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Forward model
® Throughout the talk : finite-dimensional setting.
®» F:R"” — R™is the forward operator (physics of the observation formation model).
® : :noise.
Goal
Recover x from y is generally an ill-posed inverse problem.
L — — _|
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"~ Model-based variational approach

Inverse problem

Prior
knowledge

5
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(x)
{ S

Forward model

® Solve: mln£ _I_Z R( )

xcR™ \“,_/
Data fidelity Model knowledge
Low complexity prior

L |

TTW’25-3



—

Model-based variational approach

Inverse problem

Prior
knowledge

O B |

Forward model .

® Solve: : |
min Ly (F(x)) + ; R;(x)

Data fidelity Model knowledge

Pros

® Well-understood.

® Wealth of theoretical guarantees:
® recovery: exact, stability.

® algorithms.
® explainability/interpretability.

® etc. J
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Model-based variational approach

Inverse problem

Prior
knowledge

O B |

Forward model .

® Solve: min £y (F(x) + > Ri(x)
XERT e 2 ~—~——
Data fidelity ~ *~ © Model knowledge

Pros Cons

® Well-understood. ® Choice of the prior class not always
® Wealth of theoretical guarantees: easy.
® recovery: exact, stability. ® Diversity and complexity of objects to

o algori.thmg_ | - recover.
® explainability/interpretability.
® etc.
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Data-based: learning the inverse

Inverse problem

Learn the
prior
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Data-based: learning the inverse

Inverse problem

Neural Network

g(y,0)

Learn the
prior
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(Universal) approximator

Forward model

N
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min > U(xi,8(y:.0))
1=1

O0cOCRP
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Data-based: learning the inverse

Inverse problem

Neural Network

g(y,0)

)

Learn the
prior
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(Universal) approximator

Forward model

0cOCRP

N

, 1

min NE l(x;,2(y;:,0))
i—1

Pros

® Off-the-shelf NN learning frameworks.
® No model to think about (... not quite so).
® Training once for all.

|
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"~ Data-based: learning the inverse

Inverse problem

Neural Network :

g (yfl_o) Learn the

prior

® Off-the-shelf NN learning frameworks. ® Supervised: availability of training data.
® No model to think about (... not quite so). ® NN design (prior design is traded for NN
® Training once for all. design).
® No physical/forward model included.
® Guarantees from IP perspective: recovery,
stability, explainability, etc.
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Hybrid (model-based) learning

Inverse problem

® Mix model- and data-driven methods in
various ways: e.g.
® Learn the regularizer.
® Plug-and-Play.
® Unrolling.
® Deep equilibrium.
® Generative models.
@ etc.
® An extremely active area, with extensive
literature and reviews.

Learn the
prior

O B |

Iterative procedure

&

Forward model

L |
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Hybrid (model-based) learning

Inverse problem

® Mix model- and data-driven methods in
various ways: e.g.
® Learn the reqgularizer.
® Plug-and-Play.
® Unrolling.
® Deep equilibrium.
® Generative models.
@ etc.
® An extremely active area, with extensive
literature and reviews.

Learn the
prior

m
O
E

Iterative procedure

&

® Tries to get the best of both worlds.
® Accounts for the forward model.

Forward model

® Prior learned explicitly/implicitly.
® Training once for all.
® Some guarantees: e.g. non-expansiveness/
Lipschitz constant in unrolling or PnP. |
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Hybrid (model-based) learning

Inverse problem

® Mix model- and data-driven methods in
various ways: e.g.
® Learn the reqgularizer.
® Plug-and-Play.
® Unrolling.
® Deep equilibrium.
® Generative models.
@ etc.
® An extremely active area, with extensive
literature and reviews.

Learn the
prior

m
O
E

Iterative procedure

&

® Tries to get the best of both worlds.
® Accounts for the forward model.

Forward model

Cons

® Supervised: availability of training data.
® NN design (or even many NNs).
® Lack of guarantees from IP perspective:

® Prior learned explicitly/implicitly.

® Training once for all.

® Some guarantees: e.g. non-expansiveness/
Lipschitz constant in unrolling or PnP.

recovery, stability, explainability, etc.

TTW’25-6



—

DIP: Deep Inverse/Image Prior

Inverse problem

O B

Forward model

L |
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~ DIP: Deep Inverse/Image Prior

Inverse problem
Neural Network

(uH

W . I E |
1§ | se;
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&
@ Forward model
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DIP: Deep Inverse/Image Prior
........ Inverse problem
Neural Network
(u 0
E

@ Forward model

min Ly (F(xg t. xg€X
PO Y — {g(u,0): 0 cO)

L |
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DIP: Deep Inverse/Image Prior

Inverse problem
Neural Network

O B

Forward model

]glin Ly(F(xg)) st. xgeX
<O > = {g(u,0): 6cO)

® An unsupervised approach : generator from a latent variable u ~ .
® Hope for NN to induce “implicit regularization” and produce meaningful content before overfitting.
® A early stopping strategy for the NN to generate a vector close to X.

L .
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DIP: Deep Inverse/Image Prior

Inverse problem
Neural Network

O B

Forward model

S.t. Xg € X
¥ ={g(u,0): 0 € 6}

® Unsupervised.
® Accounts for the forward model.
® Easy to implement with (very) good empirical

SUCCeEeSS.

