DYNAMICAL FORMATION OF REGULAR BLACK HOLES

PABLO BUENO

"BLACK HOLES AND THEIR SYMMETRIES"

TOURS — JULY 2025

Based on:

- [PB, Cano, Hennigar] *arXiv*:2403.04827. PLB 861 (2025) 139260
- [PB, Cano, Hennigar, Murcia] arXiv:2412.02740. PRD 111 (2025) 10, 104009
- [PB, Cano, Hennigar, Murcia] arXiv:2412.02742. PRL 134 (2025) 18, 181401
- [PB, Cano, Hennigar, Murcia, Vicente-Cano] arXiv:2505.09680. PRD xxx (2025) xx, xxxxxx
- + work in progress

• Predicted by General Relativity [Penrose; Hawking]

- Predicted by General Relativity [Penrose; Hawking]
 - ⇒ They occur in the interior of black holes

- Predicted by General Relativity [Penrose; Hawking]
 ⇒ They occur in the interior of black holes
- Expected to be an artifact of an incomplete description...

- Predicted by General Relativity [Penrose; Hawking]
 - ⇒ They occur in the interior of black holes
- Expected to be an artifact of an incomplete description...
 - ⇒ Fundamental question: how do they get resolved?

■ Possibility 1: A fully quantum description is needed to resolve them

- Possibility 1: A fully quantum description is needed to resolve them
- Possibility 2: They can be resolved within a regime in which the classical metric description holds

- Possibility 1: A fully quantum description is needed to resolve them
- Possibility 2: They can be resolved within a regime in which the classical metric description holds ⇒ **regular black holes**

o Black holes with no singularities

- Black holes with no singularities
- Many models proposed [Sakharov; Bardeen; Poisson, Israel; Dymnikova; Hayward; ...]

- Black holes with no singularities
- Many models proposed [Sakharov; Bardeen; Poisson, Israel; Dymnikova; Hayward; ...]
 - ⇒ Not actual GR solutions

- Black holes with no singularities
- Many models proposed [Sakharov; Bardeen; Poisson, Israel; Dymnikova; Hayward; ...]
 - ⇒ Not actual GR solutions: postulated metrics as theoretical test beds...

- Black holes with no singularities
- Many models proposed [Sakharov; Bardeen; Poisson, Israel; Dymnikova; Hayward; ...]
 - \Rightarrow Not actual GR solutions: postulated metrics as theoretical test beds...
 - ...In the absence of a dynamical framework, all these ideas are very poorly justified

$$\mathrm{d}s^2 = -f(r)\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{f(r)} + r^2\mathrm{d}\Omega_{(D-2)}^2\,,$$

$$\mathrm{d}s^2 = -f(r)\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{f(r)} + r^2\mathrm{d}\Omega_{(D-2)}^2\,, \quad \text{where} \quad f(r) \equiv 1 - \frac{2\mathsf{M}r^2}{r^{D-1} + 2\mathsf{M}\alpha}$$

$$\mathrm{d}s^2 = -f(r)\mathrm{d}t^2 + rac{\mathrm{d}r^2}{f(r)} + r^2\mathrm{d}\Omega_{(D-2)}^2\,, \quad ext{where} \quad f(r) \equiv 1 - rac{2\mathsf{M}r^2}{r^{D-1} + 2\mathsf{M}lpha}$$

 \circ Deformation parametrized by α

L

$$\mathrm{d}s^2 = -f(r)\mathrm{d}t^2 + rac{\mathrm{d}r^2}{f(r)} + r^2\mathrm{d}\Omega_{(D-2)}^2\,, \quad ext{where} \quad f(r) \equiv 1 - rac{2\mathsf{M}r^2}{r^{D-1} + 2\mathsf{M}lpha}$$

- \circ Deformation parametrized by α
- o It looks like Schwarzschild at long distances...

$$f(r) \stackrel{r \to \infty}{=} 1 - \frac{2M}{r^{D-3}} + \dots$$

$$\mathrm{d}s^2 = -f(r)\mathrm{d}t^2 + rac{\mathrm{d}r^2}{f(r)} + r^2\mathrm{d}\Omega_{(D-2)}^2\,, \quad ext{where} \quad f(r) \equiv 1 - rac{2\mathsf{M}r^2}{r^{D-1} + 2\mathsf{M}lpha}$$

- \circ Deformation parametrized by α
- o It looks like Schwarzschild at long distances...

$$f(r) \stackrel{r \to \infty}{=} 1 - \frac{2M}{r^{D-3}} + \dots$$

o ...but the curvature singularity gets replaced by a de Sitter core

$$f(r) \stackrel{r\to 0}{=} 1 - \frac{r^2}{\alpha} + \dots$$

$$\mathrm{d}s^2 = -f(r)\mathrm{d}t^2 + rac{\mathrm{d}r^2}{f(r)} + r^2\mathrm{d}\Omega_{(D-2)}^2\,, \quad ext{where} \quad f(r) \equiv 1 - rac{2\mathsf{M}r^2}{r^{D-1} + 2\mathsf{M}lpha}$$

- \circ Deformation parametrized by α
- o It looks like Schwarzschild at long distances...

$$f(r) \stackrel{r\to\infty}{=} 1 - \frac{2M}{r^{D-3}} + \dots$$

o ...but the curvature singularity gets replaced by a de Sitter core

$$f(r) \stackrel{r \to 0}{=} 1 - \frac{r^2}{\alpha} + \dots$$

All curvature invariants remain finite everywhere (in particular at r = 0).

Sometimes, regular black holes can be obtained as solutions to GR coupled to theories of NLE [Ayón-Beato, García; Bronnikov; Fan, Wang; ...]

- Sometimes, regular black holes can be obtained as solutions to GR coupled to theories of NLE [Ayón-Beato, García; Bronnikov; Fan, Wang; ...]
- o For instance, the Hayward black hole is a solution to

$$\mathcal{L} = R - rac{12}{\sigma} rac{(\sigma \mathcal{F})^{3/2}}{(1 + (\sigma \mathcal{F})^{3/4})^2}, \quad \mathcal{F} \equiv F_{ab} F^{ab} \quad \sigma \equiv rac{2q^3}{m}$$

- Sometimes, regular black holes can be obtained as solutions to GR coupled to theories of NLE [Ayón-Beato, García; Bronnikov; Fan, Wang; ...]
- o For instance, the Hayward black hole is a solution to

$$\mathcal{L} = R - rac{12}{\sigma} rac{(\sigma \mathcal{F})^{3/2}}{(1 + (\sigma \mathcal{F})^{3/4})^2}, \quad \mathcal{F} \equiv F_{ab} F^{ab} \quad \sigma \equiv rac{2q^3}{m}$$

Highly ad hoc matter required

- Sometimes, regular black holes can be obtained as solutions to GR coupled to theories of NLE [Ayón-Beato, García; Bronnikov; Fan, Wang; ...]
- o For instance, the Hayward black hole is a solution to

$$\mathcal{L} = R - rac{12}{\sigma} rac{(\sigma \mathcal{F})^{3/2}}{(1 + (\sigma \mathcal{F})^{3/4})^2}, \quad \mathcal{F} \equiv F_{ab} F^{ab} \quad \sigma \equiv rac{2q^3}{m}$$

→ Highly ad hoc matter required
 ⇒ e.g., no Maxwellian limit

- Sometimes, regular black holes can be obtained as solutions to GR coupled to theories of NLE [Ayón-Beato, García; Bronnikov; Fan, Wang; ...]
- o For instance, the Hayward black hole is a solution to

$$\mathcal{L} = R - rac{12}{\sigma} rac{(\sigma \mathcal{F})^{3/2}}{(1 + (\sigma \mathcal{F})^{3/4})^2}, \quad \mathcal{F} \equiv F_{ab} F^{ab} \quad \sigma \equiv rac{2q^3}{m}$$

- → Highly ad hoc matter required
 ⇒ e.g., no Maxwellian limit
- Requires fine tuning of parameters

- Sometimes, regular black holes can be obtained as solutions to GR coupled to theories of NLE [Ayón-Beato, García; Bronnikov; Fan, Wang; ...]
- o For instance, the Hayward black hole is a solution to

$$\mathcal{L} = R - rac{12}{\sigma} rac{(\sigma \mathcal{F})^{3/2}}{(1 + (\sigma \mathcal{F})^{3/4})^2}, \quad \mathcal{F} \equiv F_{ab} F^{ab} \quad \sigma \equiv rac{2q^3}{m}$$

- → Highly ad hoc matter required
 ⇒ e.g., no Maxwellian limit
- Requires fine tuning of parameters
 ⇒ regular black holes are not the general solutions of these theories
 - _

 In principle, singularities should be cured by some modification of Einstein gravity

- In principle, singularities should be cured by some modification of Einstein gravity
- Quantum effects from top-down constructions (e.g., in String Theory)
 infinite towers of higher-curvature corrections to Einstein gravity

- In principle, singularities should be cured by some modification of Einstein gravity
- Quantum effects from top-down constructions (e.g., in String Theory)
 infinite towers of higher-curvature corrections to Einstein gravity
- Perhaps those would resolve singularities somehow

- In principle, singularities should be cured by some modification of Einstein gravity
- Quantum effects from top-down constructions (e.g., in String Theory)
 infinite towers of higher-curvature corrections to Einstein gravity
- Perhaps those would resolve singularities somehow
- Understanding such effects is in general completely out of reach...

Regular Black Holes from Pure Gravity

Regular Black Holes from Pure Gravity

 We consider a bottom-up setup where we can control the effects of infinite towers of higher-curvature corrections to Einstein gravity

Regular Black Holes from Pure Gravity

- We consider a bottom-up setup where we can control the effects of infinite towers of higher-curvature corrections to Einstein gravity
- o The result is a generic resolution of the Schwarzschild singularity!

Regular Black Holes from Pure Gravity

- We consider a bottom-up setup where we can control the effects of infinite towers of higher-curvature corrections to Einstein gravity
- The result is a generic resolution of the Schwarzschild singularity!
- Regular black holes arise as the unique spherically symmetric solutions of Einstein gravity coupled to infinite towers of higher-curvature terms

Regular Black Holes from Pure Gravity

- We consider a bottom-up setup where we can control the effects of infinite towers of higher-curvature corrections to Einstein gravity
- The result is a generic resolution of the Schwarzschild singularity!
- Regular black holes arise as the unique spherically symmetric solutions of Einstein gravity coupled to infinite towers of higher-curvature terms
- First dynamical model of matter collapse leading to the formation of regular black holes!

 \circ Consider a general $\mathcal{L}(R_{abcd}, g^{ef})$ theory of gravity

- \circ Consider a general $\mathcal{L}(R_{abcd}, g^{ef})$ theory of gravity
- The theory is Quasi-topological if it possesses 2nd order EOM on a general static and spherically symmetric background

- \circ Consider a general $\mathcal{L}(R_{abcd}, g^{ef})$ theory of gravity
- The theory is Quasi-topological if it possesses 2nd order EOM on a general static and spherically symmetric background
- ∘ In D = 4 only GR satisfies this. Not so for $D \ge 5$

- \circ Consider a general $\mathcal{L}(R_{abcd}, g^{ef})$ theory of gravity
- The theory is Quasi-topological if it possesses 2nd order EOM on a general static and spherically symmetric background
- \circ In D=4 only GR satisfies this. Not so for $D\geq 5$
- \circ Quasi-topological theories constructed at curvature orders: n=3 [Oliva, Ray; Myers, Robinson],

- \circ Consider a general $\mathcal{L}(R_{abcd}, g^{ef})$ theory of gravity
- The theory is Quasi-topological if it possesses 2nd order EOM on a general static and spherically symmetric background
- \circ In D=4 only GR satisfies this. Not so for $D\geq 5$
- \circ Quasi-topological theories constructed at curvature orders: n=3 [Oliva, Ray; Myers, Robinson], n=4 [Dehghani, Bazrafshan, Mann, Mehdizadeh, Ghanaatian, Vahidinia],

- \circ Consider a general $\mathcal{L}(R_{abcd}, g^{ef})$ theory of gravity
- The theory is Quasi-topological if it possesses 2nd order EOM on a general static and spherically symmetric background
- \circ In D=4 only GR satisfies this. Not so for $D\geq 5$
- \circ Quasi-topological theories constructed at curvature orders: n=3 [Oliva, Ray; Myers, Robinson], n=4 [Dehghani, Bazrafshan, Mann, Mehdizadeh, Ghanaatian, Vahidinia], n=5 [Cisterna, Guajardo, Hassaine, Oliva]

- o Consider a general $\mathcal{L}(R_{abcd}, g^{ef})$ theory of gravity
- The theory is Quasi-topological if it possesses 2nd order EOM on a general static and spherically symmetric background
- \circ In D=4 only GR satisfies this. Not so for $D\geq 5$
- O Quasi-topological theories constructed at curvature orders: n=3 [Oliva, Ray; Myers, Robinson], n=4 [Dehghani, Bazrafshan, Mann, Mehdizadeh, Ghanaatian, Vahidinia], n=5 [Cisterna, Guajardo, Hassaine, Oliva] and $\forall n$ (and $\forall D \geq 5$) [PB, Cano, Hennigar; Moreno, Murcia].

