscr{H}^+ and \mathscr{I}^+ , as well as \mathscr{H}^- and \mathscr{I}^- .

 Φ is a conformal isometry of the exterior region:

$$\Phi^* oldsymbol{g} = rac{M^2}{(r-M)^2} oldsymbol{g}$$

[Couch & Torrence, Gen. Relat. Gravit. 16, 789 (1984)]

Outline

- 1 Symmetries of the extreme Reissner-Nordström black hole
- 2 The peeling property and its variants
- Peeling for the wave equation in ERN spacetime
- Peeling at the ERN horizon

Peeling in Minkowski spacetime

Peeling of massless fields (Sachs, 1961)

An outgoing massless field Ψ of spin s, along a null geodesic $\mathscr L$ to $\mathscr I^+$, can be expanded as

$$\Psi = \sum_{k=0}^{2s-1} \frac{\Psi_k}{r^{k+1}} + O\left(\frac{1}{r^{2s+1}}\right),\,$$

where r is an affine parameter along \mathscr{L} and Ψ_k has 2s-k principal null directions (PND) that coincide with the null tangent to \mathscr{L} .

•
$$s=1$$
: $\Psi=F$, ℓ PND $\iff \ell^a F_{a[b}\ell_{c]}=0$, $F=rac{N}{r}+rac{I}{r^2}+O\left(rac{1}{r^3}
ight)$

•
$$s=2$$
: $\Psi=C$, ℓ PND $\iff \ell^b\ell^c\ell_{[e}C_{a]bc[d}\ell_{f]}=0$, $C=\frac{N}{r}+\frac{III}{r^2}+\frac{II}{r^3}+\frac{I}{r^4}+O\left(\frac{1}{r^5}\right)$

Extending the peeling to asymptotically flat spacetimes

Penrose conformal completion

Physical spacetime manifold (\mathcal{M}, g) admits a conformal completion at infinity iff \exists a Lorentzian manifold $(\hat{\mathcal{M}}, \hat{g})$ with boundary \mathscr{I} and a smooth function $\Omega : \hat{\mathcal{M}} \to \mathbb{R}^+$ such that

- \mathcal{M} is the interior of $\hat{\mathcal{M}}$: $\hat{\mathcal{M}} = \mathcal{M} \sqcup \mathcal{I}$
- ullet on ${\mathscr M}$, $\Omega>0$ and $\hat{m g}=\Omega^2{m g}$
- ullet on \mathscr{I} , $\Omega=0$ and $\mathbf{d}\Omega\neq0$

Penrose reformulation of peeling (1965)

The peeling property of Ψ is equivalent to the conformally rescaled Ψ extending to a continuous field at \mathscr{I} .

This works well for Minkowski, which has a fully regular conformal compactification in the Einstein cylinder $\mathbb{R} \times \mathbb{S}^3$, including at spatial infinity i^0 .

But, for a curved spacetime, i^0 is in general a singular point and it is not clear whether the peeling of massless fields holds for a sufficiently generic class of initial data...

The peeling à la Mason-Nicolas

Penrose peeling involves an expansion in powers of 1/r inherited from a Taylor expansion of the field that is assumed to be C^k at \mathscr{I}^+ . Now, the initial value problem of hyperbolic equations is ill-posed in C^k spaces, so it is difficult to characterize the class of initial data that give rise to such a peeling.

In 2009, L. Mason & J.-P. Nicolas [J. Inst. Math. Jussieu 8, 179] have reformulated the peeling in Schwarzschild spacetime by characterizing the regularity at \mathscr{I}^+ in terms of Sobolev-type spaces, via energy fluxes with respect to the Morawetz vector field.

Sobolev norms are adapted to the initial value problem for hyperbolic equations and Mason & Nicolas could provide a complete description of the class of initial data on a Cauchy hypersurface that give rise to a peeling at any order at \mathscr{I}^+ .

We are going to consider Mason-Nicolas peeling in ERN spacetime

Outline

- 1 Symmetries of the extreme Reissner-Nordström black hole
- 2 The peeling property and its variants
- Peeling for the wave equation in ERN spacetime
- Peeling at the ERN horizon

The conformal wave equation

Massless field equations are conformally invariant. Here we focus on the spin s=0 case, i.e. a scalar field.

On spacetime $(\mathcal{M}, \boldsymbol{g})$, the conformal wave equation for a scalar field ϕ is

$$\Box_{\mathbf{g}}\phi - \frac{\mathcal{R}}{6}\phi = 0, \tag{1}$$

where $\Box_{\boldsymbol{q}} := \nabla_{\mu} \nabla^{\mu}$ and \mathcal{R} is the Ricci scalar of g.

(1) is conformally invariant: if $\hat{q} = \Omega^2 q$,

(1)
$$\iff \Box_{\hat{g}}\hat{\phi} - \frac{\hat{\mathcal{R}}}{6}\hat{\phi} = 0 \text{ for } \hat{\phi} := \Omega^{-1}\phi$$

Conformal completion of ERN

ERN in outgoing EF
$$(u := t - r_*)$$
: $\mathbf{g} = -\left(1 - \frac{M}{r}\right)^2 \mathbf{d}u^2 - 2\mathbf{d}u\mathbf{d}r + r^2\left(\mathbf{d}\theta^2 + \sin^2\theta\mathbf{d}\varphi^2\right)$
Choice of conformal factor: $\Omega = 1/r$

- → same as for conformal completion of Schwarzschild introduced by Penrose (1965)
- \rightarrow different from the standard one for Minkowski: $\Omega = 2[(1+(t-r)^2)(1+(t+r)^2)]^{-1/2}$

In terms of the coordinates (u, R, θ, φ) where R := 1/r, $\Omega = R$ and the conformal metric is

$$\hat{\mathbf{g}} = R^2 \mathbf{g} = -R^2 (1 - MR)^2 \mathbf{d}u^2 + 2\mathbf{d}u\mathbf{d}R + \mathbf{d}\theta^2 + \sin^2\theta \mathbf{d}\varphi^2$$

 $\Longrightarrow \mathscr{I}^+$ is the hypersurface R=0 and is spanned by the coordinates (u,θ,φ) NB: i^0 remains at infinity, at $u\to -\infty$ on each slice $t=\mathrm{const.}$

The conformal wave equation on ERN

For ERN (as for any electrovacuum solution in 4-dim GR), $\mathcal{R}=0$

 \Longrightarrow conformal wave equation (1) reduces to $\Box_{\boldsymbol{q}}\phi=0$

But $\hat{R} = 12MR(MR - 1) \neq 0$ and the conformal wave equation becomes

$$\Box_{\hat{g}} \, \hat{\phi} + 2MR(1 - MR)\hat{\phi} = 0, \qquad \hat{\phi} := R^{-1}\phi,$$
 (2)

with

$$\Box_{\hat{\boldsymbol{g}}} \, \hat{\phi} = 2 \frac{\partial^2 \hat{\phi}}{\partial u \partial R} + \frac{\partial}{\partial R} \left(R^2 (1 - MR)^2 \frac{\partial \hat{\phi}}{\partial R} \right) + \Delta_{\mathbb{S}^2} \hat{\phi}$$

Goal

Characterize the regularity at \mathscr{I}^+ of the solution ϕ in terms of the regularity and decay of the initial data on a Cauchy hypersurface Σ_0 .

Focusing on a neighborhood of i^0

In order to control the regularity of $\hat{\phi}$ at \mathscr{I}^+ , it suffices to control it in a neighborhood of i^0 : provided the initial data have the correct regularity away from i^0 , the regularity of $\hat{\phi}$ can be seen to extend to the whole of \mathscr{I}^+ .

Choose the Cauchy hypersurface $\Sigma_0 = \{t = 0\}$

For $u_0 \ll -M$, define the neighborhood of i^0 in the future of Σ_0 by

$$\Omega_{u_0} = \{ u \le u_0, t \ge 0 \}$$

The boundary of Ω_{u_0} is made of 3 parts:

$$\Sigma_{0,u_0} = \Sigma_0 \cap \Omega_{u_0}, \quad \mathscr{I}_{u_0}^+ = \mathscr{I}^+ \cap \Omega_{u_0}, \quad \mathcal{S}_{u_0} = \{u = u_0\} \cap \Omega_{u_0}$$

The Morawetz vector field and the associated energy current

Consider the vector field

$$K := u^2 \partial_u - 2(1 + uR) \partial_R$$

K has the same expression in terms of (u,R) coordinates as the conformal Killing vector $u^2 \partial_u + v^2 \partial_v$ of Minkowski spacetime introduced by C. Morawetz (1962) to establish decay properties of solutions to the wave equation in flat space.