.
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DIP: Deep Inverse/Image Prior

Inverse problem
Neural Network

O
E
Forward model
S.t. Xg € X
¥ ={g(u,0): 0 € 6}

Cons

® Unsupervised. ® Optimize/train for each signal to recover.
® Accounts for the forward model. ® No theoretical guarantees: recovery, stability,
® Easy to implement with (very) good empirical NN design.

success.
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DIP: Deep Inverse/Image Prior
........ Inverse problem
Neural Network
o
g
Forward model
S.t. Xg € X
¥ ={g(u,0): 0 € 6}

Cons

® Unsupervised. ® Optimize/train for each signal to recover.
® Accounts for the forward model. ® No theoretical guarantees: recovery, stability,
® Easy to implement with (very) good empirical NN design.

success.

In the rest of the talk, linear forward operator
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Example: Image deblurring
y =AX +¢ e ~ N(0,50%)
Early stopping
L |
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Example: Normal integration
y = VaigX + &  e~N(0,15)

Y 10000

|
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o DIP training with inertia
g(ua 0) . mXxXn
A min Ly(Ag(u,d)) AeR
u
N .
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DIP training with inertia

0
g£u7 ) min Ly (Ag(u,0)) A ¢ R™*"™

I
S

e 0coO

2 ;\,‘-\ \ G =

,,_,U =

(..

0(t) + af(t) + BLVoLy(Ag(u,0(1)) + VoLy(Ag(u,6(t)) =0
0(0) = 6,,0(0) = 0.

(ISEHD) ¢

\

(1GAHD) " =0t (L —avs)@r —be1) = 5/50 (VoLy(Ag(u,80)) — VoLy(Ag(u,6r1))),
Ocr1 =10 —50VeLy(Ag(u,0:)).

|
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DIP training with inertia

g(u,0) .
A h min Ly (Ag(u,0)) A e R™X"
i y
_— ——
(1) + ab(t) + BIVeLy(Ag(u,8(1))) + VoLy(Ag(u,8(t))) =0
(ISEHD) ¢ .

0(0) = 0,,0(0) = 0.

\

(1GAHD) " =0t (L —avs)@r —be1) = 5/50 (VoLy(Ag(u,80)) — VoLy(Ag(u,6r1))),
Ocr1 =10 —50VeLy(Ag(u,0:)).

® Recovery guarantees of DIP when optimized with inertial gradient descent in :

® Observation space : convergence to zero-loss = implicit regularization.
®» Object space : restricted injectivity of the forward operator on ..
® NN architecture : role of overparametrization.

|
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Convergence Trap avoidance
(L
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g(u,0)
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B Inertial Systems with Hessian Damping B

m%@n f(x), f e C*(RY),inf f > —o0.
reR4

B(t) + ()t + VI (xt) =0, t>to, (IGS.)

L |
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F(x(t))

Inertial Systems with Hessian Damping

min f(z), f e C*(RY),inf f > —o0.

rEeRA

E(t) +()x(t) + Vf(z(t))

=0, t> 1o,

— (IGS,)

(1GS, )

—

|
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B Inertial Systems with Hessian Damping B

min f(z), f e C*(RY),inf f > —o0.

rEeRA

E(t) +y()2(t) + Vf(z(t) =0, t>to, (IGS,)

Neutralize oscillations by geometric damping
500 — I - 1
— (IGS,)
400 — (ISEHD)
0.5
300 —
= =
= 200 s 0
100 05| |
H | |
6 8 10 0 0.5 1

t xl(t)

E(t) +y()3(t) + BV f(z(t)2(t) + Vf(2(t)) =0  (ISEHD)

VISCO_us Geometric
damping  Hessian-driven
damping
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B Inertial Systems with Hessian Damping B

min f(z), f e C*(RY),inf f > —o0.

rEeRA

E(t) +y()2(t) + Vf(z(t) =0, t>to, (IGS,)

Neutralize oscillations by geometric damping
500 —

y

0.5

—~
-~
~—
[\
8

0

05| !

10 0 xl((z:)5 1
)+ 5(0#0) + BV @O)H0) + T(x(0) =0 (SEHD
e oo
dampin
ORI (1) + Vf(x(t) + BE)i() = 0 (siHD)
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Main results

min f(x), f e C*(RY),inf f > —o0.

2(t) +(t)i(t) + B(t) V2 f(x(t)2(t) + Vf(z(t)) =0  (ISEHD)
#(t) + v(0)&(t) + VF(z(t) + B)E(t)) =0 (ISIHD)

®  For both systems:
® Convergence of the gradient to zero and convergence of the values.

® Global convergence and rates of the trajectories to a critical point for
“nice” functions.

® Trap avoidance: generic convergence of the trajectory to a local
minimum.

® Same results for several discrete algorithms.

® Results transfer to the DIP training.

|
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Main results
min f(x), f € C?*(RM),inf f > —o0.

2(t) +(t)i(t) + B(t) V2 f(x(t)2(t) + Vf(z(t)) =0  (ISEHD)
#(t) + v(0)&(t) + VF(z(t) + B)E(t)) =0 (ISIHD)

®  For both systems:
® Convergence of the gradient to zero and convergence of the values.

® Global convergence and rates of the trajectories to a critical point for
“nice” functions.