Let W_{abcd} denote the Weyl tensor and Z_{ab} the traceless part of the Ricci tensor, then:

$$\begin{split} & \mathcal{Z}_{(1)} = R \,, \\ & \mathcal{Z}_{(2)} = \frac{1}{(D-2)} \left[\frac{W_{abcd} W^{abcd}}{D-3} - \frac{4 Z_{ab} Z^{ab}}{D-2} \right] + \frac{Z_{(1)}^2}{D(D-1)} \,, \\ & \mathcal{Z}_{(3)} = \frac{24}{(D-2)(D-3)} \left[\frac{W_{ac}^{bd} Z_b^2 Z_c^d}{(D-2)^2} - \frac{W_{acde} W^{bcde} Z_b^a}{(D-2)(D-4)} + \frac{2(D-3) Z_b^a Z_c^b Z_a^c}{3(D-2)^3} + \frac{(2D-3) W^{ab}_{\ \ cd} W^{cd}_{\ \ eff} W^{ef}_{\ \ ab}}{12(D((D-9)D+26)-22)} \right] + \frac{3 Z_{(1)} Z_{(2)}}{D(D-1)} - \frac{2 Z_{(1)}^3}{D^2(D-1)^2} \,, \\ & \mathcal{Z}_{(4)} = \frac{96}{(D-2)^2(D-3)} \left[\frac{(D-1) \left(W_{abcd} W^{abcd}\right)^2}{8D(D-2)^2(D-3)} - \frac{(2D-3) Z_e^f Z_f^e W_{abcd} W^{abcd}}{4(D-1)(D-2)^2} - \frac{2 W_{acbd} W^{cefg} W^d_{\ \ \ efg} Z^{ab}}{D(D-3)(D-4)} \right] \\ & - \frac{4 Z_{ac} Z_{de} W^{bdce} Z_b^a}{(D-2)^2(D-4)} + \frac{(D^2-3D+3) \left(Z_a^b Z_b^a\right)^2}{D(D-1)(D-2)^3} - \frac{Z_a^b Z_b^c Z_c^d Z_d^a}{(D-2)^3} + \frac{(2D-1) W_{abcd} W^{aecf} Z^{bd} Z_{ef}}{D(D-2)(D-3)} \right] + \frac{4 Z_{(1)} Z_{(3)} - 3 Z_{(2)}^2}{D(D-1)} \,, \end{split}$$

$$\begin{split} \mathcal{Z}_{(5)} &= \frac{960(D-1)}{(D-2)^4(D-3)^2} \left[\frac{(D-2)W_{ghij}W^{ghij}W_{ab}c^dW_{cd}^{ef}W_{ef}^{ef}^{ab}}{40D(D^3-9D^2+26D-22)} + \frac{4(D-3)Z_b^bZ_c^cZ_c^dZ_e^aZ_e^a}{5(D-1)(D-2)^2(D-4)} \right. \\ &\quad - \frac{(3D-1)W^{ghij}W_{ghij}W_{acde}W^{bcde}Z_b^a}{10D(D-1)^2(D-4)} - \frac{4(D-3)(D^2-2D+2)Z_a^bZ_b^aZ_c^dZ_e^dZ_c^e}{5D(D-1)^2(D-2)^2(D-4)} \\ &\quad - \frac{(D-3)(3D-1)(D^2+2D-4)W^{ghij}W_{ghij}Z_c^dZ_e^dZ_c^e}{10D(D-1)^2(D+1)(D-2)^2(D-4)} + \frac{(5D^2-7D+6)Z_g^hZ_g^hW_{abcd}Z^{ac}Z^{bd}}{10D(D-1)^2(D-2)} \\ &\quad + \frac{(D-2)(D-3)(15D^5-148D^4+527D^3-800D^2+472D-88)W_{ab}^{cd}W_{cd}^{ef}W_{ef}^{ab}Z_g^hZ_g^b}{40D(D-1)^2(D-4)(D^5-15D^4+91D^3-277D^2+418D-242)} \\ &\quad - \frac{2(3D-1)Z^{ab}W_{acbd}Z^{ef}W_e^{ef}^gZ_g^d}{D(D^2-1)(D-4)} - \frac{Z_a^bZ_b^cZ_{cd}Z_{ef}W^{eefd}}{(D-1)(D-2)} + \frac{(D-3)W_{acde}W^{bcde}Z_b^aZ_f^2Z_g^f}{5D(D-1)^2(D-4)} \\ &\quad - \frac{(D-2)(D-3)(3D-2)Z_b^aZ_b^cW_{daef}W^{efgh}W_{gh}^{dc}}{(D-1)(D-2)} + \frac{W_{ghij}W^{ghij}Z^{ac}Z^{bd}W_{abcd}}{20D(D-1)^2} \\ &\quad + \frac{5Z_{(1)}Z_{(4)}-2Z_{(2)}Z_{(3)}}{D(D-1)} + \frac{6Z_{(1)}Z_{(2)}^2-8Z_{(1)}^2Z_{(3)}}{D^2(D-1)^2} \,. \end{split}$$

$$\begin{split} \mathcal{Z}_{(5)} &= \frac{960(D-1)}{(D-2)^4(D-3)^2} \left[\frac{(D-2)W_{ghij}W^{ghij}W_{ab}c^{cd}W_{cd}^{ef}W_{ef}^{ab}}{40D(D^3-9D^2+26D-22)} + \frac{4(D-3)Z_{a}^{b}Z_{b}^{c}Z_{c}^{c}Z_{e}^{e}Z_{e}Z_{e}^{e}Z_$$

$$\mathcal{Z}_{(n+5)} = \frac{3(n+3)\mathcal{Z}_{(1)}\mathcal{Z}_{(n+4)}}{D(D-1)(n+1)} - \frac{3(n+4)\mathcal{Z}_{(2)}\mathcal{Z}_{(n+3)}}{D(D-1)n} + \frac{(n+3)(n+4)\mathcal{Z}_{(3)}\mathcal{Z}_{(n+2)}}{D(D-1)n(n+1)} \, .$$

o This set up may seem very restrictive...