One cas show that K is future-directed timelike in a neighborhood of i^0 . Moreover, it is transverse to \mathscr{I}^+ .

For Minkowski, K is a Killing vector of $\hat{g} = R^2 \hat{g}$. Not here, except at \mathscr{I}^+ and i^0 .

The Morawetz-based field energy through a hypersurface

Consider the energy-momentum tensor of the free wave equation $\Box_{\hat{g}}\hat{\phi}=0$, namely

$$T_{ab}(\hat{\phi}) = \hat{\nabla}_a \hat{\phi} \, \hat{\nabla}_b \hat{\phi} - \frac{1}{2} \hat{\nabla}_c \hat{\phi} \, \hat{\nabla}^c \hat{\phi} \, \hat{g}_{ab}$$

and define the current

$$J_a(\hat{\phi}) := T_{ab}(\hat{\phi})K^b$$

 $J(\hat{\phi})$ is not conserved since $\hat{\nabla}^a J_a(\hat{\phi}) = T_{ab} \hat{\nabla}^{(a} K^{b)} - \frac{\hat{\mathcal{R}}}{6} \hat{\phi} K^a \hat{\nabla}_a \phi$ but one can control the r.h.s. in a neighborhood of i^0 .

Given an oriented hypersurface $\mathscr S$ of $\hat{\mathscr M}$, define the "energy" $\mathcal E_{\mathscr S}(\hat{\phi}) := \int_{\mathscr S} \star \boldsymbol J(\hat{\phi})$

The peeling property at \mathscr{I}^+

[Borthwick, EG, Nicolas, J. Hyper. Diff. Eq. 22, 29 (2025)]

Let $k\in\mathbb{N}$ and $\hat{\phi}$ a solution to the conformal wave equation (2). Then $\mathcal{E}_{\mathscr{I}_{u_0}^+}(\partial_R^q\nabla_{\mathbb{S}^2}^p\hat{\phi})+\mathcal{E}_{\mathcal{S}_{u_0}}(\partial_R^q\nabla_{\mathbb{S}^2}^p\hat{\phi})<+\infty$ for all $p,q\in\mathbb{N}$, $p+q\leq k$ if and only if the initial data $(\hat{\phi},\partial_t\hat{\phi})=(\hat{\phi}_0,\hat{\phi}_1)$ on Σ_0 is chosen in the completion of $C_0^\infty([-u_0,+\infty[_{r_*}\times\mathbb{S}^2)\times C_0^\infty([-u_0,+\infty[_{r_*}\times\mathbb{S}^2)$ in the norm:

$$\left\| \begin{pmatrix} \hat{\phi}_0 \\ \hat{\phi}_1 \end{pmatrix} \right\|_{L}^2 = \sum_{p+q \le k} \mathcal{E}_{\Sigma_{0,u_0}} \left(L^q \nabla_{\mathbb{S}^2}^p \begin{pmatrix} \hat{\phi}_0 \\ \hat{\phi}_1 \end{pmatrix} \right),$$

where
$$L$$
 is the operator defined by
$$L = \begin{pmatrix} -\frac{r^2}{F(r)}\partial_{r_*} & -\frac{r^2}{F(r)} \\ -\frac{r^2}{F(r)}\partial_{r_*}^2 - \Delta_{\mathbb{S}^2} - \frac{2M}{r}\left(1 - \frac{M}{r}\right) & -\frac{r^2}{F(r)}\partial_{r_*} \end{pmatrix}$$

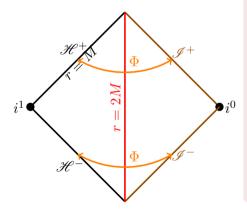
In this case we say that $\hat{\phi}$ peels at order k at infinity.

