Inertial Algorithms Meet NN-Based Methods for Inverse Problems

Jalal Fadili

Normandie Université-ENSICAEN, CNRS

Joint ARGOS-TITAN-TOSCA workshop 7-8 July 2025

Join work with Rodrigo Maulen and Nathan Buskulic

Motivation

- Throughout the talk: finite-dimensional setting.
- $m{F}:\mathbb{R}^n o\mathbb{R}^m$ is the forward operator (physics of the observation formation model).
- $m{ extstyle } arepsilon$: noise.

Motivation

- Throughout the talk: finite-dimensional setting.
- $m P:\mathbb R^n o\mathbb R^m$ is the forward operator (physics of the observation formation model).
- $oldsymbol{arepsilon}$ arepsilon : noise.

Goal

Recover \overline{x} from y is generally an ill-posed inverse problem.

Model-based variational approach

Solve :

Model-based variational approach

Solve :

$$\min_{\mathbf{x} \in \mathbb{R}^n} \underbrace{\mathcal{L}_{\mathbf{y}}(\mathbf{F}(\mathbf{x}))}_{ ext{Data fidelity}} + \sum_{i=1}^{n} \underbrace{R_i(\mathbf{x})}_{ ext{Model knowledge}}$$

Pros

- Well-understood.
- Wealth of theoretical guarantees:
 - recovery: exact, stability.
 - algorithms.
 - explainability/interpretability.
 - etc.

Model-based variational approach

Solve :

$$\min_{\mathbf{x} \in \mathbb{R}^n} \underbrace{\mathcal{L}_{\mathbf{y}}(\mathbf{F}(\mathbf{x}))}_{ ext{Data fidelity}} + \sum_{i=1}^{n} \underbrace{R_i(\mathbf{x})}_{ ext{Model knowledge}}$$

Pros

- Well-understood.
- Wealth of theoretical guarantees:
 - recovery: exact, stability.
 - algorithms.
 - explainability/interpretability.
 - etc.

Cons

- Choice of the prior class not always easy.
- Diversity and complexity of objects to recover.

$$\min_{\boldsymbol{\theta} \in \Theta \subset \mathbb{R}^p} \frac{1}{N} \sum_{i=1}^N \ell(\mathbf{x}_i, \mathbf{g}(\mathbf{y}_i, \boldsymbol{\theta}))$$

$$\min_{\boldsymbol{\theta} \in \Theta \subset \mathbb{R}^p} \frac{1}{N} \sum_{i=1}^N \ell(\mathbf{x}_i, \mathbf{g}(\mathbf{y}_i, \boldsymbol{\theta}))$$

Pros

- Off-the-shelf NN learning frameworks.
- No model to think about (... not quite so).
- Training once for all.

$$\min_{\boldsymbol{\theta} \in \Theta \subset \mathbb{R}^p} \frac{1}{N} \sum_{i=1}^N \ell(\mathbf{x}_i, \mathbf{g}(\mathbf{y}_i, \boldsymbol{\theta}))$$

Pros

- Off-the-shelf NN learning frameworks.
- No model to think about (... not quite so).
- Training once for all.

Cons

- Supervised: availability of training data.
- NN design (prior design is traded for NN design).
- No physical/forward model included.
- Guarantees from IP perspective: recovery, stability, explainability, etc.

Hybrid (model-based) learning

- Mix model- and data-driven methods in various ways: e.g.
 - Learn the regularizer.
 - Plug-and-Play.
 - Unrolling.
 - Deep equilibrium.
 - Generative models.
 - etc.
- An extremely active area, with extensive literature and reviews.

Hybrid (model-based) learning

- Mix model- and data-driven methods in various ways: e.g.
 - Learn the regularizer.
 - Plug-and-Play.
 - Unrolling.
 - Deep equilibrium.
 - Generative models.
 - etc.
- An extremely active area, with extensive literature and reviews.

Pros

- Tries to get the best of both worlds.
- Accounts for the forward model.
- Prior learned explicitly/implicitly.
- Training once for all.
- Some guarantees: e.g. non-expansiveness/ Lipschitz constant in unrolling or PnP.

Hybrid (model-based) learning

- Mix model- and data-driven methods in various ways: e.g.
 - Learn the regularizer.
 - Plug-and-Play.
 - Unrolling.
 - Deep equilibrium.
 - Generative models.
 - etc.
- An extremely active area, with extensive literature and reviews.

Pros

- Tries to get the best of both worlds.
- Accounts for the forward model.
- Prior learned explicitly/implicitly.
- Training once for all.
- Some guarantees: e.g. non-expansiveness/ Lipschitz constant in unrolling or PnP.

Cons

- Supervised: availability of training data.
- NN design (or even many NNs).
- Lack of guarantees from IP perspective: recovery, stability, explainability, etc.

$$\min_{m{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{F}(\mathbf{x}_{m{ heta}}))$$

s.t.
$$\mathbf{x}_{\boldsymbol{\theta}} \in \Sigma$$

 $\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$

- ullet An unsupervised approach : generator from a latent variable ${f u}\sim \mu.$
- Hope for NN to induce "implicit regularization" and produce meaningful content before overfitting.
- lacksquare A early stopping strategy for the NN to generate a vector close to $\overline{\mathbf{x}}$.

Pros

- Unsupervised.
- Accounts for the forward model.
- Easy to implement with (very) good empirical success.

s.t.
$$\mathbf{x}_{\boldsymbol{\theta}} \in \Sigma$$

$$\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

$$\min_{m{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{F}(\mathbf{x}_{m{ heta}}))$$

s.t.
$$\mathbf{x}_{\boldsymbol{\theta}} \in \Sigma$$

$$\Sigma = \{\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta\}$$
 Cons

Pros

- Unsupervised.
- Accounts for the forward model.
- Easy to implement with (very) good empirical success.
- Optimize/train for each signal to recover.
- No theoretical guarantees: recovery, stability, NN design.

$$\min_{m{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{F}(\mathbf{x}_{m{ heta}}))$$

s.t.
$$\mathbf{x}_{m{ heta}} \in \Sigma$$

$$\Sigma = \{\mathbf{g}(\mathbf{u}, m{ heta}): \ m{ heta} \in \Theta\}$$
 Cons

Pros

- Unsupervised.
- Accounts for the forward model.
- Easy to implement with (very) good empirical success.
- Optimize/train for each signal to recover.
- No theoretical guarantees: recovery, stability, NN design.

In the rest of the talk, linear forward operator

Example: Image deblurring

$$\mathbf{y} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$$
 $\varepsilon \sim \mathcal{N}(0, 50^2)$

$$\varepsilon \sim \mathcal{N}(0, 50^2)$$

Early stopping

Example: Normal integration

$$\mathbf{y} = \nabla_{\text{diff}} \overline{\mathbf{x}} + \varepsilon \quad \varepsilon \sim \mathcal{N}(0, 1.5)$$

DIP training with inertia

$$\min_{m{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, m{ heta}))$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

DIP training with inertia

$$\min_{oldsymbol{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, oldsymbol{ heta}))$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

(ISEHD)
$$\begin{cases} \ddot{\boldsymbol{\theta}}(t) + \alpha \dot{\boldsymbol{\theta}}(t) + \beta \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) = 0 \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_0, \dot{\boldsymbol{\theta}}(0) = 0. \end{cases}$$

$$\text{(IGAHD)} \begin{cases} \boldsymbol{\eta}_{\ell} &= \boldsymbol{\theta}_{\ell} + (1 - \alpha \sqrt{s_{\ell}}) (\boldsymbol{\theta}_{\ell} - \boldsymbol{\theta}_{\ell-1}) - \beta \sqrt{s_{\ell}} \left(\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}} (\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}_{\ell})) - \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}} (\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}_{\ell-1})) \right), \\ \boldsymbol{\theta}_{\ell+1} &= \boldsymbol{\eta}_{\ell} - s_{\ell} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}} (\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}_{\ell})). \end{cases}$$

DIP training with inertia

$$\min_{\boldsymbol{\theta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}))$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

$$\text{(ISEHD)} \begin{cases} \ddot{\boldsymbol{\theta}}(t) + \alpha \dot{\boldsymbol{\theta}}(t) + \beta \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) = 0 \\ \boldsymbol{\theta}(0) = \boldsymbol{\theta}_0, \dot{\boldsymbol{\theta}}(0) = 0. \end{cases}$$

$$(\mathsf{IGAHD}) \begin{cases} \boldsymbol{\eta}_{\ell} &= \boldsymbol{\theta}_{\ell} + (1 - \alpha \sqrt{s_{\ell}}) (\boldsymbol{\theta}_{\ell} - \boldsymbol{\theta}_{\ell-1}) - \beta \sqrt{s_{\ell}} \left(\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}} (\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}_{\ell})) - \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}} (\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}_{\ell-1})) \right), \\ \boldsymbol{\theta}_{\ell+1} &= \boldsymbol{\eta}_{\ell} - s_{\ell} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}} (\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}_{\ell})). \end{cases}$$

- Recovery guarantees of DIP when optimized with inertial gradient descent in :
 - ullet Observation space : convergence to zero-loss \Rightarrow implicit regularization.
 - ullet Object space : restricted injectivity of the forward operator on Σ .
- NN architecture : role of overparametrization.

$$\min_{x \in \mathbb{R}^d} f(x), \qquad f \in C^2(\mathbb{R}^d), \inf f > -\infty.$$

$$\ddot{x}(t) + \gamma(t)\dot{x}(t) + \nabla f(x(t)) = 0, \quad t > t_0, \quad (IGS_{\gamma})$$

$$\min_{x \in \mathbb{R}^d} f(x), \qquad f \in C^2(\mathbb{R}^d), \inf f > -\infty.$$

$$\ddot{x}(t) + \gamma(t)\dot{x}(t) + \nabla f(x(t)) = 0, \quad t > t_0, \quad (IGS_{\gamma})$$

$$\min_{x \in \mathbb{R}^d} f(x), \qquad f \in C^2(\mathbb{R}^d), \inf f > -\infty.$$

$$\ddot{x}(t) + \gamma(t)\dot{x}(t) + \nabla f(x(t)) = 0, \quad t > t_0, \quad (IGS_{\gamma})$$

Neutralize oscillations by geometric damping

$$\ddot{x}(t) + \frac{\gamma(t)}{\gamma(t)}\dot{x}(t) + \frac{\beta(t)}{\gamma(t)}\nabla^2 f(x(t))\dot{x}(t) + \nabla f(x(t)) = 0 \qquad \text{(ISEHD)}$$

Viscous damping

Geometric
Hessian-driven
damping

$$\min_{x \in \mathbb{R}^d} f(x), \qquad f \in C^2(\mathbb{R}^d), \inf f > -\infty.$$

$$\ddot{x}(t) + \gamma(t)\dot{x}(t) + \nabla f(x(t)) = 0, \quad t > t_0, \quad (IGS_{\gamma})$$

Neutralize oscillations by geometric damping

$$\ddot{x}(t) + \frac{\gamma(t)}{\gamma(t)}\dot{x}(t) + \frac{\beta(t)}{\gamma(t)}\nabla^2 f(x(t))\dot{x}(t) + \nabla f(x(t)) = 0 \qquad \text{(ISEHD)}$$

Viscous damping

Geometric Hessian-driven

 $\frac{\mathsf{damping}}{\mathsf{damping}}$

 $\ddot{x}(t) + \gamma(t)\dot{x}(t) + \nabla f(x(t) + \beta(t)\dot{x}(t)) = 0$

(ISIHD)

Main results

$$\min_{x \in \mathbb{R}^d} f(x), \qquad f \in C^2(\mathbb{R}^d), \inf f > -\infty.$$

$$\ddot{x}(t) + \gamma(t)\dot{x}(t) + \beta(t)\nabla^2 f(x(t))\dot{x}(t) + \nabla f(x(t)) = 0 \qquad \text{(ISEHD)}$$

$$\ddot{x}(t) + \gamma(t)\dot{x}(t) + \nabla f(x(t) + \beta(t)\dot{x}(t)) = 0$$
 (ISIHD)

- For both systems:
 - Convergence of the gradient to zero and convergence of the values.
 - Global convergence and rates of the trajectories to a critical point for "nice" functions.
 - Trap avoidance: generic convergence of the trajectory to a local minimum.
- Same results for several discrete algorithms.
- Results transfer to the DIP training.

Main results

$$\min_{x \in \mathbb{R}^d} f(x), \qquad f \in C^2(\mathbb{R}^d), \inf f > -\infty.$$

$$\ddot{x}(t) + \gamma(t)\dot{x}(t) + \beta(t)\nabla^2 f(x(t))\dot{x}(t) + \nabla f(x(t)) = 0 \qquad \text{(ISEHD)}$$

$$\ddot{x}(t) + \gamma(t)\dot{x}(t) + \nabla f(x(t) + \beta(t)\dot{x}(t)) = 0$$
 (ISIHD)

- For both systems:
 - Convergence of the gradient to zero and convergence of the values.
 - Global convergence and rates of the trajectories to a critical point for "nice" functions.
 - