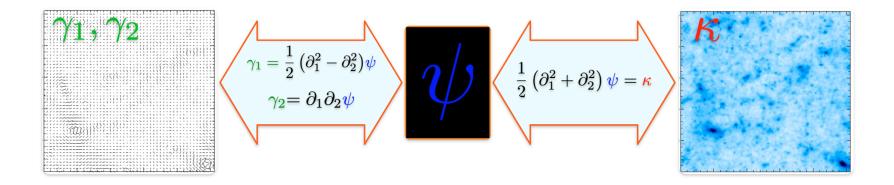
Mass mapping and cosmological inference with higher-order statistics

Andreas Tersenov ARGOS-TITAN-TOSCA workshop, July 8, 2025

Weak Lensing - Relation between κ and γ



- From **convergence** to **shear**: $\gamma_i = \hat{P}_i \kappa$
- From shear to convergence: $\kappa = \hat{P}_1 \gamma_1 + \hat{P}_2 \gamma_2$

$$\hat{P}_1(k)=rac{k_1^2-k_2^2}{k^2},\,\,\hat{P}_2(k)=rac{2k_1k_2}{k^2}$$

- Shear measurements are discrete, **noisy**, and **irregularly sampled**
- We actually measure the **reduced shear**
- Masks and integration over a subset of R₂ lead to border errors ⇒
 missing data problem
- Convergence is recoverable up to a constant ⇒ mass-sheet degeneracy problem

- Shear measurements are discrete, **noisy**, and **irregularly sampled**
- We actually measure the **reduced shear**
- Masks and integration over a subset of R₂ lead to border errors ⇒
 missing data problem
- Convergence is recoverable up to a constant ⇒ mass-sheet degeneracy problem

Mass mapping is an ill-posed inverse problem

- Shear measurements are discrete, **noisy**, and **irregularly sampled**
- We actually measure the **reduced shear**
- Masks and integration over a subset of R₂ lead to border errors ⇒ missing data problem
- Convergence is recoverable up to a constant ⇒ mass-sheet degeneracy problem

Mass mapping is an ill-posed inverse problem

Different algorithms have been introduced, with different reconstruction fidelities, in terms of RMSE

Motivating this project:

- The various algorithms have **different RMSE** performance
- In cosmology we *don't care about RMSE* of mass maps, but only about the resulting **cosmological parameters**

 \Rightarrow This should be our final benchmark!

Motivating this project:

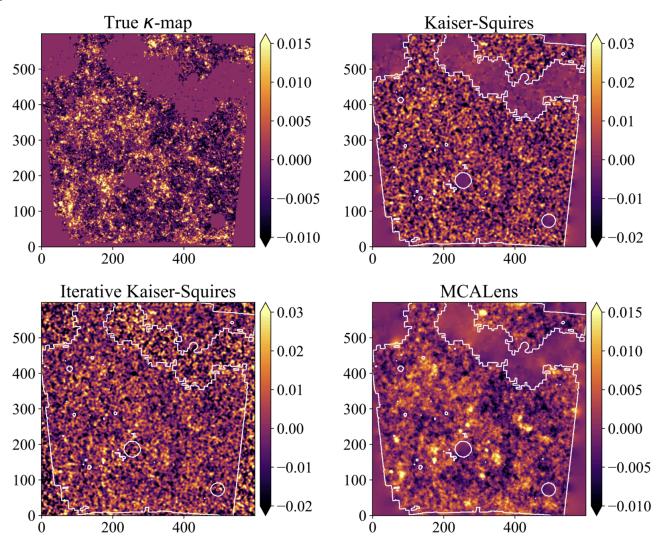
- The various algorithms have **different RMSE** performance
- In cosmology we *don't care about RMSE* of mass maps, but only about the resulting **cosmological parameters**

 \Rightarrow This should be our final benchmark!

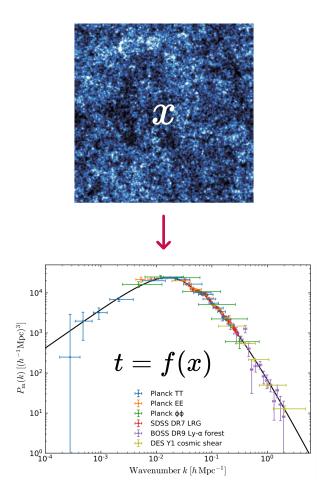
So... does the choice of the mass-mapping algorithm have an impact on the final inferred cosmological parameters?Or as long as you apply the same method to both observations and simulations it won't matter?

cosmoSLICS mass maps

Method	$RMSE \downarrow$
KS	$1.1 imes 10^{-2}$
iKS	$1.1 imes 10^{-2}$
MCALens	$9.8 imes 10^{-3}$



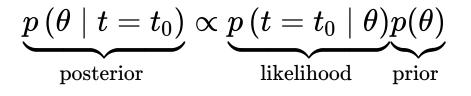
How to constrain cosmological parameters?



For which we have/assume an analytical likelihood function

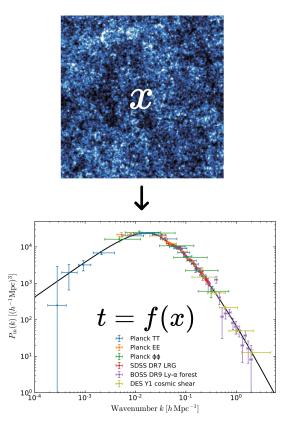
 $p\left(t=t_{0}\mid heta
ight)$

Likelihood → connects our compressed observations to the cosmological parameters



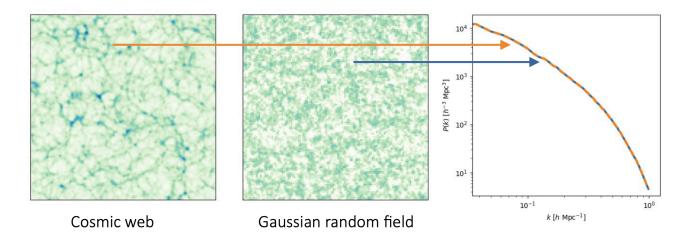
2pt vs higher-order statistics

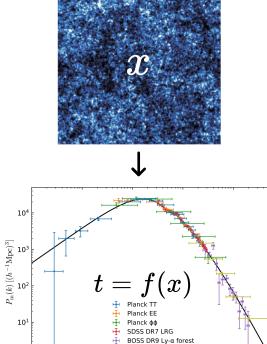
The traditional way of constraining cosmological parameters misses the non-Gaussian information in the field.



