DETECTION OF FAST RADIO BURSTS USING A HYBRID NEURAL ARCHITECTURE

Sara El Bouch¹

¹Université Côte d'Azur, CNRS, Observatoire de la Côte d'Azur

8th July 2025

General Context

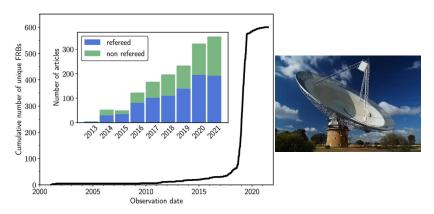


Figure: Cumulative number of published, unique FRB sources as a function of their arrival time at the Earth. Image courtesy of [1]

Fast Radio Bursts in a Nutshell

- Bright ($< 10^{44} \text{ erg } s^-1$) and short ($\sim \text{ms}$)
- High event rate ($\sim 5.000/\text{sky/day}$)
- Extragalactic (predominately)
- One-off events and repeaters.

Useful as cosmological probe to study:

- The intergalactic medium.
- The missing baryons.

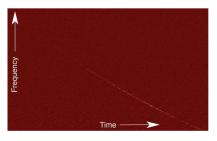
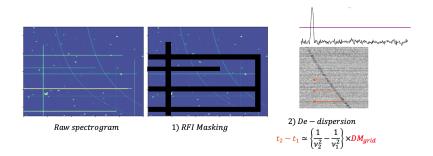



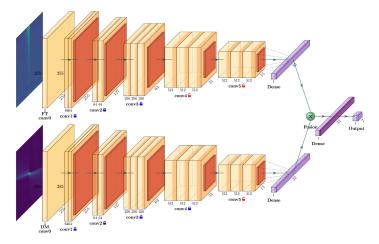
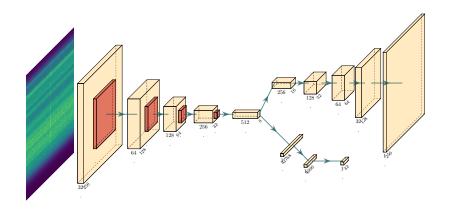
Figure: A typical FRB

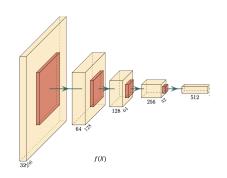
SoTA methods for FRB detection

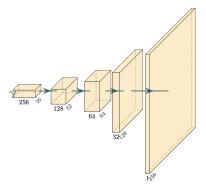
Traditional pipelines for transient detection

- (-) Computational complexity.
- (-) An abundance of False positives.

SoTA

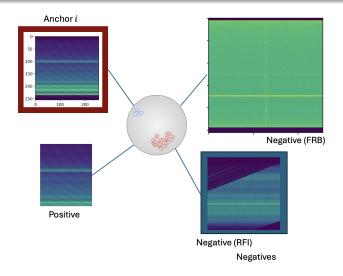




Figure: Fast Extragalactic Transient SearCH (FETCH)


 $\bullet \;$ (-) Trained on ${\bf balanced} \; {\rm RFI}/{\rm FRB} \; {\rm datasets}.$

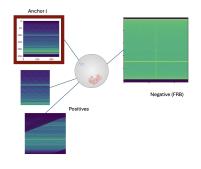
Proposed Architecture

Multi-head architecture



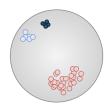
A common feature extractor: $f(\mathbf{X})$ (a standard CNN encoder).

A reconstruction head (mirror architecture of f) trained on the majority class only (RFI)


$$\mathcal{L}_{\text{rec}}(\mathbf{X}) = \|g^{(r)}(f(\mathbf{X})) - \mathbf{X}\|_F^2$$
 (1)

Self-supervised contrastive learning

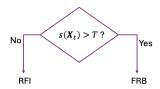
Self-supervised contrastive learning


Supervised contrastive learning

$$\mathcal{L}_{\text{con}}(\mathbf{X}) = \sum_{i \in \mathcal{B}} \frac{-1}{|\mathcal{A}_i|} \sum_{q \in \mathcal{A}_i} \log \frac{\exp(\mathbf{z}_i \cdot \mathbf{z}_q / \tau)}{\sum_{a \in \mathcal{B}_i} \exp(\mathbf{z}_i \cdot \mathbf{z}_a / \tau)},$$
$$\mathbf{z}_i = g^{(c)}(f(\mathbf{X}_i). \tag{2}$$

Contrastive head

• The contrastive head is an Multi-Layer Perceptron (MLP) denoted $g^{(c)}$.



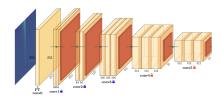
$$\mathcal{L}_{\text{con}}(\mathbf{X}) = \sum_{i \in \mathcal{B}_n} \frac{-1}{|\mathcal{Q}_i|} \sum_{q \in \mathcal{Q}_i} \log \frac{\exp(\mathbf{z}_i \cdot \mathbf{z}_q / \tau)}{\sum_{a \in \mathcal{B}_i} \exp(\mathbf{z}_i \cdot \mathbf{z}_a / \tau)},$$
 (3)

$$\mathbf{z}_i = g^{(c)}(f(\mathbf{X}_i). \tag{4}$$

Anomaly scoring

For an image test X_t , the anomaly score:

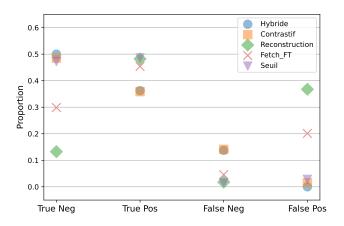
$$s(\mathbf{X}_t) = \frac{1}{\lambda} \mathcal{L}_{\text{rec}}(\mathbf{X}_t) + s_{\text{con}}(\mathbf{X}_t)$$
 (5)


$$s(\mathbf{X}_t) = \frac{1}{\lambda} \mathcal{L}_{rec}(\mathbf{X}_t) + s_{con}(\mathbf{X}_t)$$

$$s_{con}(\mathbf{X}_t) = 1 - \frac{1}{|P|} \sum_{i \in P} \mathbf{z}_t \cdot \mathbf{z}_i,$$
(6)

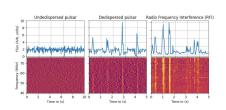
Dataset and training

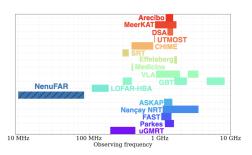
Instrument	Source	T+V	T+V	Test
(back-end)		DMT	FT	
FLAG				
(FLAG)	RFI	32,720	6,000	2,790
	Sim FRB	20,000	8,500	-
	Pulsar	-	-	2,288
GBT L-Band				
(GREENBURST)	RFI	-	6,000	2,170
,	Sim FRB	20,000	8,500	-
	Pulsar	-	-	1,376
Green Bank 20m				
(Skynet)	RFI	9,854	8,000	2,359
(GBTrans)	Pulsar	-	3,000	3,000
Total	FRB	40,000	20,000	6,664
	RFI	42,574	20,000	7,319


Dataset

Fetch-FT

Results


Training dataset: 80% RFI, 20% (dominated by simulated FRBs). Test set is balanced.


Results

Architecture	Acc (%)	ROC-AUC (%)
Hybride	86.2	85.5
Contrastive head	84.4	86.8
Reconstruction head	61.5	52.9
FETCH - FT	75.3	80.9
Energy thresholding	95.8	97.7

Conclusion and perspectives

Real Nenufar Pulsar data

