

Improving Weak Gravitational Lensing

Jordy Ram

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies **Improving Weak Gravitational Lensing** Using Kinematic Information from Galaxies

Jordy Ram¹

Supervisors: Prof. Dr. Martin Kilbinger^{1,2} & Dr. Cail Daley²

¹Université Paris-Saclay ²CEA Saclay/IRFU/DAp

July 6, 2025

Traditional Weak Lensing

Improving Weak Gravitational Lensing

Jordy Ran

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Figure 1: (M. Sachs, 2008).

Concept:

- Small distortions in galaxy shapes due to matter distribution in the line of sight
- The intrinsic galaxy shapes are unknown
- Need to average over a significant number of galaxies to measure the distortion

Traditional Weak Lensing

Improving Weak Gravitational Lensing

Jordy Ran

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Figure 1: (M. Sachs, 2008).

Concept:

- Small distortions in galaxy shapes due to matter distribution in the line of sight
- The intrinsic galaxy shapes are unknown
- Need to average over a significant number of galaxies to measure the distortion

Traditional Weak Lensing

Improving Weak Gravitational Lensing

Jordy Ran

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Figure 1: (M. Sachs, 2008).

Concept:

- Small distortions in galaxy shapes due to matter distribution in the line of sight
- The intrinsic galaxy shapes are unknown
- Need to average over a significant number of galaxies to measure the distortion

Kinematic Weak Lensing

Jordy Ran

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

3

Improving Weak

Lensing

Kinematic Lensing

Kinematic Weak Lensing

FACULTÉ DES SCIENCES D'ORSAY

Weak

Kinematic Lensing

Kinematic Weak Lensing

Velocity Fields of Disk Galaxies

Improving Weak Gravitational Lensing

Jordy Ram

Introductior

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Figure 2: Velocity field of a non-sheared and sheared galaxy [1]

Characteristics when $\gamma_{\times} = 0$:

Symmetry around the major axis
 Antisymmetry around the minor axis

Characteristics when $\gamma_{\times} = 0.12$ **:**

Broken reflection symmetries

Velocity Fields of Disk Galaxies

Improving Weak Gravitational Lensing

Jordy Ram

Introductior

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Figure 2: Velocity field of a non-sheared and sheared galaxy [1]

Characteristics when $\gamma_{\times} = 0$:

- Symmetry around the major axis
- Antisymmetry around the minor axis

Characteristics when $\gamma_{\times} = 0.12$ **:**

Broken reflection symmetries

UNIVERSITE PARIS-SACLAY

FACULTÉ DES SCIENCES D'ORSAY

Model-Independent Restoration of Reflection Symmetries

Jordy Rar

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Fitting Parameters

Parameter	Symbol
Shear	$\gamma_{ imes}$
Central Velocity	V_c
Position Angle	φ
Centroid	(x_c, y_c)

Table 1

Figure 3: MIRoRS Algorithm. [1]

FACULTÉ DES SCIENCES D'ORSAY

Shear Estimation using MIRoRS and MCMC

Improving Weak Gravitational Lensing

Jordy Ram

Introduction

Kinematic Lensing

MIRoRS Model

> Application on Elliptical Galaxies

Figure 4

MCMC (Markov Chain Monte Carlo)

 Provides probability distributions of multiple parameters

Observation:

Estimated shear value is equal to the true shear value, $\gamma_{\times} = 0.12$

FACULTÉ DES SCIENCES D'ORSAY

Shear Estimation using MIRoRS and MCMC

Improving Weak Gravitational Lensing

Jordy Ram

Introduction

Kinematic Lensing

MIRoRS Model

> Application on Elliptical Galaxies

Figure 4

MCMC (Markov Chain Monte Carlo)

 Provides probability distributions of multiple parameters

Observation:

Estimated shear value is equal to the true shear value, γ_× = 0.12

UNIVERSITE PARIS-SACLAY

FACULTÉ DES SCIENCES D'ORSAY

Degeneracy at Position Angle of 45 degrees

Improving Weak Gravitational Lensing

Jordy Ram

Introductio

Kinematic Lensing

MIRoRS Model

> Application on Elliptical Galaxies

Figure 5

Observation:

If the galaxy is at φ = 45° in the observer's frame, γ_× manifest as γ₊, which does not change the symmetry.