2pt vs higher-order statistics

The traditional way of constraining cosmological parameters misses the non-Gaussian information in the field.





DES Y1 cosmic shear

10-2 Wavenumber $k \left[h \, \mathrm{Mpc}^{-1} \right]$

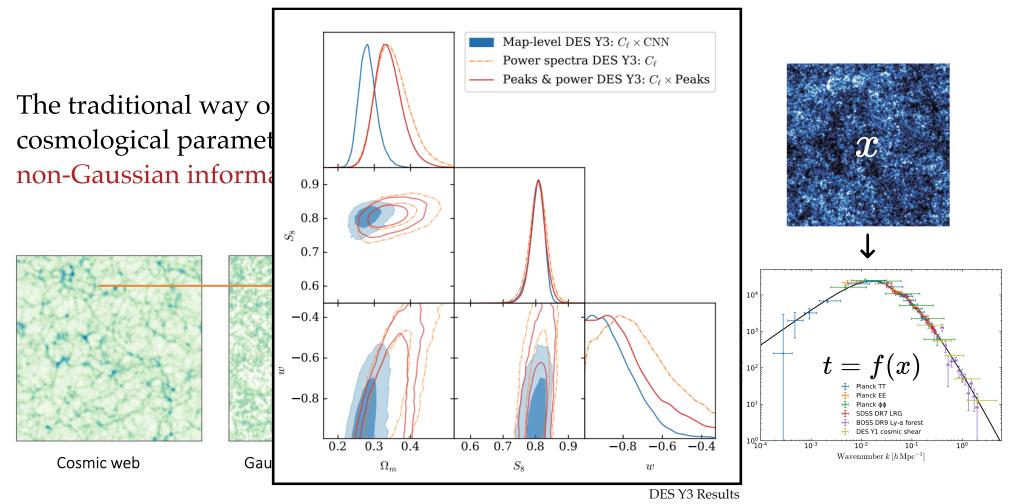
10-1

100

10⁰

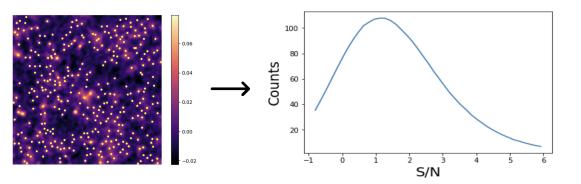
10-3

2pt vs higher-order statistics



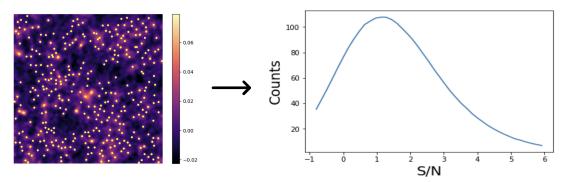
Higher Order Statistics: Peak Counts

- **Peaks**: local maxima of the SNR field
- Peaks trace regions where the value of κ is high → they are associated to massive structures



Higher Order Statistics: Peak Counts

- **Peaks**: local maxima of the SNR field
- Peaks trace regions where the value of κ is high → they are associated to massive structures



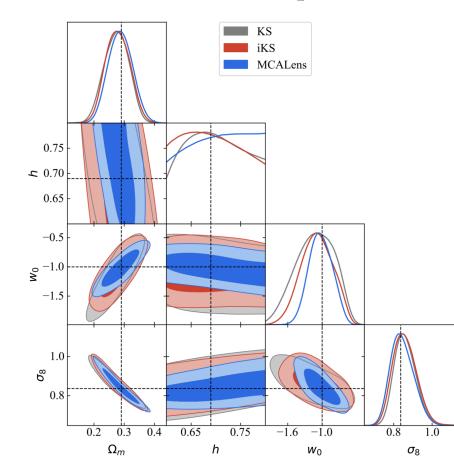
$Original noisy \kappa$ $= \left[\underbrace{1.6 \ arcmin}_{\frac{1}{9} \ \frac{1}{9} \ \frac{1$

Multi-scale (wavelet) peak counts

Results

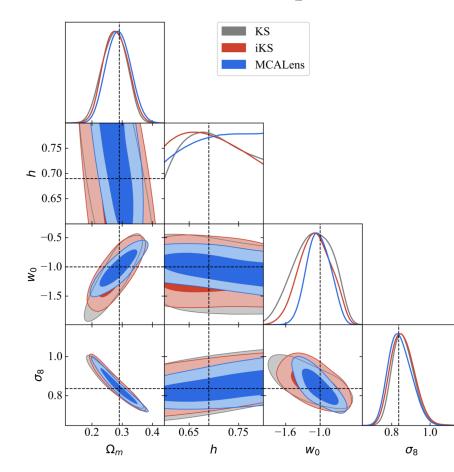
Results

Mono-scale peaks

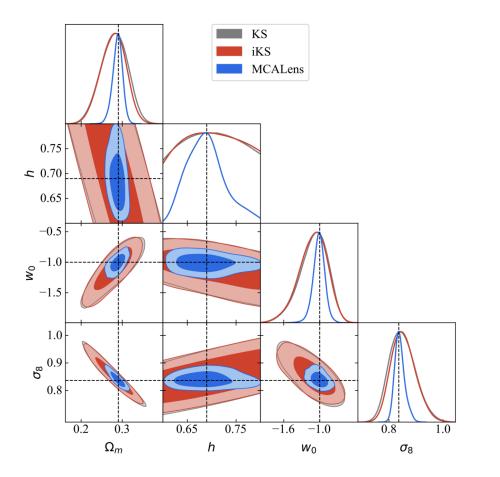


Results

Mono-scale peaks



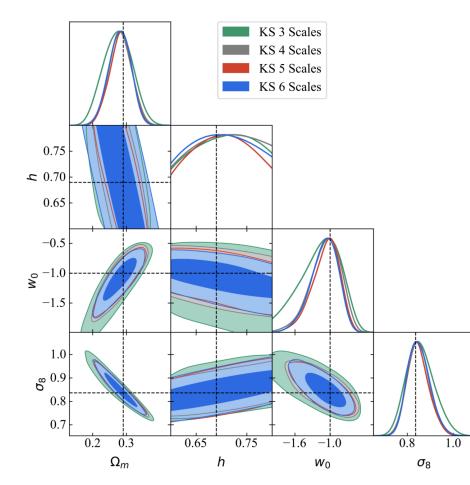
Multi-scale peaks



Where does this improvement come from?

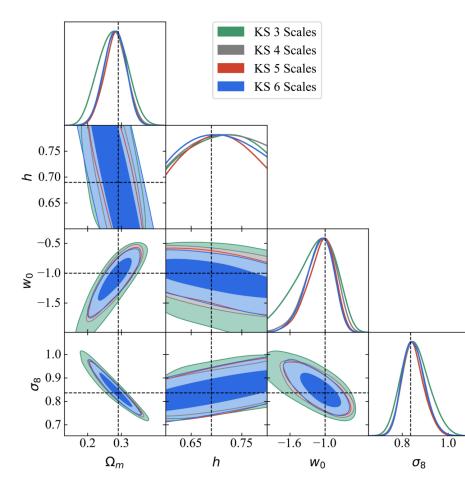
Where does this improvement come from?

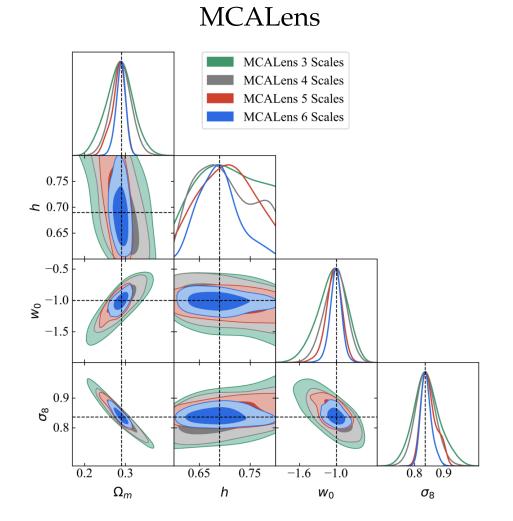
Kaiser-Squires



Where does this improvement come from?

Kaiser-Squires





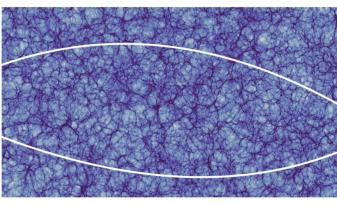
Baryonic effects

- Effects that stem from astrophysical processes involving **ordinary matter** (gas cooling, star formation, AGN feedback)
- They modify the matter distribution by redistributing gas and stars within halos.
- Suppress matter clustering on small scales
- Depend on the cosmic baryon fraction and cosmological parameters.
- Must be

modeled/marginalized over to avoid biases in cosmological inferences from WL.



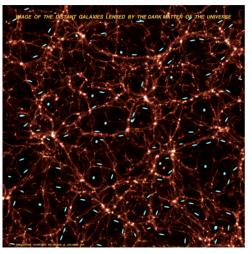
Baryonic impact on LSS statistics



Far galaxies

Large Scale Structure: DM + baryons

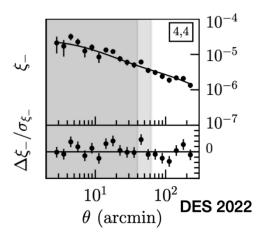
Observer



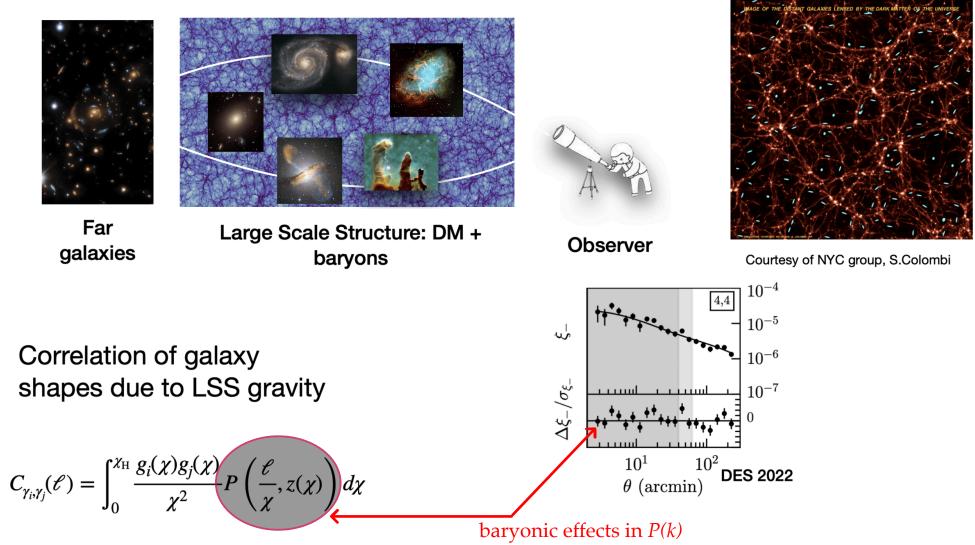
Courtesy of NYC group, S.Colombi

Correlation of galaxy shapes due to LSS gravity

$$C_{\gamma_i,\gamma_j}(\mathscr{C}) = \int_0^{\chi_{\rm H}} \frac{g_i(\chi)g_j(\chi)}{\chi^2} P\left(\frac{\mathscr{C}}{\chi}, z(\chi)\right) d\chi$$



Baryonic impact on LSS statistics



Credit: Giovanni Aricò

Project: Testing impact baryonic effects on WL HOS

Idea - Explore two things:

- Information content of summary statistics as a function of scale cuts
- Testing the impact of baryonic effects on posterior contours

Project: Testing impact baryonic effects on WL HOS

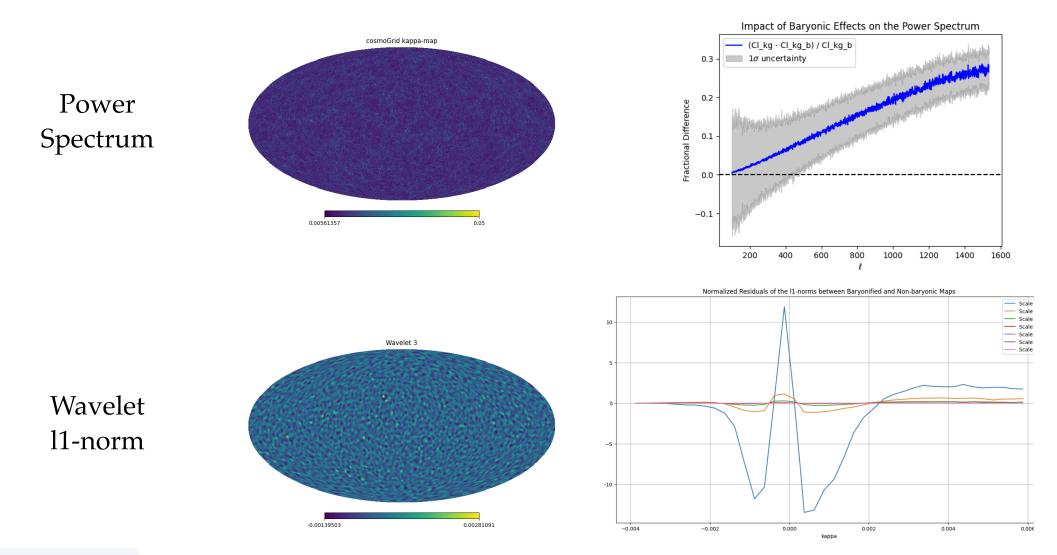
Idea - Explore two things:

- Information content of summary statistics as a function of scale cuts
- Testing the impact of baryonic effects on posterior contours

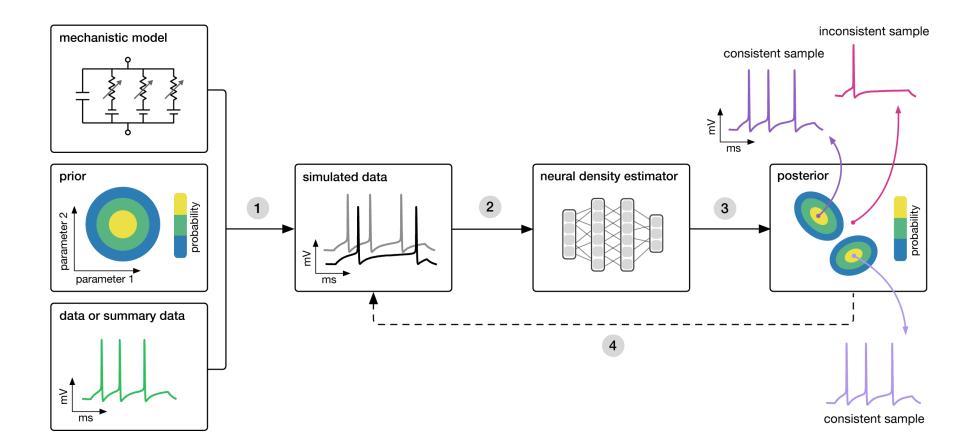
This will show:

- 1. On what range of scales can the different statistics be used without explicit model for baryons
- 2. Answer the question: **how much extra information beyond the PS** these statistics can access in practice

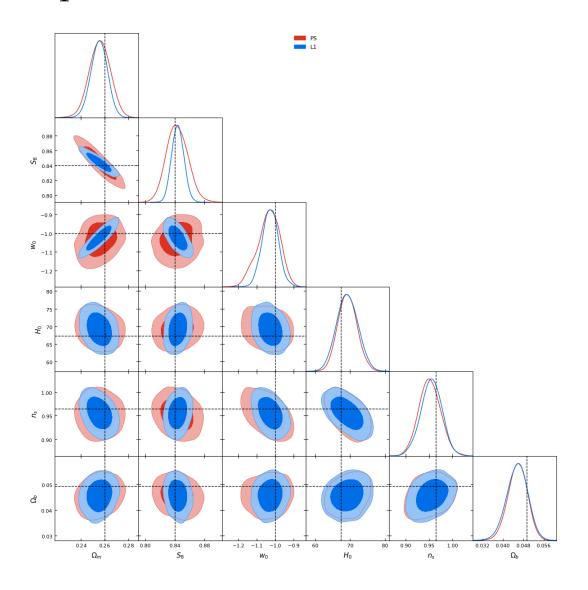
cosmoGRID simulations



Inference method: SBI

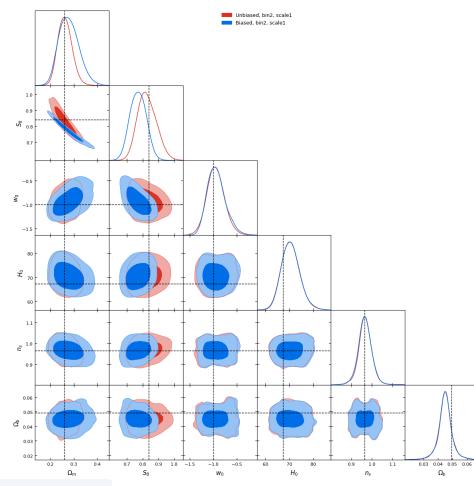


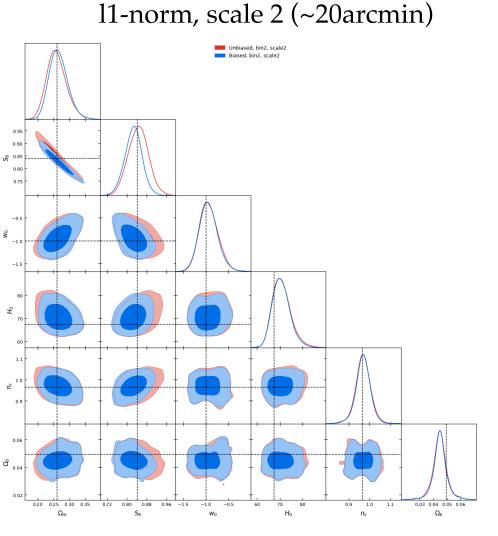
Power spectrum vs l1-norm (scale: ~10arcmin)



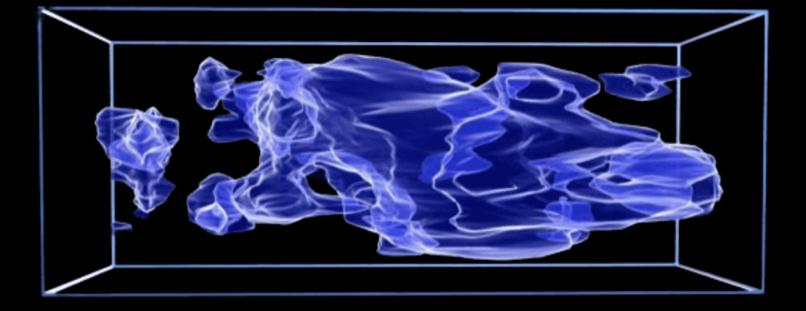
What about the baryonic effects? Do we have any bias?