Outline

- 1 Symmetries of the extreme Reissner-Nordström black hole
- 2 The peeling property and its variants
- Peeling for the wave equation in ERN spacetime
- 4 Peeling at the ERN horizon

Tours, 2 July 2025

The Couch-Torrence inversion as an isometry of $\hat{m{g}}$



The Couch-Torrence inversion

$$\Phi: \quad \widehat{\operatorname{Ext}} \quad \to \quad \widehat{\operatorname{Ext}}$$

$$(t, R, \theta, \varphi) \quad \longmapsto \quad (t, \frac{1}{M} - R, \theta, \varphi)$$

is an isometry of the ERN conformal metric $\hat{\boldsymbol{g}} = R^2 \boldsymbol{g}$:

$$\Phi^*\hat{\boldsymbol{g}} = \hat{\boldsymbol{g}},$$

which obeys

$$\Phi(\mathscr{H}^+) = \mathscr{I}^+$$

[Borthwick, EG, Nicolas, J. Hyper. Diff. Eq. 22, 29 (2025)]

 \Longrightarrow allows one to establish a peeling property at the ERN horizon, from that already obtained at \mathscr{I}^+

Towards the peeling at \mathscr{H}^+ : a neighborhood of i^1

Consider ingoing EF coordinates (v,R,θ,φ) on Ext The Couch-Torrence inversion maps i^0 to the internal infinity i^1 i^1 is the limit $v\to -\infty$ along \mathscr{H}^+ Choose the Cauchy hypersurface $\Sigma_0=\{t=0\}$ For $v_0\ll -M$, define the neighborhood of i^1 in the future of Σ_0 by

$$\Omega_{v_0} = \{ v \le v_0, t \ge 0 \}$$

The boundary of Ω_{v_0} is made of 3 parts:

$$\Sigma_{0,v_0} = \Sigma_0 \cap \Omega_{v_0}, \quad \mathscr{H}_{v_0}^+ = \mathscr{H}^+ \cap \Omega_{v_0}, \quad \tilde{\mathcal{S}}_{v_0} = \{v = v_0\} \cap \Omega_{v_0}$$

The peeling property at \mathscr{H}^+

[Borthwick, EG, Nicolas, J. Hyper. Diff. Eq. 22, 29 (2025)]

Let $k \in \mathbb{N}$ and $\hat{\phi}$ a solution to the conformal wave equation (2). Then $\tilde{\mathcal{E}}_{\mathscr{H}_{v_0}^+}(\partial_R^q \nabla_{\mathbb{S}^2}^p \hat{\phi}) + \tilde{\mathcal{E}}_{\tilde{\mathcal{S}}_{v_0}}(\partial_R^q \nabla_{\mathbb{S}^2}^p \hat{\phi}) < +\infty$ for all $p,q \in \mathbb{N}$, $p+q \leq k$ if and only if the initial data $(\hat{\phi}, \partial_t \hat{\phi}) = (\hat{\phi}_0, \hat{\phi}_1)$ on Σ_0 is chosen in the completion of $C_0^\infty(]-\infty, v_0]_{r_*} \times \mathbb{S}^2) \times C_0^\infty(]-\infty, v_0]_{r_*} \times \mathbb{S}^2)$ in the norm:

$$\left\| \begin{pmatrix} \hat{\phi}_0 \\ \hat{\phi}_1 \end{pmatrix} \right\|_{L}^2 = \sum_{p+q \le k} \mathcal{E}_{\Sigma_{0,v_0}} \left(\tilde{L}^q \nabla^p_{\mathbb{S}^2} \begin{pmatrix} \hat{\phi}_0 \\ \hat{\phi}_1 \end{pmatrix} \right),$$

where
$$\tilde{L}$$
 is the operator defined by $\tilde{L} = \begin{pmatrix} -\frac{r^2}{F(r)}\partial_{r_*} & \frac{r^2}{F(r)} \\ \frac{r^2}{F(r)}\partial_{r_*}^2 + \Delta_{\mathbb{S}^2} + \frac{2M}{r}\left(1 - \frac{M}{r}\right) & -\frac{r^2}{F(r)}\partial_{r_*} \end{pmatrix}$

In this case we say that $\hat{\phi}$ peels at order k at the event horizon \mathcal{H}^+ .

Perspectives

Extend peeling at horizon to extreme Kerr black hole, but no Couch-Torrence (conformal) isometry in that case!
 NB: Peeling at \$\mathcal{I}^+\$ of Kerr has been obtained in [Nicolas & Xuan Pham, Ann. H. Poincaré 20, 3419 (2019)]