Approach:

Determining the cross-shear in the galaxy frame

UNIVERSITE PARIS-SACLAY

FACULTÉ DES SCIENCES D'ORSAY

Degeneracy at Position Angle of 45 degrees

Improving Weak Gravitational Lensing

Jordy Ran

Introductio

Kinematic Lensing

MIRoRS Model

> Application on Elliptical Galaxies

Figure 5

Observation:

If the galaxy is at φ = 45° in the observer's frame, γ_× manifest as γ₊, which does not change the symmetry.

Approach:

Determining the cross-shear in the galaxy frame

Improving the MIRoRS Method

Improving Weak Gravitational Lensing

Jordy Ram

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Shear Matrix in Current MIRoRS

$$\mathcal{A} = \left(egin{array}{cc} 1 & -\gamma_{ imes} \ -\gamma_{ imes} & 1 \end{array}
ight).$$
 (1)

Transformation to Galaxy Frame: Decompose γ_{\times} into a tangential and cross component

Shear Matrix in Novel MIRoRS

$$\gamma_1 = \gamma_{\times} \cdot \sin(2\phi)$$
 (2)

$$\gamma_2 = \gamma_{\times} \cdot \cos(2\phi). \tag{3}$$

$$\mathcal{A} = \begin{pmatrix} 1 - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 + \gamma_1 \end{pmatrix} \quad (4)$$

Improving the MIRoRS Method

Improving Weak Gravitational Lensing

Jordy Ram

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Shear Matrix in Current MIRoRS

$$\mathcal{A} = \begin{pmatrix} 1 & -\gamma_{\times} \\ -\gamma_{\times} & 1 \end{pmatrix}. \quad (1)$$

Transformation to Galaxy Frame: Decompose γ_{\times} into a tangential and cross component

Shear Matrix in Novel MIRoRS

$$\gamma_1 = \gamma_{\times} \cdot \sin(2\phi)$$
 (2)

$$\gamma_2 = \gamma_{\times} \cdot \cos(2\phi). \tag{3}$$

$$\mathcal{A} = \begin{pmatrix} 1 - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 + \gamma_1 \end{pmatrix} \quad (4)$$

Improving the MIRoRS Method

Improving Weak Gravitational Lensing

Jordy Ram

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Shear Matrix in Current MIRoRS

$$\mathcal{A} = \begin{pmatrix} 1 & -\gamma_{\times} \\ -\gamma_{\times} & 1 \end{pmatrix}. \quad (1)$$

Transformation to Galaxy Frame: Decompose γ_{\times} into a tangential and cross component

Shear Matrix in Novel MIRoRS

$$\gamma_1 = \gamma_{\times} \cdot \sin(2\phi)$$
 (2)

$$\gamma_2 = \gamma_{\times} \cdot \cos(2\phi).$$
 (3)

$$\mathcal{A} = \begin{pmatrix} 1 - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 + \gamma_1 \end{pmatrix} \quad (4)$$

Applying MIRoRS to Simulated Galaxy Data

Improving Weak Gravitational Lensing

Jordy Ram

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

MaNGIA (Mapping Nearby Galaxies with IllustrisTNG Astrophysics):

▶ 10,000 mock MaNGA galaxies

Velocity Field:

 Velocity provided in fibers distributed in a hexagonal pattern

Figure 6: Simulated velocity field.