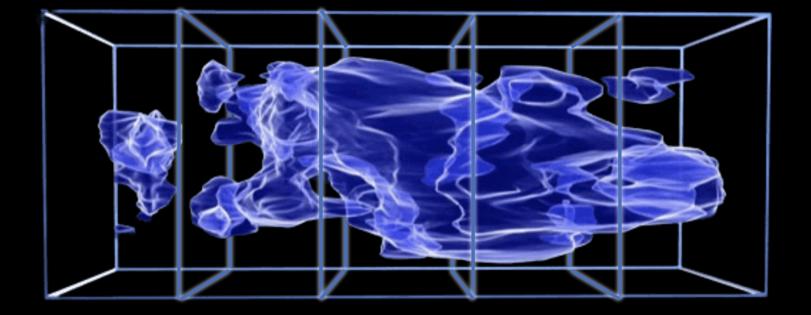
l1-norm, scale 1 (~10arcmin)

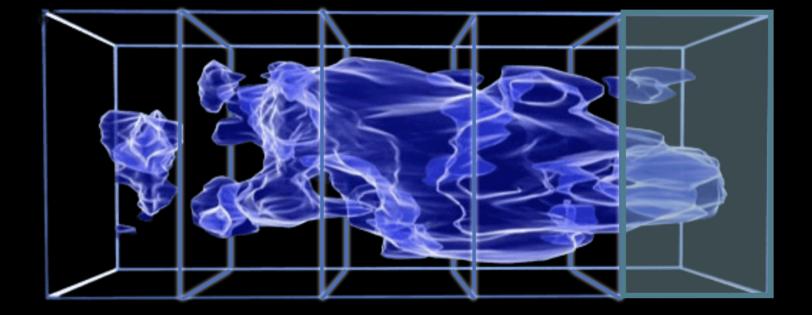




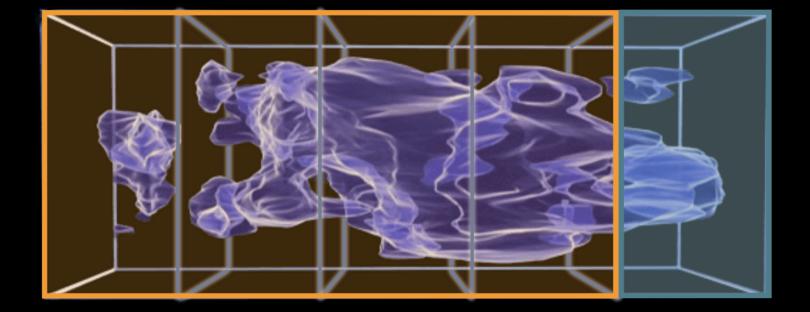


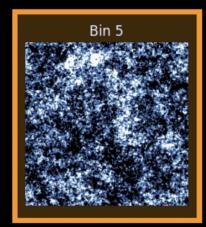


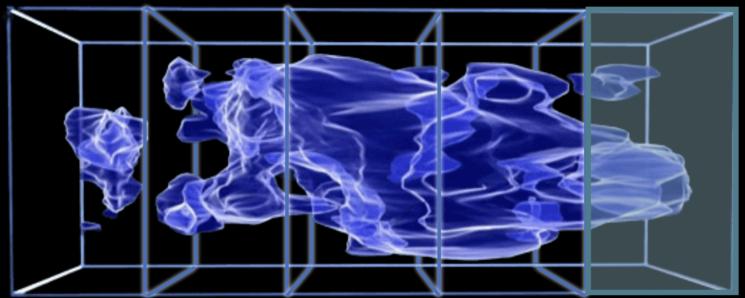


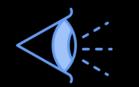


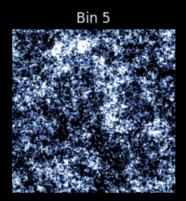


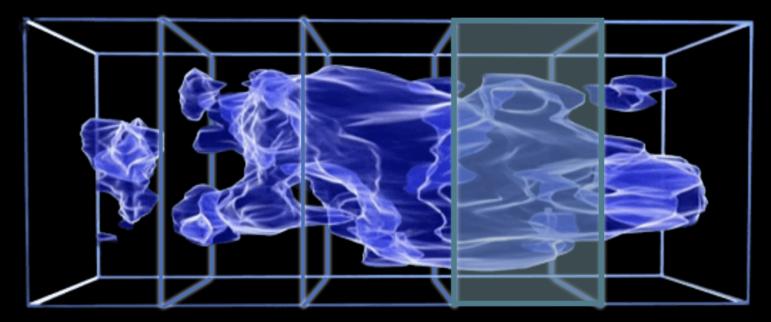




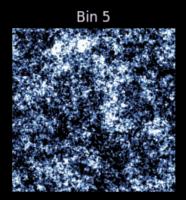


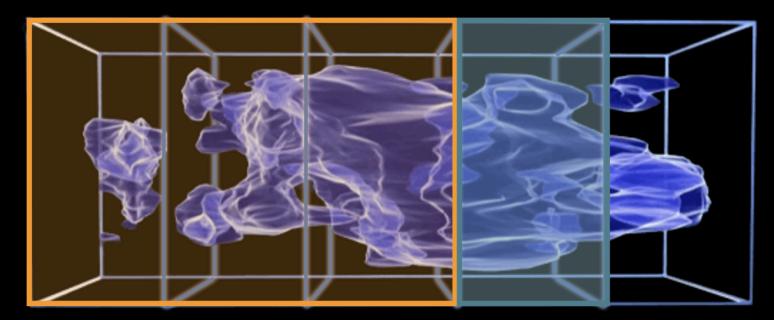


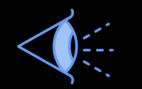




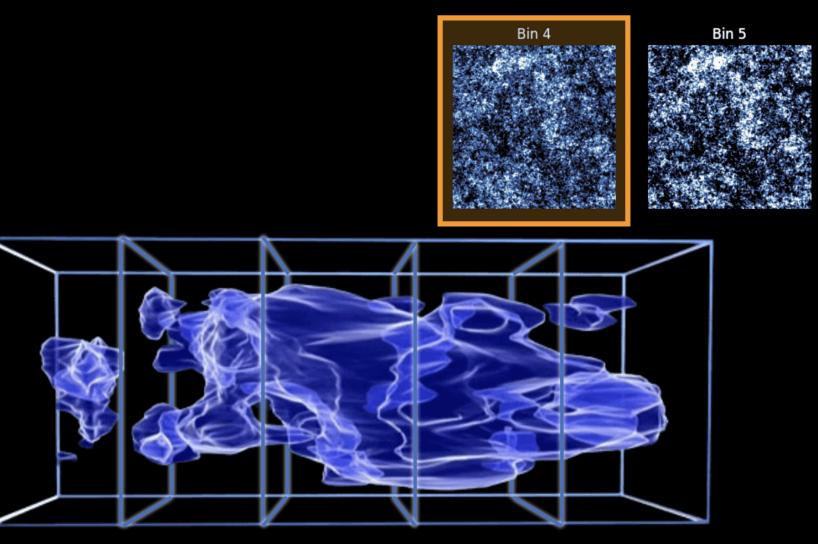
Weak lensing tomography



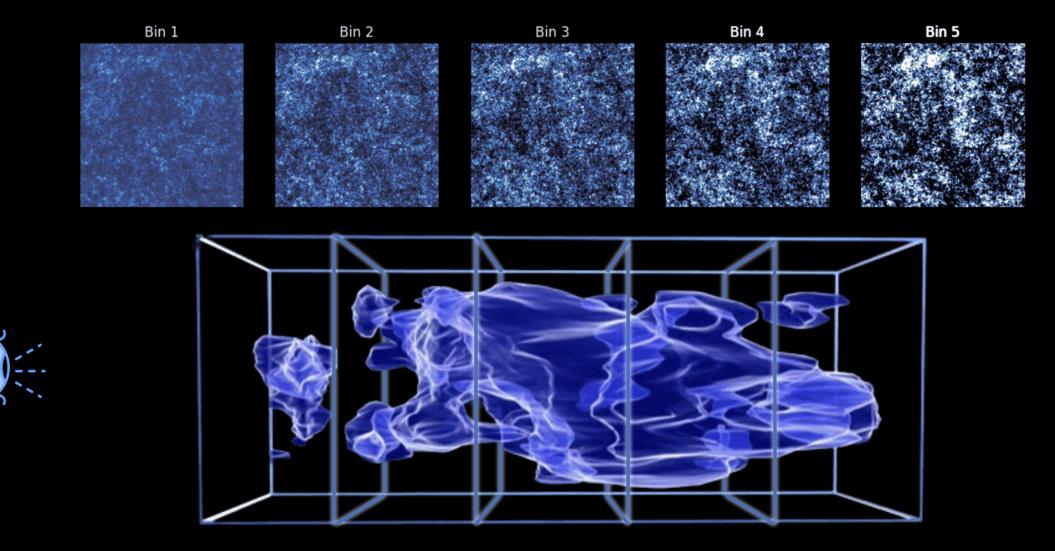




Weak lensing tomography

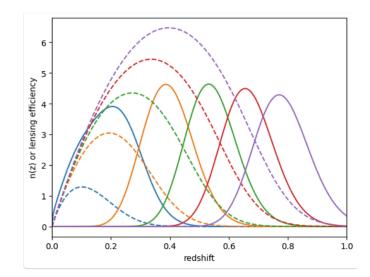


Weak lensing tomography



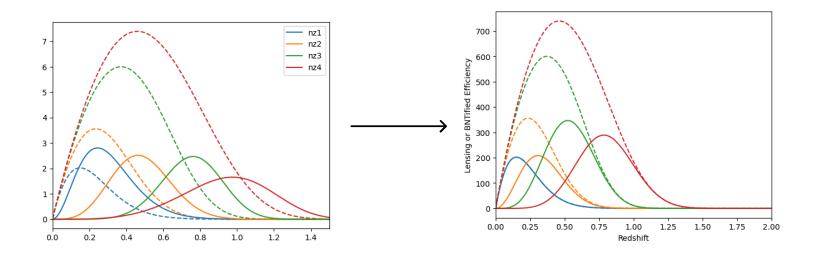
BNT transform

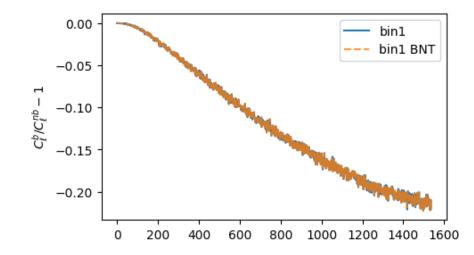
- When we observe cosmic shear, contributions come from mass at different redshifts.
- This creates projection effects: large and small-scale structures get mixed up.
- These effects make it harder to accurately analyze data and extract information

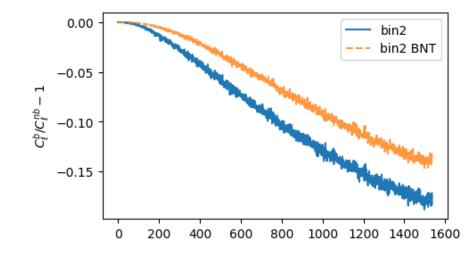


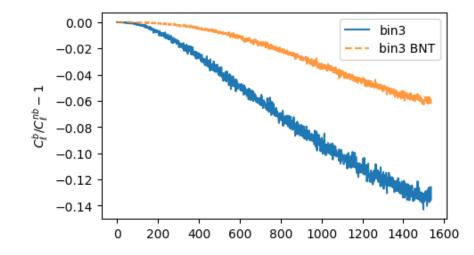
BNT transform

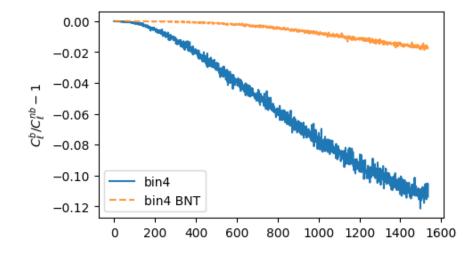
- **BNT Transform**: A method to "null" or remove contributions from unwanted redshift ranges.
- It reorganizes the weak-lensing data so that only specific redshift ranges contribute to the signal, making it easier to analyze.
- It focuses on isolating lensing contributions by sorting out overlapping signals.

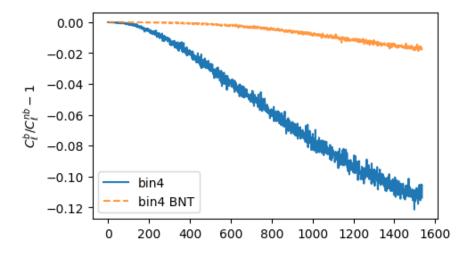


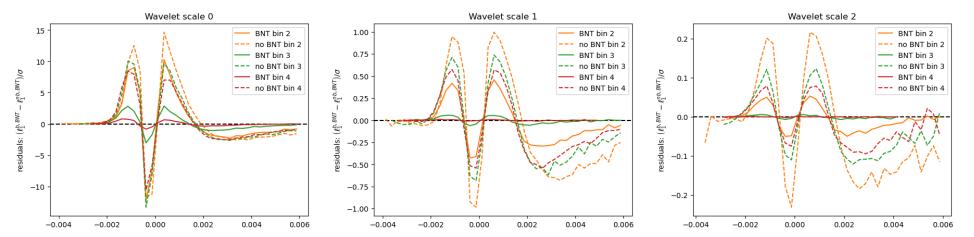








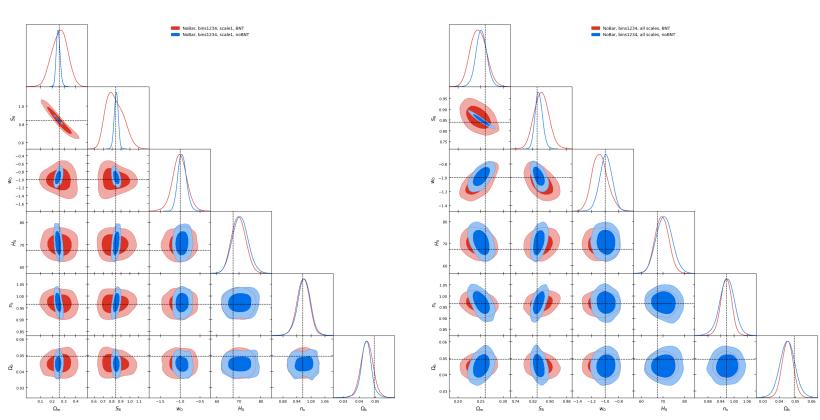


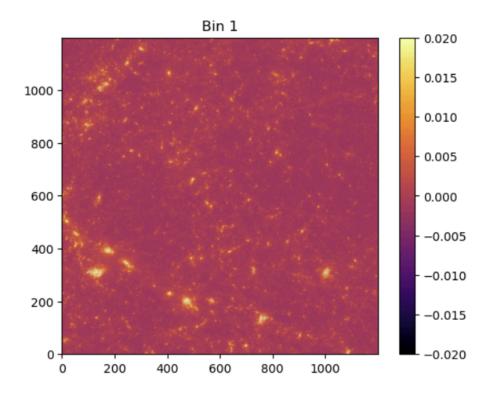


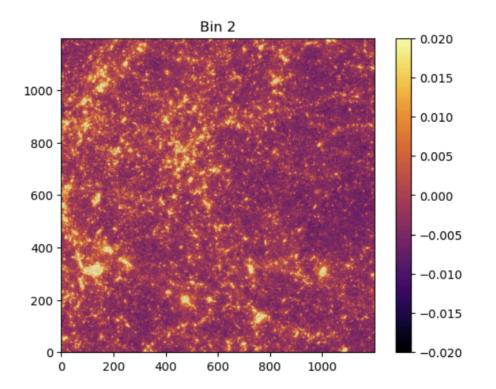
What about contours?

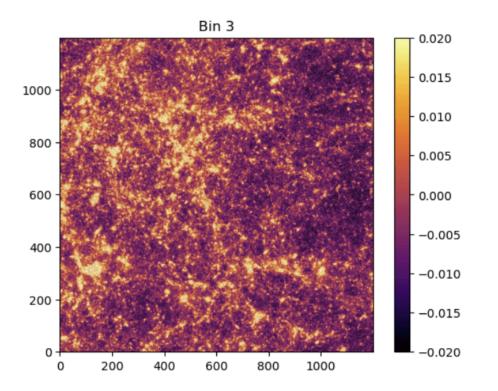
What about contours?

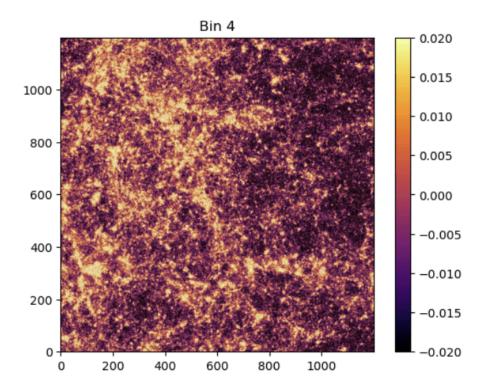
Scale 1 (~7arcmin)

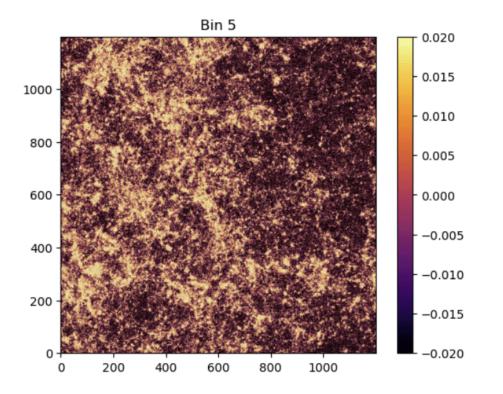


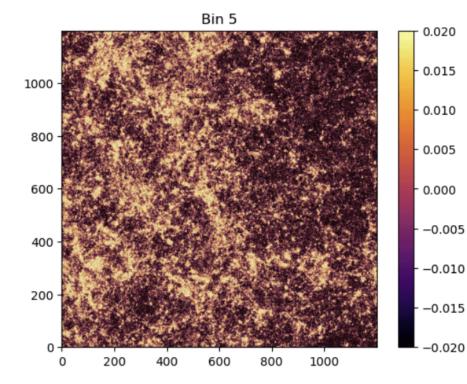


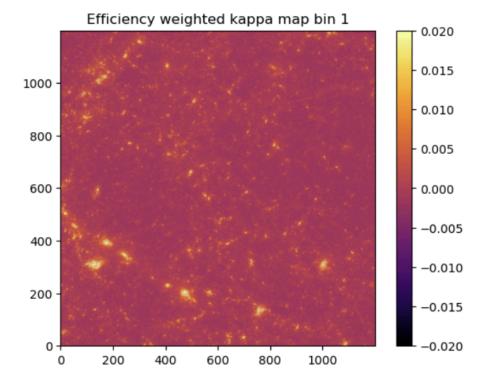


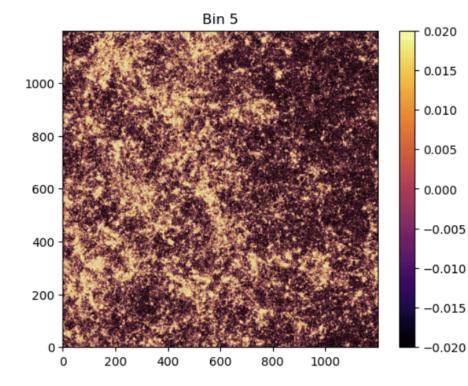


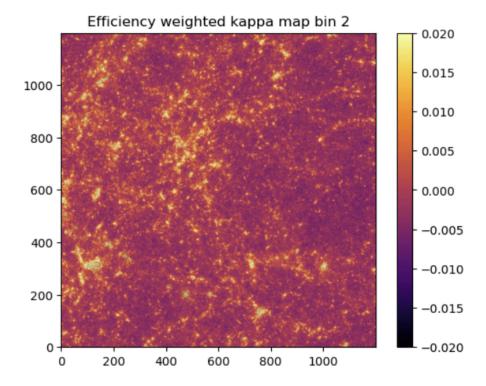




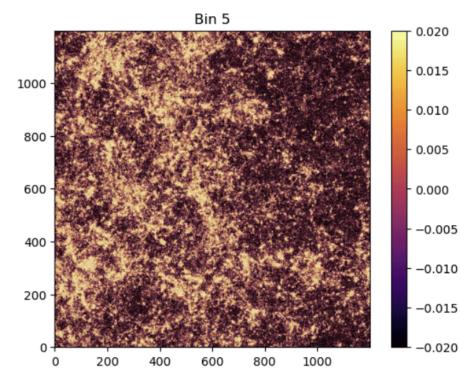




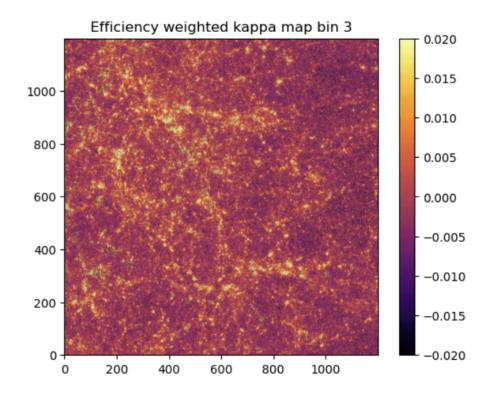




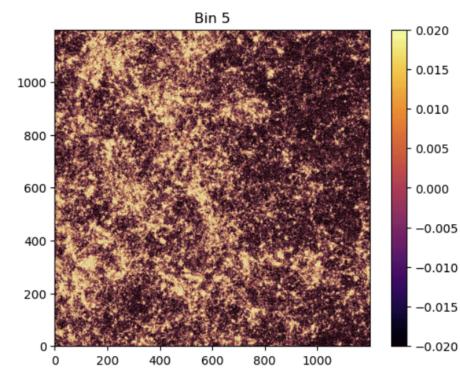
no BNT



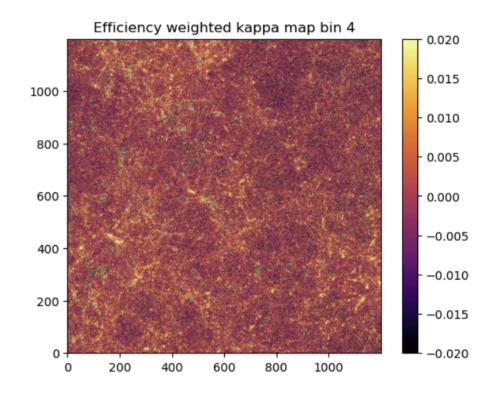
BNT

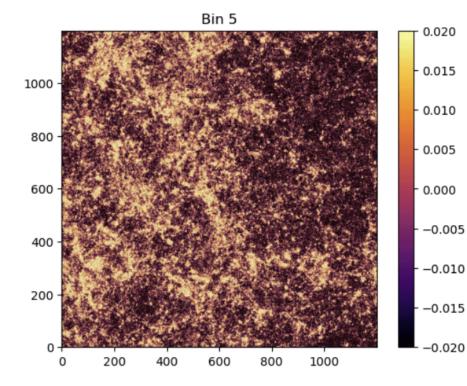


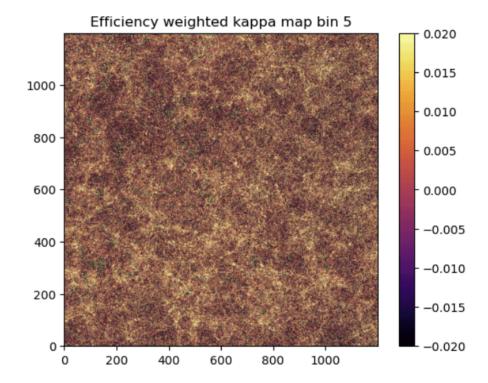
no BNT



BNT







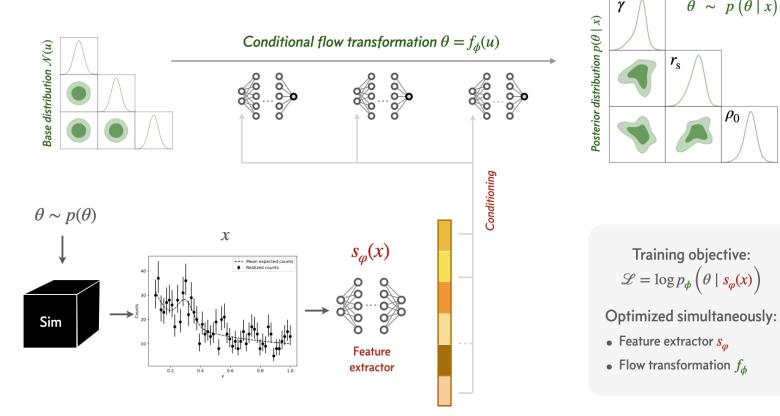
Hope: Neural Summaries (VMIM)

 $\theta \sim p(\theta \mid x)$

 ho_0

rs

Conditional posterior density estimation



Hope: Neural Summaries (VMIM)