® Trap avoidance: generic convergence of the trajectory to a local
minimum.

® Same results for several discrete algorithms.

® Results transfer to the DIP training.

In the rest of the talk, focus on (ISEHD)
and its discrete version (IGAHD) B
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IGAHD Algorithm E

min f(x), f e C*(RY),inf f > —o0.

E(t) + () (t) + BV f(2(t)E(t) + Vf(z(t)) =0  (ISEHD)

Tht1 — 2Tk + Tp—1 N (kh)wkﬂ — T N 5Vf($k) — Vf(xr—1)

72 Y h h + Vf(il?k) = 0.

(IGAHD)

Tht1 =Yk — sV [f(zk).

{yk = Tk + Ofk(m — xk—l) — Bk(vf(xk) — Vf($lc—1))a

ap < 1+%h e = v(kh), Be = Bho, si = A2y,

|

TTW’25-15



Convergence and rates of IGAHD E

min f(x), f e C*(RY),inf f > —o0.
rERd

{yk = Tk +Oék($k —ﬂ?k—l) —5k(vf(33k) —Vf(xk—ﬂ),
(IGAHD)

Tht1 =Yk — sV [f(zk).

def 1 def def def

dp — 1+%ha’7k — V(kh)aﬁk — Bh&kask — h205k-

Theorem Let f € C?(RY) N C; " (RY). Assume thath > 0, 8> 0andc <y, < C
for some c, C' > 0.

(i) IfB+L% < £, fis definable and (71 ) ey 18 bounded, then (||xx+1 — Tk || ken €
(1 (N) and z1, — 1o € Crit(f).

(i) If f is tojasiewicz with exponent q € [0, 1], then
® fq €0, 1] then there exists p €]0, 1] such that
|2k — 2ooll = O(p").

© Ifq e]%,l[then ka_xOOH :O(k,—glq__ql),

|
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Trap avoidance
(L
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Trap avoidance: what is it ?
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Trap avoidance: what is it ?

® We proved only convergence to critical points.

L _|
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Trap avoidance: what is it ?

® We proved only convergence to critical points.

® Finding global (and even local) minima is (NP-)hard in general.

X Xa

Non-critical Minimizer Maximizer Strict saddle Flat saddle

L |
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Trap avoidance: what is it ?

We proved only convergence to critical points.
Finding global (and even local) minima is (NP-)hard in general.

Local descent methods can get trapped at saddle points.

Non-critical Minimizer Maximizer Strict saddle Flat saddle

|
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Trap avoidance: what is it ?

We proved only convergence to critical points.

Finding global (and even local) minima is (NP-)hard in general.
Local descent methods can get trapped at saddle points.

Can this be avoided ?

> 9

Non-critical Minimizer Maximizer Strict saddle Flat saddle

|
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Trap avoidance: what is it ?

We proved only convergence to critical points.

Finding global (and even local) minima is (NP-)hard in general.
Local descent methods can get trapped at saddle points.

Can this be avoided ?

Yes: center stable manifold theorem.

> 9

Non-critical Minimizer Maximizer Strict saddle Flat saddle

|
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Trap avoidance: what is it ?

We proved only convergence to critical points.

Finding global (and even local) minima is (NP-)hard in general.
Local descent methods can get trapped at saddle points.

Can this be avoided ?

Yes: center stable manifold theorem.

Definition We will say that & is a strict saddle point of f € C?(R%) if & € Crit(f)
and Amin (V2 £(2)) < 0.

feC? (Rd) has the strict saddle property if every critical point is either a local mini-
mum or a strict saddle, i.e., no flat saddle points.

eg‘fx

Non-critical Minimizer Maximizer Strict saddle Flat saddle

|
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Trap avoidance: what is it ?

We proved only convergence to critical points.

Finding global (and even local) minima is (NP-)hard in general.
Local descent methods can get trapped at saddle points.

Can this be avoided ?

Yes: center stable manifold theorem.

© o o0 0

Definition We will say that & is a strict saddle point of f € C?(R%) if & € Crit(f)
and Amin (V2 £(2)) < 0.

feC? (Rd) has the strict saddle property if every critical point is either a local mini-
mum or a strict saddle, i.e., no flat saddle points.

Non-critical Minimizer Maximizer Strict saddle Flat saddle

® This property is generic over the space of C? (Morse) functions. |

TTW’25-18




Trap avoidance of IGAHD R

m%Rn f(x), f e C*(RY),inf f > —o0.
reR

{yk = Tk +Oék($k —xk—l) —5k(vf($k) _vf(xk—l))7

Try1 =Yk — SV f(Tk).

def 1 def def def
dp — 1—|—’Ykh’/yk — /Y(k'h)?ﬁk — Bhakask —

h2&k.

Theorem Let f € C?(RY)NC ' (R?) be a definable function. Assume that v, = ¢ >

0,0<B<£,8# 2, andh <min(2 (£ —3), LLB), then for almost all o, 1 € R,
xp converges to a critical point of f that is not a strict saddle. Consequently, if f

satisfies the strict saddle property then for almost all zo, 1 € R?, z;, converges to a
local minimum of f.

|
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Trap avoidance of IGAHD R

m%Rn f(x), f e C*(RY),inf f > —o0.
reR

{yk = Tk +Oék($k —xk—l) —5k(vf($k) —Vf(«??k—1)),

Try1 =Yk — SV f(Tk).

def 1 def def def
dp — 1—|—’Ykh’/yk — /Y(kh%ﬁk — Bhakask —

h204k.

Theorem Let f € C?(RY)NC ' (R?) be a definable function. Assume that v, = ¢ >
0,0<pB<£,8#L andh <min(2 (£ — 5), LLB), then for almost all ¢, 1 € RY,
xp converges to a critical point of f that is not a strict saddle. Consequently, if f

satisfies the strict saddle property then for almost all zo, 1 € R?, z;, converges to a
local minimum of f.

N=1-3"%
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Outline

DIP recovery guarantees

g(u,0)

"

|
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DIP training with inertia

AT mxn
| gﬁ“ve) y = AX +¢ AcR
{9%1({)1 Ly( g(“v 0))

|
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DIP training with inertia
y=AX+te¢ A e R™*"

min Ly (Ag(u,0))

(ISEHD o) + 0‘9@ + 85 VeLly(Ag(u,0(t))) + VoLy(Ag(u,0(t))) = 0
6(0) =60,0(0) = 0.

e =0+ ase0—0,1)— Bs; (VoLy(Ag(u,0,)) — VoLly(Ag(u,b, 1)),

(IGAHD)
0rr1 =m0 —5:VeLy(Ag(u,y)).

L |
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DIP training with inertia
y=AX+te¢ A e R™*"

min Ly (Ag(u,0))

Assumptions

® [, :quadratic loss.
® ¢ < C'(R)and 3B > 0 such that sup,.g |¢'(z)| < B and ¢’ is B-Lipschitz continuous.

L |
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DIP training with inertia
y=AX+te¢ A e R™*"

min Ly (Ag(u,0))

Assumptions

® [, :quadratic loss.
® ¢ < C'(R)and3IB > 0such that sup, g |¢'(x)| < B and ¢’ is B-Lipschitz continuous.

Goal

® Recovery guarantees of DIP when optimized with inertial methods in :
$ Observation (y) space : convergence to zero-loss = implicit regularization.
®» Object (x) space : restricted injectivity of the forward operator on ..

® NN architecture : role of overparametrization.

L .
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Recovery guarantees: Yy SpAcCeE
y = AX +¢
0(t) + ab(t) + B%VGLy(Ag(u,o(t))) + VoLly(Ag(u,8(t))) =0 (ISEHD)

|
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Recovery guarantees: Yy SpAcCeE
y = AX +¢
0(t) + ab(t) + B%VGLy(Ag(u,o(t))) + VoLly(Ag(u,8(t))) =0 (ISEHD)

def .
= inf |Az| /||z|| > 0.
zcKer(A)-+

OA

|
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Recovery guarantees: Yy SpAcCeE
) y = AX +¢
0(t) + ab(t) + B~ VoLy(Ag(u,0(t)) + VoLy(Ag(u,6()) =0  (ISEHD)

on = inf  ||Az| /| z] > 0.
zcKer(A)-+

Theorem Letd(-) be a solution trajectory of (ISEHD) with o = oyin(Jg(0))oa and g = L where the initialization

2
0 is such that omin(Jg(0)) >0 and R <R,
Umin(j (O))
R = L 0)) and R = — =
77\/5 y(¥(0)) 2Lipg g, r)(JTg)
(1 SO A (an (TgO)oa, H52)
- 1 T min (0 (Zg(0)203, 3)

where R’ and R obey

with

Then, the following holds :

(i) the loss converges to 0 at the rate

£,(v(0)) < £, (y(0)exp - L0, )

Moreover, §(t) converges to a global minimizer 0, at the rate

||0(t) _900|| < n\/gﬁy(y(()))exp (—Omin(ji(O))aAt) .

(i) We have

ly(t) —¥| <2|le|| when t>

4 In
Omin(Jg(0))oa el
B ]
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Recovery guarantees: Yy SpAcCeE
) y = AX +¢
0(t) + ab(t) + B~ VoLy(Ag(u,0(t)) + VoLy(Ag(u,6()) =0  (ISEHD)

on = inf  ||Az| /| z] > 0.
zcKer(A)-+

Theorem Letd(-) be a solution trajectory of (ISEHD) with o = oyin(Jg(0))oa and g = i where the initialization
0o is such that Omin(Jx(0)) >0 and R <R,

where R’ and R obey , Omin(Tg(0)) Non-degenerate
R =n,/ELy(y(0)) and R= — initialization
\/ y(¥(0)) 2Lipg g, r)(Jg)
with 2 2 Amax (omin(Tg(0))oa, L2
1y OPAS (7min(Ti()oa, 2572)

min (Jmin(jg(O))Qai, %)
Then, the following holds :

(i) the loss converges to 0 at the rate

£,(v(0)) < £, (y(0)exp - L0, )

Moreover, §(t) converges to a global minimizer 0, at the rate

||0(t) _0OO|| < n\/gﬁy(y(()))exp (—Omin(ji(O))aAt) .