- This set up may seem very restrictive...
- ...however, any gravitational effective action can be mapped, via a field redefinition, to a Quasi-topological gravity [PB, Cano, Moreno, Murcia; PB, Cano, Hennigar]

$$I_{\text{EFT}} = \int \frac{\mathrm{d}^{D} x \sqrt{|g|}}{16\pi G} \left[R + \sum_{n} \beta_{n} \operatorname{Riem}^{n} \right] \overset{g_{ab} \to g_{ab} + \beta_{2} R_{ab} + \dots}{\Longrightarrow} I_{\text{QT}} = \int \frac{\mathrm{d}^{D} x \sqrt{|g|}}{16\pi G} \left[R + \sum_{n} \alpha_{n} \mathcal{Z}_{n} \right]$$

- This set up may seem very restrictive...
- ...however, any gravitational effective action can be mapped, via a field redefinition, to a Quasi-topological gravity [PB, Cano, Moreno, Murcia; PB, Cano, Hennigar]

$$I_{\text{EFT}} = \int \frac{\mathrm{d}^{D} x \sqrt{|g|}}{16\pi G} \left[R + \sum_{n} \beta_{n} \operatorname{Riem}^{n} \right] \overset{g_{ab} \to g_{ab} + \beta_{2} R_{ab} + \dots}{\Longrightarrow} I_{\text{QT}} = \int \frac{\mathrm{d}^{D} x \sqrt{|g|}}{16\pi G} \left[R + \sum_{n} \alpha_{n} \mathcal{Z}_{n} \right]$$

 \Rightarrow QT theories capture the most general perturbative effects arising from any gravitational action

- o This set up may seem very restrictive...
- ...however, any gravitational effective action can be mapped, via a field redefinition, to a Quasi-topological gravity [PB, Cano, Moreno, Murcia; PB, Cano, Hennigar]

$$\boxed{I_{\text{EFT}} = \int \frac{\mathrm{d}^{D} x \sqrt{|g|}}{16\pi G} \left[R + \sum_{n} \beta_{n} \text{Riem}^{n} \right] \overset{g_{ab} \to g_{ab} + \beta_{2} R_{ab} + \dots}{\Longrightarrow} I_{\text{QT}} = \int \frac{\mathrm{d}^{D} x \sqrt{|g|}}{16\pi G} \left[R + \sum_{n} \alpha_{n} \mathcal{Z}_{n} \right]}$$

 \Rightarrow QT theories capture the most general perturbative effects arising from any gravitational action

Here we will go **beyond** the perturbative regime...

o Consider a general spherically symmetric ansatz

$$\mathrm{d} s^2 = -N(r,t)f(r,t)\mathrm{d} t^2 + rac{\mathrm{d} r^2}{f(r,t)} + r^2\mathrm{d} \Omega_{(D-2)}^2 \,.$$

12 | 3

o Consider a general spherically symmetric ansatz

$$\mathrm{d}s^2 = -N(r,t)f(r,t)\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{f(r,t)} + r^2\mathrm{d}\Omega_{(D-2)}^2 \,.$$

o The full non-linear EOM of a general Quasi-topological gravity

$$I_{\mathrm{QT}} = \int rac{\mathrm{d}^D x \sqrt{|g|}}{16\pi G} \left[R + \sum_{n=2}^{n_{\mathrm{max}}} lpha_n \mathcal{Z}_n
ight]$$

Consider a general spherically symmetric ansatz

$$\mathrm{d}s^2 = -N(r,t)f(r,t)\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{f(r,t)} + r^2\mathrm{d}\Omega_{(D-2)}^2 \,.$$

• The full non-linear EOM of a general Quasi-topological gravity

$$I_{\mathrm{QT}} = \int rac{\mathrm{d}^D x \sqrt{|g|}}{16\pi G} \left[R + \sum_{n=2}^{n_{\mathrm{max}}} \alpha_n \mathcal{Z}_n \right]$$

imply the conditions $\partial_r N(r,t) = 0$, $\partial_t f(r,t) = 0$.

o Consider a general spherically symmetric ansatz

$$\mathrm{d}s^2 = -N(r,t)f(r,t)\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{f(r,t)} + r^2\mathrm{d}\Omega_{(D-2)}^2 \,.$$

o The full non-linear EOM of a general Quasi-topological gravity

$$I_{\mathrm{QT}} = \int rac{\mathrm{d}^D x \sqrt{|g|}}{16\pi G} \left[R + \sum_{n=2}^{n_{\mathrm{max}}} lpha_n \mathcal{Z}_n
ight]$$

imply the conditions $\partial_r N(r,t) = 0$, $\partial_t f(r,t) = 0$.

 \circ Hence, N(r,t)=N(t), f(r,t)=f(r) and without loss of generality we can set N(t)=1

o Consider a general spherically symmetric ansatz

$$\mathrm{d}s^2 = -N(r,t)f(r,t)\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{f(r,t)} + r^2\mathrm{d}\Omega_{(D-2)}^2 \,.$$

o The full non-linear EOM of a general Quasi-topological gravity

$$I_{\mathrm{QT}} = \int rac{\mathrm{d}^D x \sqrt{|g|}}{16\pi G} \left[R + \sum_{n=2}^{n_{\mathrm{max}}} lpha_n \mathcal{Z}_n
ight]$$

imply the conditions $\partial_r N(r,t) = 0$, $\partial_t f(r,t) = 0$.

• Hence, N(r,t) = N(t), f(r,t) = f(r) and without loss of generality we can set $N(t) = 1 \Rightarrow$ our theories satisfy a **Birkhoff theorem**: every spherically symmetric vacuum solution of our theories is also static.