Applying MIRoRS to Simulated Galaxy Data

Improving Weak Gravitational Lensing

Jordy Ram

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

MaNGIA (Mapping Nearby Galaxies with IllustrisTNG Astrophysics):

10,000 mock MaNGA galaxies

Velocity Field:

 Velocity provided in fibers distributed in a hexagonal pattern

Figure 6: Simulated velocity field.

universite

FACULTÉ DES SCIENCES D'ORSAY

Angle Dependence of Shear Estimation

Jordy Ran

Introductior

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Figure 7: The deviation from the true cross-shear for different galaxy position angles.

▶ Degeneracy at $\phi = 45^{\circ}$ disappears completely in novel MIRoRS method

universite

FACULTÉ DES SCIENCES D'ORSAY

Angle Dependence of Shear Estimation

Jordy Ram

Introductior

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Figure 7: The deviation from the true cross-shear for different galaxy position angles.

▶ Degeneracy at $\phi = 45^{\circ}$ disappears completely in novel MIRoRS method

FACULTÉ DES SCIENCES D'ORSAY

Symmetry in Velocity Fields of Elliptical Galaxies

Improving Weak Gravitational Lensing

Jordy Ran

Introductio

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Figure 8: Observed Velocity Fields [2].

Interesting Observation:

 Velocity fields from elliptical galaxies show symmetry

Crucial Questions:

- Can the MIRoRS method be applied to elliptical galaxies?
- ▶ What are the implications of this?

FACULTÉ DES SCIENCES D'ORSAY

Symmetry in Velocity Fields of Elliptical Galaxies

Improving Weak Gravitational Lensing

Jordy Ran

Introductio

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Figure 8: Observed Velocity Fields [2].

Interesting Observation:

 Velocity fields from elliptical galaxies show symmetry

Crucial Questions:

Can the MIRoRS method be applied to elliptical galaxies?

What are the implications of this?

FACULTÉ DES SCIENCES D'ORSAY

Symmetry in Velocity Fields of Elliptical Galaxies

Improving Weak Gravitational Lensing

Jordy Ran

Introductio

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Figure 8: Observed Velocity Fields [2].

Interesting Observation:

 Velocity fields from elliptical galaxies show symmetry

Crucial Questions:

- Can the MIRoRS method be applied to elliptical galaxies?
- What are the implications of this?

FACULTÉ DES SCIENCES D'ORSAY

Selecting Elliptical Galaxies

Improving Weak Gravitational Lensing

Jordy Ran

Introduction

Kinematio Lensing

MIRoRS Model

Application on Elliptical Galaxies

1 Ratio of Rotation Velocity and Velocity Dispersion

2 Specific Star-Formation Rate

$$sSFR = \frac{SFR}{M_*} \qquad (6)$$

Figure 9: Classification of MaNGIA Galaxies

universite Paris-saclay

FACULTÉ DES SCIENCES D'ORSAY

Selecting Elliptical Galaxies

Improving Weak Gravitational Lensing

Jordy Ran

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

1 Ratio of Rotation Velocity and Velocity Dispersion

2 Specific Star-Formation Rate

$$sSFR = \frac{SFR}{M_*}$$
 (6)

Figure 9: Classification of MaNGIA Galaxies

UNIVERSITE PARIS-SACLAY

FACULTÉ DES SCIENCES D'ORSAY

Cross-Shear per Galaxy Type

Improving Weak Gravitational Lensing

Jordy Ran

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Figure 10: Cross-shear and its statistical significance per galaxy type

Observation:

 Random scatter: No obvious dependence of cross-shear on galaxy type

universite Paris-saclay

FACULTÉ DES SCIENCES D'ORSAY

Improving Weak Gravitational Lensing

Jordy Ran

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Cross-Shear for Ellipticals and Disk Galaxies

Figure 11: The deviation from the true cross-shear for different galaxy position angles.

Elliptical galaxies consistent with $\gamma_{\times} = 0$ for all position angles

universite Paris-saclay

FACULTÉ DES SCIENCES D'ORSAY

Improving Weak Gravitational

Lensing Jordy Ram

Introduction

Kinematio Lensing

MIRoRS Model

Application on Elliptical Galaxies

Cross-Shear for Ellipticals and Disk Galaxies

Figure 11: The deviation from the true cross-shear for different galaxy position angles.

• Elliptical galaxies consistent with $\gamma_{\times} = 0$ for all position angles

FACULTÉ DES SCIENCES D'ORSAY

Probability Distributions per Galaxy Type

Improving Weak Gravitational Lensing

Jordy Ran

Introductior

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Figure 12: Probability distributions of cross-shear per galaxy type

Conclusions & Future Research

Improving Weak Gravitational Lensing

Jordy Ram

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Conclusion:

- Kinematic lensing is expected to reduce the variance from shape noise
- Tested MIRoRS, along with an improved method, on MaNGIA mock galaxies in the Illustris TNG simulation
- Comparable shear constraints can be achieved with disk and elliptical galaxies, potentially increasing the number of galaxies that can be used with this kinematic lensing method

Future Research:

Conclusions & Future Research

Improving Weak Gravitational Lensing

Jordy Ram

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Conclusion:

- Kinematic lensing is expected to reduce the variance from shape noise
- Tested MIRoRS, along with an improved method, on MaNGIA mock galaxies in the Illustris TNG simulation
- Comparable shear constraints can be achieved with disk and elliptical galaxies, potentially increasing the number of galaxies that can be used with this kinematic lensing method

Future Research:

Conclusions & Future Research

Improving Weak Gravitational Lensing

- Jordy Ram
- Introduction
- Kinematic Lensing
- MIRoRS Model
- Application on Elliptical Galaxies

Conclusion:

- Kinematic lensing is expected to reduce the variance from shape noise
- Tested MIRoRS, along with an improved method, on MaNGIA mock galaxies in the Illustris TNG simulation
- Comparable shear constraints can be achieved with disk and elliptical galaxies, potentially increasing the number of galaxies that can be used with this kinematic lensing method

Future Research:

Conclusions & Future Research

Improving Weak Gravitational Lensing

- Jordy Ram
- Introduction
- Kinematic Lensing
- MIRoRS Model
- Application on Elliptical Galaxies

Conclusion:

- Kinematic lensing is expected to reduce the variance from shape noise
- Tested MIRoRS, along with an improved method, on MaNGIA mock galaxies in the Illustris TNG simulation
- Comparable shear constraints can be achieved with disk and elliptical galaxies, potentially increasing the number of galaxies that can be used with this kinematic lensing method

Future Research:

Thank you for your attention!

Improving Weak Gravitational Lensing

Jordy Ram

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

References

- C. Hopp and D. Wittman, "Improving Precision in Kinematic Weak Lensing with MIRoRS: Model-Independent Restoration of Reflection Symmetries,", Sep. 2024. arXiv: 2410.00098 [astro-ph.CO].
- [2] E. Emsellem, M. Cappellari, D. Krajnovi, et al., "The SAURON project IX. A kinematic classification for early-type galaxies," *Monthly Notices of the Royal Astronomical Society*, vol. 379, no. 2, pp. 401–417, Jul. 2007. DOI: 10.1111/j.1365-2966.2007.11752.x. [Online]. Available: https://doi.org/10.1111/j.1365-2966.2007.11752.x.
- ESA, What Euclid will measure: Weak lensing, May 2023. [Online]. Available: https: //www.esa.int/ESA_Multimedia/Images/2023/05/What_Euclid_will_measure_weak_lensing.

universitė PARIS-SACIA

EACULTÉ DES SCIENCES DODEAV

Improving Weak Gravitational Lensing

Strong and Weak Gravitational Lensing

Figure 13: The concept of both strong gravitational lensing (on the left) and weak gravitational lensing (on the right) applied to a certain number of galaxies (in the center). Figure taken from [3]

Observed Ellipticities of Galaxies

Improving Weak Gravitational Lensing

Jordy Ran

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies The observed ellipticity of a galaxy is given by

$$\hat{\epsilon}^{obs} pprox \epsilon^{int} + \gamma$$
,

The intrinsic galaxy shape is thus given by

$$\epsilon^{int}pprox\epsilon^{o}+\epsilon^{IA}$$
 ,

(7)

(8)

Improving Weak Gravitational Lensing

Jordy Ram

Introduction

Kinematic Lensing

MIRoRS Model

Applicatior on Elliptica Galaxies

Kinematic Lensing using Tully-Fischer

The intrinsic galaxy ellipticity at a certain disk inclination *i* is given by

$$arepsilon^{int} = rac{1 - \sqrt{1 - (1 - q_z^2) \sin^2 i}}{1 + \sqrt{1 - (1 - q_z^2) \sin^2 i}},$$

The inclination of the disk galaxy is given by

$$\sin i = \frac{v_{\text{major}}}{v_{\text{circ}}},\tag{9}$$

The timate of the circular velocity is given by

$$\operatorname{og} \hat{v}_{circ} = \log v_{TF} = b \left(M_B - M_p \right) + a, \tag{10}$$

The measured shear in Kinematic Lensing is given by

$$\hat{\gamma} \equiv \hat{\epsilon}^{obs} - \hat{\epsilon}^{int}, \tag{11}$$

D'ORSAY

Operations

Improving Weak Gravitational Lensing

Jordy Ran

Introduction

Kinematic Lensing

MIRoRS Model

Applicatior on Elliptica Galaxies Inverse shear and counter-clockwise rotation matrices are given by [1]

$$\mathcal{A}^{-1} = \mu \begin{pmatrix} 1 & \gamma_{\times} \\ \gamma_{\times} & 1 \end{pmatrix}, \quad \mathcal{R}^{-1} = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix}, \quad (12)$$

Matrices for reflection under the major and minor axis are given by [1]

$$\mathcal{T}_x = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad \mathcal{T}_y = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}. \tag{13}$$

Clockwise rotation and shear matrices are given by [1]

$$\mathcal{R} = \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix}, \quad \mathcal{A} = \begin{pmatrix} 1 & -\gamma_{\times} \\ -\gamma_{\times} & 1 \end{pmatrix}.$$
(14)

UNIVERSITE PARIS-SACLAY

FACULTÉ DES SCIENCES D'ORSAY

Example Velocity Fields

Jordy Rar

Introductio

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Figure 14: The unmasked velocity field of an unsheared galaxy (on the left) and the unmasked velocity field of a galaxy that is sheared using $\gamma_{\times} = 0.12$ (on the right). Both the galaxy position values and the velocity values have arbitrary units.

universitė PARIS-SACI A

EACULTÉ DES SCIENCES DODEAV

Photometric and Kinematic Axes

Figure 15: On the left side of the figure, the unmasked velocity field is shown with the unsheared galaxy isophote and its axis (in grey), and the galaxy isophote after lensing, including the photometric axis (in black), and the kinematic axis (in green). On the right side of the figure, the masked velocity field of the galaxy is shown.

universitė Paris-saclay

FACULTÉ DES SCIENCES D'ORSAY

Residual and χ^2 Maps

Figure 16: The residual velocity map (on the left), which is the difference between the observational velocity map and the velocity map from the model, and the corresponding χ^2 -per-pixel map (on the right).

Likelihood Functions

Improving Weak Gravitational Lensing

Jordy Ram

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptica Galaxies The χ_i^2 -values are given by

$$\chi_{i}^{2} = \frac{(V_{i, \text{ model}} - V_{i, \text{ data}})^{2}}{\sigma_{i}^{2}} = \frac{V_{i, \text{res}}^{2}}{\sigma_{i}^{2}},$$
(15)

The likelihood function is given by

$$\mathcal{L} = \prod_{i} \frac{1}{\sqrt{2\pi\sigma_i^2}} e^{-\chi_i^2/2} \tag{16}$$

The log-likelihood is given by

$$\ln \mathcal{L} = -\frac{1}{2} \sum \left(\chi_i^2 + \ln \sigma_i^2 + \ln 2\pi \right)$$
(17)

universite Paris-saclay

FACULTÉ DES SCIENCES D'ORSAY

Applying MIRoRS on Idealised Mock Galaxy

Improving Weak Gravitational Lensing

Jordy Ran

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Figure 18

FACULTÉ DES SCIENCES D'ORSAY

MCMCs for Rotated Idealised Mock Galaxy

Improving Weak Gravitational Lensing

Jordy Ran

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Figure 20: Novel MIRoRS

universitė

Velocity Grid and Interpolation

Jordy Ran

Introductio

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Figure 21: The velocities measured by the spectral lines in several mock datacubes (on the left), and the resulting extrapolated velocity field (on the right). The spatial coordinates of the mock galaxy are given in arc seconds, and the velocity is given in kilometers per second.

FACULTÉ DES SCIENCES D'ORSAY

Determining the Optimal Mask Radius

Improving Weak Gravitational Lensing

Jordy Ran

Introduction

Kinematic Lensing

MIRoRS Model

Applicatior on Elliptica Galaxies

Figure 22: The average shear and its standard deviation calculated for several galaxies for different radii of the mask, which is applied to the data and model using the existing MIRoRS method (red) and the slightly adjusted method (blue).

universite

FACULTÉ DES SCIENCES D'ORSAY

Applying MIRoRS to MaNGIA Velocity Field

Improving Weak Gravitational Lensing

Jordy Ram

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Figure 24

Figure 23

Galaxy Outlier Rejection

Improving Weak Gravitational Lensing

Jordy Ram

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies Moran's I statistic for spatial randomness in the residuals is

$$I = rac{N}{W} rac{\sum_i \sum_j w_{ij} \left(v_i - ar{v}
ight) \left(v_j - ar{v}
ight)}{\sum_i \left(v_i - ar{v}
ight)^2}$$

A good fit is one that exhibits spatial randomness, corresponding to an I-value near zero, so p > 0.001

Figure 25: Moran's I and p-value per estimated cross-shear

universitė Paris-saclay

FACULTÉ DES SCIENCES D'ORSAY

Classification of MaNGIA Galaxies

Jordy Ran

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptical Galaxies

Figure 26: All the 10044 MaNGIA galaxies are positioned in the plane based on their specific star formation rate, sSFR (in Gyr^{-1}), and their total stellar mass M_* (in M_{\odot}). The colour indicates the value of the ratio between the weighted rotational velocity and the weighted velocity dispersion, V/σ .

Thank you for your attention!

Improving Weak Gravitational Lensing

Jordy Ram

Introduction

Kinematic Lensing

MIRoRS Model

Application on Elliptica Galaxies

References

- C. Hopp and D. Wittman, "Improving Precision in Kinematic Weak Lensing with MIRoRS: Model-Independent Restoration of Reflection Symmetries,", Sep. 2024. arXiv: 2410.00098 [astro-ph.CO].
- [2] E. Emsellem, M. Cappellari, D. Krajnovi, et al., "The SAURON project IX. A kinematic classification for early-type galaxies," *Monthly Notices of the Royal Astronomical Society*, vol. 379, no. 2, pp. 401–417, Jul. 2007. DOI: 10.1111/j.1365-2966.2007.11752.x. [Online]. Available: https://doi.org/10.1111/j.1365-2966.2007.11752.x.
- ESA, What Euclid will measure: Weak lensing, May 2023. [Online]. Available: https: //www.esa.int/ESA_Multimedia/Images/2023/05/What_Euclid_will_measure_weak_lensing.