(i) We have

ly(t) —¥| <2|le|| when t>

4 In
Omin(Jg(0))oa el
B ]
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Recovery guarantees: Yy SpAcCeE
) y = AX +¢
0(t) + ab(t) + B~ VoLy(Ag(u,0(t)) + VoLy(Ag(u,6()) =0  (ISEHD)

on = inf  ||Az| /| z] > 0.
zcKer(A)-+

Theorem Letd(-) be a solution trajectory of (ISEHD) with o = oyin(Jg(0))oa and g = i where the initialization
0o is such that Omin(Jx(0)) >0 and R <R,

where R’ and R obey , Omin(Tg(0)) Non-degenerate
R =n,/ELy(y(0)) and R= — initialization
\/ y(¥(0)) 2Lipg g, r)(Jg)
with 2 2 Amax (omin(Tg(0))oa, L2
1y OPAS (7min(Ti()oa, 2572)

min (Jmin(jg(O))Qai, %)
Then, the following holds :

(i) the loss converges to 0 at the rate

O-min(jg(o))O-A
Ly(y(t)) < ELy(y(0)) exp (‘ 2 t) | Trajectory close

Moreover, 0(t) converges to a global minimizer 0. at the rate to initialization

18(0) - 0] < €, (y0)) exp (- TN,

(i) We have

ly(t) —¥| <2|le|| when t>

4 In
Omin(Jg(0))oa el
B ]
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Recovery guarantees: Yy SpAcCeE
) y = AX +¢
0(t) + ab(t) + B~ VoLy(Ag(u,0(t)) + VoLy(Ag(u,6()) =0  (ISEHD)

on = inf  ||Az| /| z] > 0.
zcKer(A)-+

Theorem Letd(-) be a solution trajectory of (ISEHD) with o = oyin(Jg(0))oa and g = i where the initialization
0o is such that Omin(Jx(0)) >0 and R <R,

where R’ and R obey , Omin(Tg(0)) Non-degenerate
R =n,/ELy(y(0)) and R= — initialization
\/ y(¥(0)) 2Lipg g, r)(Jg)
with 2 2 Amax (omin(Tg(0))oa, L2
1y OPAS (7min(Ti()oa, 2572)

min (Jmin(jg(O))Qai, %)
Then, the following holds :

(i) the loss converges to 0 at the rate

£,(5(0)) < €L, y(0)) exp (- 72 TB0D78 )

Trajectory close

Moreover, (t) converges to a global minimizer 8 at the rate to initialization
Omin j 0))o
18(0) - 0. < 1€y y(0)) exp (- TN,
(i) We have
- 4 V26Ly (y(0))
y(it)—y| < 2|l when t> In
ly (@) =¥l < 2] o (T=(0))0A < el
Implicit regularization
| Stable recovery by early stopping |
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Recovery guarantees: x space

opn = inf  ||Az]/|z] > 0. Y ={g(u,0): 6 cO}
zEKer(A)-+
Amin (A; Tx(x)) = inf{||Az]|| / ||z|| : z € Tx(Xx)}. Ty, (x) = conv (R, (2 — x))

<

|
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Recovery guarantees: x space

opn = inf  ||Az]/|z] > 0. Y ={g(u,0): 6 cO}
zEKer(A)-+
Amin (A Tx(x)) = inf{||Az|| /||z|| : z € Tx(Xx)}. Ty, (x) = conv (R, (2 — x))

Lo/

Theorem Assume the same assumptions on the parameters and initialization as above. If, moreover,

_ . def
ker (A) N Ty (X)) = {0} with X' = EBR’+I|00|I’

then

VL (0) exp (-2l Ooay) N R el
Jx(t) - %]l < e e B ww e e ) LB o ey
B |
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Recovery guarantees: x space

opn = inf  ||Az]/|z] > 0. Y ={g(u,0): 6 cO}
zEKer(A)-+
Amin (A; Tx(x)) = inf{||Az]|| / ||z|| : z € Tx(Xx)}. Ty, (x) = conv (R, (2 — x))

Theorem Assume the same assumptions on the parameters and initialization as above. If, moreover,

ker (A) N Ts (Xs) = {0 with > sp . Restricted Injectivity
(A) N T (%) = {0} r'+1001” " Condition (RIC)

then

VL () exp (- 2oy Al s Bl
Jx(t) - %]l < e e B ww e e ) LB o ey
B |
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Recovery guarantees: x space

opn = inf  ||Az]/|z] > 0. Y ={g(u,0): 6 cO}
zEKer(A)-+
Amin (A; Tx(x)) = inf{||Az]|| / ||z|| : z € Tx(Xx)}. Ty, (x) = conv (R, (2 — x))

Theorem Assume the same assumptions on the parameters and initialization as above. If, moreover,

ker (A) N Ts (Xs) = {0 with > sp . Restricted Injectivity
(A) N T (%) = {0} r'+1001” " Condition (RIC)
then

 /26L,(y(0)) exp (— e t) A (1 . N
- )\min(A; TE’ (XZ’ )) Amin(A; TE’ (XZ/ ))
Optimization error

) dist(x, X')+

L .

TTW’25-24



Recovery guarantees: x space

opn = inf  ||Az]/|z] > 0. Y ={g(u,0): 6 cO}
zEKer(A)-+
Amin (A; Tx(x)) = inf{||Az]|| / ||z|| : z € Tx(Xx)}. Ty, (x) = conv (R, (2 — x))

/L

Theorem Assume the same assumptions on the parameters and initialization as above. If, moreover,
/ def

ker (A) N Ts (Xs/) = {0} with ¥ = Xp . Restricted Injectivity
r(A) N T (X)) = 10 r'+1001” " Condition (RIC)
then
. O'min(jg(o))O'A
Ix(t) — x| < \/2££y(Y(0))exp( _ 4 t) +(1 N | Al _ )dist(i, )+ e _
)\min(A; TZ’(XZ’)) Amin(A; TZ’(XZ’)) )‘mln(A; TE’ (XZ’))

Optimization error Approximation error

L .
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Recovery guarantees: x space

opn = inf  ||Az]/|z] > 0. Y ={g(u,0): 6 cO}
zEKer(A)-+
Amin (A; Tx(x)) = inf{||Az]|| / ||z|| : z € Tx(Xx)}. Ty, (x) = conv (R, (2 — x))

/L

Theorem Assume the same assumptions on the parameters and initialization as above. If, moreover,
/ def

ker (A) N Ts (Xs/) = {0} with ¥ = Xp . Restricted Injectivity
r(A) N T (X)) = 10 r'+1001” " Condition (RIC)
then
. O'min(jg(o))O'A
Ix(t) — x| < \/2££y(Y(0))exp( _ 4 t)+(1+ | Al _ )dist(i,E’)Jr e _
)\min(A; TE’ (XZ’ )) Amin(A; TZ’ (XZ’ )) )‘mln(A; TE’ (XZ’))

Optimization error Approximation error

L .
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Recovery guarantees: x space

opn = inf  ||Az]/|z] > 0. Y ={g(u,0): 6 cO}
zEKer(A)-+
Amin (A Tx(x)) = inf{||Az|| /||z|| : z € Tx(Xx)}. Ty, (x) = conv (R, (2 — x))

Theorem Assume the same assumptions on the parameters and initialization as above. If, moreover,

ker (A) N Ts (Xs) = {0 with > sp . Restricted Injectivity
(A) N T (%) = {0} r'+1001” " Condition (RIC)
then

 /26L,(y(0)) exp (— e t) A (1 . N
- )\min(A; TZ’ (XZ’ )) Amin(A; TZ’ (XZ/ ))
Optimization error

) dist(x, X')+

® Sample bounds for A .. can be given in a compressed sensing
framework via the Gaussian width of the tangent cone.

L .
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Recovery guarantees: x space

opn = inf  ||Az]/|z] > 0. Y ={g(u,0): 6 cO}
zEKer(A)-+
Amin (A Tx(x)) = inf{||Az|| /||z|| : z € Tx(Xx)}. Ty, (x) = conv (R, (2 — x))

Lo/

Theorem Assume the same assumptions on the parameters and initialization as above. If, moreover,

ker (A) N Ts (Xs) = {0 with > sp . Restricted Injectivity
(A) N T (%) = {0} r'+1001” " Condition (RIC)

then

 /26L,(y(0)) exp (— e t) A (1 . N
- )\min(A; TZ’ (XZ’ )) Amin(A; TZ’ (XZ/ ))
Optimization error

) dist(x, X')+

® Sample bounds for A .. can be given in a compressed sensing
framework via the Gaussian width of the tangent cone.

® Trade-off between the expressivity of the model and the RIC.

L .
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Recovery guarantees: x space

opn = inf  ||Az]/|z] > 0. Y ={g(u,0): 6 cO}
zEKer(A)-+
Amin (A Tx(x)) = inf{||Az|| /||z|| : z € Tx(Xx)}. Ty, (x) = conv (R, (2 — x))

<

Theorem Assume the same assumptions on the parameters and initialization as above. If, moreover,

ker (A) N Ts (Xs) = {0 with > sp . Restricted Injectivity
(A) N T (%) = {0} r'+1001” " Condition (RIC)

then

 /26L,(y(0)) exp (— e t) A (1 . N
- Amin(A; TZ’ (XZ’ )) Amin(A; TZ’ (XZ’ ))
Optimization error

dist(x, X')+ | —
) & )+ A To (=)

® Sample bounds for A .. can be given in a compressed sensing
framework via the Gaussian width of the tangent cone.

® Trade-off between the expressivity of the model and the RIC.

® Optimization error of GF : O (eXp (— Jmi“(ji(o))%i‘ t)) .

. ® Optimization error of ISEHD : O (exp (— Tmin (g (0))oA t)) . B

4
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Non-degenerate initialization

0(t) + ad(t) + ﬂ%VgLy(Ag(u,H(t))) + VoLly(Ag(u,0(t)) =0 (ISEHD)

Theorem Let@(-) be a solution trajectory of (ISEHD) with o = o (J¢(0))oa and 3 = 5= where the initialization

2a
6, is such that omin(Jg(0)) >0 and R’ <R,
here R' and R ob Ganin (T (0) Non-delgenerate
where R' an obey / min\Jg initialization
R =mn/ELy(y(0)) and R = —
\/ Y 2Lipgg,, k) (JTg)

: etc.

L |
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Non-degenerate initialization

A AT 626 Ly(Ag(u,0)) AeR

0(t) + ad(t) + ﬂ%VgLy(Ag(u,H(t))) + VoLly(Ag(u,0(t)) =0 (ISEHD)

Theorem Let@(-) be a solution trajectory of (ISEHD) with o = o (J¢(0))oa and 3 = 5= where the initialization

2a
6, is such that omin(Jg(0)) >0 and R’ <R,
here R' and R ob Ganin (T (0) Non-delgenerate
where R' an obey / min\Jg initialization
R =mn/ELy(y(0)) and R = —
\/ Y 2Lipgg,, k) (JTg)

: etc. \

How to ensure this ?

L |
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Non-degenerate initialization

3 mXxXn
min Ly(Ag(u,d)) AeR

AT AN
ﬂ = ) N 7@ N7
N
5 U

0(t) + ab(t) + ﬂ%Vgﬁy(Ag(u,H(t))) + VoLly(Ag(u,0(t)) =0 (ISEHD)

Theorem Let@(-) be a solution trajectory of (ISEHD) with o = o (J¢(0))oa and 3 = 5= where the initialization

2cx
6, is such that omin(Jg(0)) >0 and R’ <R,
here R' and R ob Ganin (T (0) Non-delgenerate
where R’ an obey / min\Jg initialization
R =mn/ELy(y(0)) and R = —
\/ Y 2Lipgg,, r)(Te)

: etc. \

How to ensure this ?

| The role of overparametrization -
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L N

Wide two-layer DIP

u uniform vector on S¢—1.

W (0) has iid A/ (0, 1) entries.

V (0) independent from W (0) and u, and its entries are zero-
mean independent D-bounded random variables of unit variance.

|
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Overparametrization bound

g(u,0)
s

Theorem Consider the one-hidden layer DIP network with the archi-
tecture parameters where both layers are trained with the architecture
parameters obeying

k> (14 r(A)H (74 1)

All*n? + (1 +SNR™H 2).
mm@,@)”(” |*n%+ (1+ ) m

Then with probability at least1—5e~("—1) —2n,=1 (0) = (W(0), V(0))
IS a non-degenerate initial point. Here ci, co are absolute constants.

|
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Overparametrization bound

Theorem Consider the one-hidden layer DIP network with the archi-
tecture parameters where both layers are trained with the architecture
parameters obeying

4
2 %’ ) n (HAH4 n®+ (1+ SNR_1)4 m2) .
min (0%, c2)

k2 (1+ r(A)Y

Then with probability at least1—5e~ ("1 —2n,=1 (0) = (W(0), V(0))
IS a non-degenerate initial point. Here ci, co are absolute constants.

® The bound scales as k > n? + nm?.
® |mprovedto k > nmif V is fixed and only is W is optimized.
® (ISEHD) achieves an optimal exponential rate but at the price of

a more stringent condition on compared to GF. |
TTW’25-27



- What about (IGAHD) -

y = AX +¢ A € Rmxn

ot

ne  =0;+ase0;—0,_1) — Bs; (VeLy(Ag(u,0,)) — VoLly(Ag(u,0,_1))),
01 =m0 —50VeLly(Ag(u,by)).

L |
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: What about (IGAHD) |

y =AX+¢ A € RmXn

. /?*:ff' | Ieréiél Ly(Ag(u,0))

1GaHDY M = O T aseOc—00-1) = By (VoLy(Ag(u,6:)) — VoLy(Ag(u,0,-1))),
01 =m0 — 5/VoLly(Ag(u,6y)).

Beware of local Lipschitz continuity only of g(u,.).

L .
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: What about (IGAHD) |

in L, (A 0
IGIélél Y( g(“a ))
agampy M Ortase0r—0i) - Bs? (VoLly(Ag(u,0,)) — VoLly(Ag(u,0, 1)),
Orp1 =m0 — 50VoLy (Ag(u,8y)).

Beware of local Lipschitz continuity only of g(u,.).

Similar guarantees hold with a backtracking
procedure within (IGAHD)

L .
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Flexibility of (IGAHD) B

4.0 -1.0
3.8

3.6

3.4 - 0.8
3.2

3.0
2.8 - 0.6
2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0

log (k)

0.4

0.0

N~ O 0 L Y N N N~NO

Yo o~ Ty & & S
/ / / / / /

N O
QO
! /

\/} ‘()

S S
/ !

logo()

Empirical probability of (IGAHD) to achieve
numerical accuracy over the loss in less than

L 15000 iterations for varying (k,cr). 5=0.05. J
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Flexibility of (IGAHD)

log (k)

s

2.0

1.2
1.0

-

1

g(“? 9) — _V¢(Wu)

=

Substantial gain

in the overparametrized regime

-1.0

- (0.8

- 0.6

0.4

0.2

0.0
L Y H YNNI N0 BV YW O,H O~
XN R B I I P S

/ / ! ! / ! / ! / ! / ! / !
log ()

Empirical probability of (IGAHD) to achieve

numerical accuracy over the loss in less than

15000 iterations for varying (k,cr). 5=0.05.

|
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B Flexibility of (IGAHD) E

g(u,0) = —Vo(Wu
( ) \/E ( ) Substantial gain

in the overparametrized regime

4.0 -1.0
3.8
3.4 - 0.8
3.2
3.0
= 28 0.6
=26
o 2.4
i ~ 2.2 0.4
No gain 2.0
in the underparametrized regime 1%
0.2

1.6
\

0.0

Empirical probability of (IGAHD) to achieve
numerical accuracy over the loss in less than

L 15000 iterations for varying (k,cr). 5=0.05. J
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Flexibility of (IGAHD) B

g(u,0) =

\/EV¢(WH)

Well-adjusted parameters:
acceleration and oscillation reduction.

10!
a=0;3=0
" e ' a=0;3=01
/s ‘ a=0;8=1
: v a=018=0 _
a=01;8=01 ; WyTTSssssegaaa XA =
a=018=1 % ey ‘
‘ a=1;8=0
LN R 2 T a=1;3=01
———— | a=1p=1 10 4
10! 102 108 104 10! 102 BRET2 104

|
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Flexibility of (IGAHD) B

g(u,0) =

\/Equ(Wu)

Well-adjusted parameters:
acceleration and oscillation reduction.

10!

10!
a=0:8=0
100 s i i 5 a=0;3=0.1
yl--«luuv ‘ o = (]; _)‘ — 1
10 4 e pu . v a=01:8=0  _
—~ ! X [ ) e i . )
s a=018=01 , ' =z
q 1() “ 9 - o N | ' | !
a=013=1 X :
105 4 \ - . N a=1;3=0
LN B = a=1;8=01
104 4 - === n:l,le 1071 4
10! 102 108 104 10! 102 10% 104

Training to zero-loss

L |
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10!

109 4

1071 4

10—25 4

1071

g(u,0) =

1

vk

2 ]
310

10!

l(y)2

Training to zero-loss

V(W)

Flexibility of (IGAHD)

Well-adjusted parameters:

10!

acceleration and oscillation reduction.

a=0;3=0
a=0;3=01
a=0;3=1
a=01;3=0 _

a=01:8=01 1 10°] + :
a=01;5=1 é'
a=1;3=0
a=1;3=0.1
a=1;5=1 10! +
1(‘)] S l(’]:‘ - 1(',1
Early stopping

|
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Convergence
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Trap avoidance
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Outline

Convergence Trap avoidance

DIP recovery guarantees
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Take away messages

|
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Take away messages

® Inertia (viscous and geometric) is good even for non-convex problems
if properly used.

L .
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Take away messages

® Inertia (viscous and geometric) is good even for non-convex problems
if properly used.
® Convergence and trap avoidance.

L .
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Take away messages

® Inertia (viscous and geometric) is good even for non-convex problems

if properly used.

Convergence and trap avoidance.

Impact on recovery guarantees of DIP when optimized with inertia.

L J

L .
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-
Take away messages

Inertia (viscous and geometric) is good even for non-convex problems
if properly used.

Convergence and trap avoidance.

Impact on recovery guarantees of DIP when optimized with inertia.

NN design: need for overparametrization.
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-
Take away messages

Inertia (viscous and geometric) is good even for non-convex problems
if properly used.

Convergence and trap avoidance.

Impact on recovery guarantees of DIP when optimized with inertia.

NN design: need for overparametrization.

Empirical results agree with theoretical predictions.
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Take away messages

Inertia (viscous and geometric) is good even for non-convex problems
if properly used.

Convergence and trap avoidance.

Impact on recovery guarantees of DIP when optimized with inertia.

NN design: need for overparametrization.

Empirical results agree with theoretical predictions.

Stochastic setting.
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Take away messages

Inertia (viscous and geometric) is good even for non-convex problems
if properly used.

Convergence and trap avoidance.

Impact on recovery guarantees of DIP when optimized with inertia.

NN design: need for overparametrization.

Empirical results agree with theoretical predictions.

Stochastic setting.
Non-smooth setting.
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Take away messages

Inertia (viscous and geometric) is good even for non-convex problems
if properly used.

Convergence and trap avoidance.

Impact on recovery guarantees of DIP when optimized with inertia.

NN design: need for overparametrization.

Empirical results agree with theoretical predictions.

Stochastic setting.
Non-smooth setting.
Long time behaviour (occupation measures).
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Take away messages

Inertia (viscous and geometric) is good even for non-convex problems
if properly used.

Convergence and trap avoidance.

Impact on recovery guarantees of DIP when optimized with inertia.

NN design: need for overparametrization.

Empirical results agree with theoretical predictions.

Stochastic setting.

Non-smooth setting.

Long time behaviour (occupation measures).

Other NN-based frameworks: PINNs, supervised setting.
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Take away messages

Inertia (viscous and geometric) is good even for non-convex problems
if properly used.

Convergence and trap avoidance.

Impact on recovery guarantees of DIP when optimized with inertia.

NN design: need for overparametrization.

Empirical results agree with theoretical predictions.

Stochastic setting.

Non-smooth setting.

Long time behaviour (occupation measures).

Other NN-based frameworks: PINNs, supervised setting.
Other overparametrization regimes.
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Take away messages

Inertia (viscous and geometric) is good even for non-convex problems
if properly used.

Convergence and trap avoidance.

Impact on recovery guarantees of DIP when optimized with inertia.

NN design: need for overparametrization.

Empirical results agree with theoretical predictions.

Stochastic setting.
Non-smooth setting.
Long time behaviour (occupation measures).

Ot
Ot
Ot

ner NN-based frameworks: PINNs, supervised setting.
ner overparametrization regimes.

ner data-driven methods for IP: PnP, unrolling, generative models.
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N N
Preprint on arxiv and paper on

https://fadili.users.greyvc.fr/

Thanks
Any questions ?

L |
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http://www.greyc.ensicaen.fr/~jfadili