[Oliva, Ray; PB, Cano, Hennigar, Murcia]

• The full non-linear EOM for a general spherically symmetric ansatz reduce to an algebraic equation for f(r):

$$\boxed{\frac{1-f(r)}{r^2} + \sum_{n=2}^{n_{\text{max}}} \alpha_n \frac{(D-2n)}{(D-2)} \left[\frac{1-f(r)}{r^2}\right]^n = \frac{2M}{r^{D-1}}}$$

where M is an integration constant related to the mass.

o Case 1: Einstein gravity,

∘ Case 1: Einstein gravity, $\alpha_n = o \forall n \ge 2$:

∘ Case 1: Einstein gravity, $\alpha_n = o \forall n \ge 2$:

$$f(r) = 1 - \frac{2M}{r^{D-3}}$$
 (Schwarzschild black hole)

∘ Case 1: Einstein gravity, $\alpha_n = o \forall n \ge 2$:

$$f(r) = 1 - \frac{2M}{r^{D-3}}$$
 (Schwarzschild black hole)

o Case 2: Quasi-topological gravity with a finite number of corrections,

∘ Case 1: Einstein gravity, $\alpha_n = o \forall n \ge 2$:

$$f(r) = 1 - \frac{2M}{r^{D-3}}$$
 (Schwarzschild black hole)

• Case 2: Quasi-topological gravity with a finite number of corrections, $\alpha_n =$ 0 $\forall n > n_{\text{max}}$:

∘ Case 1: Einstein gravity, $\alpha_n = o \forall n \ge 2$:

$$f(r) = 1 - \frac{2M}{r^{D-3}}$$
 (Schwarzschild black hole)

∘ Case 2: Quasi-topological gravity with a finite number of corrections, $\alpha_n =$ o \forall $n > n_{\max}$:

$$f(r) \stackrel{r \to 0}{=} 1 - \left(\frac{2\mathsf{M}}{\alpha_{\max}}\right)^{1/n_{\max}} r^{2 - \frac{(D-1)}{n_{\max}}} + \dots$$
 (Singularity persists, but weaker)

∘ Case 1: Einstein gravity, $\alpha_n = o \forall n \ge 2$:

$$f(r) = 1 - \frac{2M}{r^{D-3}}$$
 (Schwarzschild black hole)

∘ Case 2: Quasi-topological gravity with a finite number of corrections, $\alpha_n =$ o \forall $n > n_{\max}$:

$$f(r) \stackrel{r \to 0}{=} 1 - \left(\frac{2M}{\alpha_{\max}}\right)^{1/n_{\max}} r^{2 - \frac{(D-1)}{n_{\max}}} + \dots$$
 (Singularity persists, but weaker)

Note that exponent tends to 2 as $n_{
m max} o \infty$...

[PB, Cano, Hennigar]

o Case 3: Quasi-topological gravity with an infinite number of corrections

[PB, Cano, Hennigar]

 \circ Case 3: Quasi-topological gravity with an infinite number of corrections $n_{\max} \to \infty$, dS core emerges and resolves the singularity!

[PB, Cano, Hennigar]

 \circ Case 3: Quasi-topological gravity with an infinite number of corrections $n_{\max} \to \infty$, dS core emerges and resolves the singularity!

[PB, Cano, Hennigar]

- Case 3: Quasi-topological gravity with an infinite number of corrections $n_{\max} \to \infty$, dS core emerges and resolves the singularity!
- o This occurs quite generically. Sufficient condition:

$$\alpha_n \geq 0 \,\,\forall \,\, n \,, \quad \lim_{n \to \infty} (\alpha_n)^{\frac{1}{n}} = \mathsf{C} > \mathsf{O}$$

[PB, Cano, Hennigar]

- \circ Case 3: Quasi-topological gravity with an infinite number of corrections $n_{\max} \to \infty$, dS core emerges and resolves the singularity!
- This occurs quite generically. Sufficient condition:

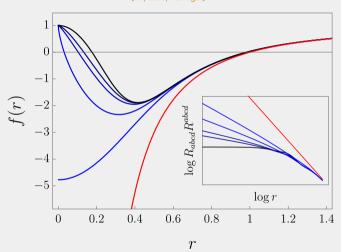
$$\alpha_n \geq 0 \ \forall \ n \ , \quad \lim_{n \to \infty} (\alpha_n)^{\frac{1}{n}} = C > 0$$

Example:

$$\alpha_n = \frac{(D-2)}{(D-2n)} \alpha^{n-1} \quad \Rightarrow \quad f(r) = 1 - \frac{2Mr^2}{r^{D-1} + 2M\alpha}$$
 (Hayward black hole)

Schwarzschild black hole singularity resolution

[PB, Cano, Hennigar]



Schwarzschild black hole singularity resolution

 \circ Under very generic conditions, all spherically symmetric solutions of Quasitopological gravities with infinitely many terms in $D \geq 5$ correspond to generalizations of the Schwarzschild black hole which are completely regular!

Schwarzschild black hole singularity resolution

- \circ Under very generic conditions, all spherically symmetric solutions of Quasitopological gravities with infinitely many terms in $D \geq 5$ correspond to generalizations of the Schwarzschild black hole which are completely regular!
- Our regular black holes are solutions to actual theories, so we can ask now: how do they form?

[PB, Cano, Hennigar, Murcia]

We consider the collapse of a very thin spherical shell of dust

$$T_{ab} = \sigma \delta(\mathbf{r} - \mathbf{R}(\tau)) \mathbf{u}_a \mathbf{u}_b.$$

[PB, Cano, Hennigar, Murcia]

We consider the collapse of a very thin spherical shell of dust

$$T_{ab} = \sigma \delta(\mathbf{r} - \mathbf{R}(\tau)) \mathbf{u}_a \mathbf{u}_b.$$

o Inside the shell, spacetime is flat

[PB, Cano, Hennigar, Murcia]

We consider the collapse of a very thin spherical shell of dust

$$T_{ab} = \sigma \delta(\mathbf{r} - \mathbf{R}(\tau)) \mathbf{u}_a \mathbf{u}_b.$$

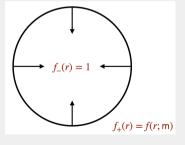
- o Inside the shell, spacetime is flat
- Because of Birkhoff's theorem, outside the shell spacetime is a static and spherically symmetric solution with mass M

[PB, Cano, Hennigar, Murcia]

We consider the collapse of a very thin spherical shell of dust

$$T_{ab} = \sigma \delta(\mathbf{r} - \mathbf{R}(\tau)) \mathbf{u}_a \mathbf{u}_b.$$

- o Inside the shell, spacetime is flat
- Because of Birkhoff's theorem, outside the shell spacetime is a static and spherically symmetric solution with mass M
- \circ Goal: find the trajectory of the shell $R(\tau)$



In order to find it, we need to solve the Israel junction conditions

In order to find it, we need to solve the Israel junction conditions

 \circ Continuity of the induced metric: $h_{AB}^-=h_{AB}^+$

In order to find it, we need to solve the Israel junction conditions

- \circ Continuity of the induced metric: $h_{AB}^-=h_{AB}^+$
- \circ Discontinuity of boundary equations of motion: $\Pi_{AB}^- \Pi_{AB}^+ = 8\pi G T_{AB}$, where $\Pi_{AB} = \delta S/\delta h^{AB}$

In order to find it, we need to solve the Israel junction conditions

- \circ Continuity of the induced metric: $h_{AB}^-=h_{AB}^+$
- Discontinuity of boundary equations of motion: $\Pi_{AB}^- \Pi_{AB}^+ = 8\pi G T_{AB}$, where $\Pi_{AB} = \delta S/\delta h^{AB}$

We get

In order to find it, we need to solve the Israel junction conditions

- \circ Continuity of the induced metric: $h_{AB}^-=h_{AB}^+$
- \circ Discontinuity of boundary equations of motion: $\Pi_{AB}^- \Pi_{AB}^+ = 8\pi G T_{AB}$, where $\Pi_{AB} = \delta S/\delta h^{AB}$

We get

1. The proper mass of the shell is conserved $\Omega_{D-2}R^{D-2}\sigma\equiv m=constant$

In order to find it, we need to solve the Israel junction conditions

- \circ Continuity of the induced metric: $h_{AB}^- = h_{AB}^+$
- \circ Discontinuity of boundary equations of motion: $\Pi_{AB}^- \Pi_{AB}^+ = 8\pi G T_{AB}$, where $\Pi_{AB} = \delta S/\delta h^{AB}$

We get

- 1. The proper mass of the shell is conserved $\Omega_{D-2}R^{D-2}\sigma\equiv m=constant$
- 2. Master equation for the shell motion

Master equation for the shell motion

$$m = \int_0^M \frac{\mathrm{d}M'}{\sqrt{\dot{R}^2 + f(R, M')}}$$

where:

- 1. $m \equiv shell's proper mass$
- 2. $M \equiv \text{spacetime total mass}$
- 3. $\dot{R} \equiv$ shell's proper velocity
- 4. $f(R, M) \equiv \text{metric function for a spacetime of mass } M \text{ evaluated at the shell radius}$

o Case 1: Einstein gravity,

$$f(R,M) = 1 - \frac{2M}{R^{D-3}} \Rightarrow \dot{R}^2 + V(R) = \frac{M^2}{m^2} - 1, \quad \left| V(R) = -\frac{M}{R^{D-3}} - \frac{m^2}{2R^{2(D-3)}} \right|$$

$$V(R) = -rac{M}{R^{D-3}} - rac{m^2}{2R^{2(D-3)}}$$

o Case 1: Einstein gravity,

$$f(R,M) = 1 - \frac{2M}{R^{D-3}} \Rightarrow \dot{R}^2 + V(R) = \frac{M^2}{m^2} - 1, \quad V(R) = -\frac{M}{R^{D-3}} - \frac{m^2}{2R^{2(D-3)}}$$

Effective potential is negative definite ⇒ singularity unavoidable

Case 1: Einstein gravity,

$$f(R,M) = 1 - \frac{2M}{R^{D-3}} \Rightarrow \dot{R}^2 + V(R) = \frac{M^2}{m^2} - 1, \quad \boxed{V(R) = -\frac{M}{R^{D-3}} - \frac{m^2}{2R^{2(D-3)}}}$$

Effective potential is negative definite ⇒ singularity unavoidable ○ Case 2: Quasi-topological gravity with infinitely many terms

$$f(R,M) = 1 - \frac{2MR^2}{R^{D-1} + 2M\alpha} \Rightarrow \dot{R}^2 + V(R) = \frac{M^2}{m^2} - 1,$$

where

o Case 1: Einstein gravity,

$$f(R,M) = 1 - \frac{2M}{R^{D-3}} \Rightarrow \dot{R}^2 + V(R) = \frac{M^2}{m^2} - 1, \quad V(R) = -\frac{M}{R^{D-3}} - \frac{m^2}{2R^{2(D-3)}}$$

Effective potential is negative definite ⇒ singularity unavoidable ○ Case 2: Quasi-topological gravity with infinitely many terms

$$f(R,M) = 1 - \frac{2MR^2}{R^{D-1} + 2M\alpha} \Rightarrow \dot{R}^2 + V(R) = \frac{M^2}{m^2} - 1,$$

where

$$V(R) \stackrel{R \to 0}{=} -\frac{R^2}{\alpha} + \dots, \qquad V(R) \stackrel{R \to \infty}{=} -\frac{M}{R^{D-3}} - \frac{m^2}{2R^{2(D-3)}} + \dots$$

o Case 1: Einstein gravity,

$$f(R,M) = 1 - \frac{2M}{R^{D-3}} \Rightarrow \dot{R}^2 + V(R) = \frac{M^2}{m^2} - 1, \quad V(R) = -\frac{M}{R^{D-3}} - \frac{m^2}{2R^{2(D-3)}}$$

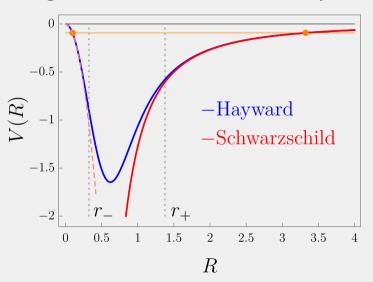
Effective potential is negative definite ⇒ singularity unavoidable ○ Case 2: Quasi-topological gravity with infinitely many terms

$$f(R,M) = 1 - \frac{2MR^2}{R^{D-1} + 2M\alpha} \Rightarrow \dot{R}^2 + V(R) = \frac{M^2}{m^2} - 1,$$

where

$$V(R) \stackrel{R \to 0}{=} -\frac{R^2}{\alpha} + \dots, \qquad V(R) \stackrel{R \to \infty}{=} -\frac{M}{R^{D-3}} - \frac{m^2}{2R^{2(D-3)}} + \dots$$

The potential does not diverge at R = o!



■ A shell that starts collapsing at some finite radius $R_0 > r_+$ keeps on decreasing its size, eventually giving rise to a regular black hole.

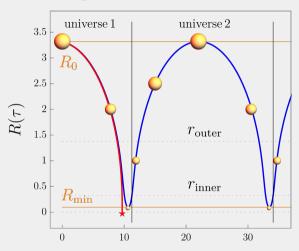
- A shell that starts collapsing at some finite radius $R_0 > r_+$ keeps on decreasing its size, eventually giving rise to a regular black hole.
- As the shell continues to collapse, it crosses $r = r_{-}$ and the inner horizon forms.

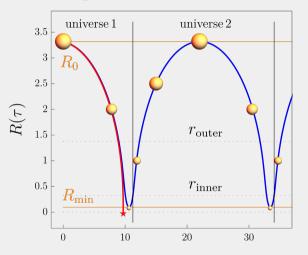
- A shell that starts collapsing at some finite radius $R_0 > r_+$ keeps on decreasing its size, eventually giving rise to a regular black hole.
- As the shell continues to collapse, it crosses $r = r_{-}$ and the inner horizon forms.
- Ultimately, the shell starts climbing the potential and reaches a turning point at which $\dot{R}=o$ and $R=R_{min}$.

- A shell that starts collapsing at some finite radius $R_0 > r_+$ keeps on decreasing its size, eventually giving rise to a regular black hole.
- As the shell continues to collapse, it crosses $r = r_{-}$ and the inner horizon forms.
- Ultimately, the shell starts climbing the potential and reaches a turning point at which $\dot{R}=0$ and $R=R_{\min}$. At that point, a bounce occurs.

- A shell that starts collapsing at some finite radius $R_0 > r_+$ keeps on decreasing its size, eventually giving rise to a regular black hole.
- As the shell continues to collapse, it crosses $r = r_{-}$ and the inner horizon forms.
- Ultimately, the shell starts climbing the potential and reaches a turning point at which $\dot{R} = 0$ and $R = R_{min}$. At that point, a bounce occurs.
- The shell begins increasing its size, crossing the inner and outer horizons and emerging in a new universe from a white hole.

- A shell that starts collapsing at some finite radius $R_0 > r_+$ keeps on decreasing its size, eventually giving rise to a regular black hole.
- As the shell continues to collapse, it crosses $r = r_{-}$ and the inner horizon forms.
- Ultimately, the shell starts climbing the potential and reaches a turning point at which $\dot{R} = 0$ and $R = R_{min}$. At that point, a bounce occurs.
- The shell begins increasing its size, crossing the inner and outer horizons and emerging in a new universe from a white hole.
- The shell grows up to $r = R_0$, at which point the process of collapse starts over.





[PB, Cano, Hennigar, Murcia, Vicente-Cano]

[PB, Cano, Hennigar, Murcia, Vicente-Cano]

We consider the collapse of a spherical star of pressureless dust

$$T_{ab} = \rho u_a u_b$$
,

[PB, Cano, Hennigar, Murcia, Vicente-Cano]

We consider the collapse of a spherical star of pressureless dust

$$T_{ab} = \rho u_a u_b$$
,

Inside the star, FLRW spacetime

$$ds^{2} = -d\tau^{2} + a(\tau)^{2} \left[\frac{dr^{2}}{1 - r^{2}} + r^{2} d\Omega_{(D-2)}^{2} \right]$$

[PB, Cano, Hennigar, Murcia, Vicente-Cano]

We consider the collapse of a spherical star of pressureless dust

$$T_{ab} = \rho u_a u_b$$
,

Inside the star, FLRW spacetime

$$\mathrm{d}s^2 = -\mathrm{d}\tau^2 + a(\tau)^2 \left[\frac{\mathrm{d}r^2}{1 - r^2} + r^2 \mathrm{d}\Omega_{(D-2)}^2 \right]$$

Star surface: $r = \eta_o$.

[PB, Cano, Hennigar, Murcia, Vicente-Cano]

We consider the collapse of a spherical star of pressureless dust

$$T_{ab} = \rho u_a u_b$$
,

o Inside the star, FLRW spacetime

$$\mathrm{d}s^2 = -\mathrm{d}\tau^2 + a(\tau)^2 \left[\frac{\mathrm{d}r^2}{1 - r^2} + r^2 \mathrm{d}\Omega_{(D-2)}^2 \right]$$

Star surface: $r = n_0$.

o Outside the star, static and spherically symmetric solution with mass M

$$\mathrm{d}s^2 = -f(r)\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{f(r)} + r^2\mathrm{d}\Omega_{(D-2)}^2$$

Star surface: $r = R(\tau)$, $t = T(\tau)$.

First junction condition:

$$R(\tau)^2 = a(\tau)^2 \eta_0^2$$
, $f(R(\tau))^2 \dot{T}(\tau)^2 = f(R(\tau)) + \dot{R}(\tau)^2$

First junction condition:

$$R(\tau)^2 = a(\tau)^2 \eta_0^2$$
, $f(R(\tau))^2 \dot{T}(\tau)^2 = f(R(\tau)) + \dot{R}(\tau)^2$

Second junction condition:

$$f(R(\tau))\dot{T}(\tau) = \sqrt{1-\eta_0^2}$$

First junction condition:

$$R(\tau)^2 = a(\tau)^2 \eta_0^2$$
, $f(R(\tau))^2 \dot{T}(\tau)^2 = f(R(\tau)) + \dot{R}(\tau)^2$

Second junction condition:

$$f(R(\tau))\dot{T}(\tau) = \sqrt{1-\eta_0^2}$$

Master equation for $R(\tau)$

First junction condition:

$$R(\tau)^2 = a(\tau)^2 \eta_0^2$$
, $f(R(\tau))^2 \dot{T}(\tau)^2 = f(R(\tau)) + \dot{R}(\tau)^2$

Second junction condition:

$$f(R(\tau))\dot{T}(\tau) = \sqrt{1-\eta_0^2}$$

Master equation for $R(\tau) \Leftrightarrow \text{radial geodesic on black hole background}$

26

First junction condition:

$$R(\tau)^2 = a(\tau)^2 \eta_0^2$$
, $f(R(\tau))^2 \dot{T}(\tau)^2 = f(R(\tau)) + \dot{R}(\tau)^2$

Second junction condition:

$$f(R(\tau))\dot{T}(\tau) = \sqrt{1-\eta_0^2}$$

Master equation for $R(\tau) \Leftrightarrow$ radial geodesic on black hole background \Leftrightarrow Friedman equation for scale factor

First junction condition:

$$R(\tau)^2 = a(\tau)^2 \eta_0^2$$
, $f(R(\tau))^2 \dot{T}(\tau)^2 = f(R(\tau)) + \dot{R}(\tau)^2$

Second junction condition:

$$f(R(\tau))\dot{T}(\tau) = \sqrt{1-\eta_0^2}$$

Master equation for $R(\tau) \Leftrightarrow \text{radial geodesic on black hole background} \Leftrightarrow \text{Friedman equation for scale factor}$

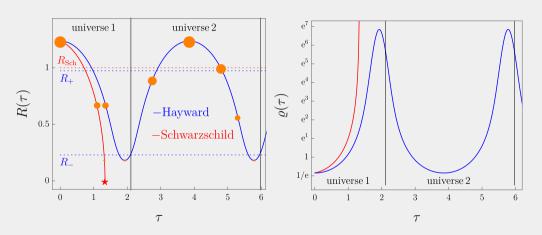
$$\dot{R}(\tau)^2 + f(R(\tau)) = f(R(0))$$

 For Einstein gravity, star collapses reaching zero size and infinite density after a finite proper time leaving behind a Schwarzschild black hole.

- For Einstein gravity, star collapses reaching zero size and infinite density after a finite proper time leaving behind a Schwarzschild black hole.
- For QT gravity, star collapses reaching a minimum size (and maximum density) after leaving behind a Hayward black hole. It bounces back emerging through a white hole in a new universe. It reaches a maximum size and starts collapsing again...

- For Einstein gravity, star collapses reaching zero size and infinite density after a finite proper time leaving behind a Schwarzschild black hole.
- For QT gravity, star collapses reaching a minimum size (and maximum density) after leaving behind a Hayward black hole. It bounces back emerging through a white hole in a new universe. It reaches a maximum size and starts collapsing again...

Cold dark matter bouncing universe model



 \circ The Schwarzschild black hole singularity gets generically resolved in $D \ge 5$ by the effect of infinite towers of higher-curvature densities!

- The Schwarzschild black hole singularity gets generically resolved in D > 5 by the effect of infinite towers of higher-curvature densities!
- o The resulting regular black holes are the only vacuum spherically-symmetric solutions of these theories (Birkhoff theorem holds).

- The Schwarzschild black hole singularity gets generically resolved in D > 5 by the effect of infinite towers of higher-curvature densities!
- o The resulting regular black holes are the only vacuum spherically-symmetric solutions of these theories (Birkhoff theorem holds).
- First fully dynamical models in which the collapse of matter leads to the formation of regular black holes!

 \circ Stability $\star^{\text{(WIP)}}$

- Stability ★^(WIP)
- Inner extremal models [Di Filippo, Kolar, Kubiznak]; related in D = 3: [PB, Lasso Andino, Moreno, van der Velde]

- Stability ★^(WIP)
- Inner extremal models [Di Filippo, Kolar, Kubiznak]; related in D = 3: [PB, Lasso Andino, Moreno, van der Velde]
- Evaporation ★(WIP)

- ∘ Stability ★^(WIP)
- Inner extremal models [Di Filippo, Kolar, Kubiznak]; related in D = 3: [PB, Lasso Andino, Moreno, van der Velde]
- Evaporation ★(WIP)
- o Critical collapse

- ∘ Stability ★^(WIP)
- Inner extremal models [Di Filippo, Kolar, Kubiznak]; related in D = 3: [PB, Lasso Andino, Moreno, van der Velde]
- Evaporation ★^(WIP)
- Critical collapse
- Static stars (generalized Buchdahl's limits) ★^(WIP)

- ∘ Stability ★^(WIP)
- Inner extremal models [Di Filippo, Kolar, Kubiznak]; related in D = 3: [PB, Lasso Andino, Moreno, van der Velde]
- Evaporation ★^(WIP)
- Critical collapse
- Static stars (generalized Buchdahl's limits) ★^(WIP)
- More general bouncing universe models

- Stability ★^(WIP)
- Inner extremal models [Di Filippo, Kolar, Kubiznak]; related in D = 3: [PB, Lasso Andino, Moreno, van der Velde]
- Evaporation ★^(WIP)
- Critical collapse
- Static stars (generalized Buchdahl's limits) ★(WIP)
- More general bouncing universe models
- Markov's limiting curvature hypothesis [Frolov, Koek, Pinedo Soto, Zelnikov]

- Stability ★^(WIP)
- Inner extremal models [Di Filippo, Kolar, Kubiznak]; related in D = 3: [PB, Lasso Andino, Moreno, van der Velde]
- Evaporation ★^(WIP)
- Critical collapse
- Static stars (generalized Buchdahl's limits) ★^(WIP)
- More general bouncing universe models
- o Markov's limiting curvature hypothesis [Frolov, Koek, Pinedo Soto, Zelnikov]
- Microstate counting

- Stability ★^(WIP)
- Inner extremal models [Di Filippo, Kolar, Kubiznak]; related in D = 3: [PB, Lasso Andino, Moreno, van der Velde]
- Evaporation ★(WIP)
- Critical collapse
- Static stars (generalized Buchdahl's limits) ★^(WIP)
- More general bouncing universe models
- o Markov's limiting curvature hypothesis [Frolov, Koek, Pinedo Soto, Zelnikov]
- Microstate counting
- o AdS, dS asymptotes [Hennigar, Kubiznak, Murk, Soranidis; Aguayo, Grandi, Moreno, Oliva]

- Stability ★^(WIP)
- Inner extremal models [Di Filippo, Kolar, Kubiznak]; related in D = 3: [PB, Lasso Andino, Moreno, van der Velde]
- Evaporation ★^(WIP)
- Critical collapse
- Static stars (generalized Buchdahl's limits) ★(WIP)
- More general bouncing universe models
- o Markov's limiting curvature hypothesis [Frolov, Koek, Pinedo Soto, Zelnikov]
- Microstate counting
- o AdS, dS asymptotes [Hennigar, Kubiznak, Murk, Soranidis; Aguayo, Grandi, Moreno, Oliva]
- Classical string interpretation?

- Stability ★^(WIP)
- Inner extremal models [Di Filippo, Kolar, Kubiznak]; related in D = 3: [PB, Lasso Andino, Moreno, van der Velde]
- Evaporation ★^(WIP)
- Critical collapse
- Static stars (generalized Buchdahl's limits) ★^(WIP)
- o More general bouncing universe models
- o Markov's limiting curvature hypothesis [Frolov, Koek, Pinedo Soto, Zelnikov]
- Microstate counting
- O AdS, dS asymptotes [Hennigar, Kubiznak, Murk, Soranidis; Aguayo, Grandi, Moreno, Oliva]
- Classical string interpretation?
- What about $D = 4? \star^{\text{(WIP)}}$

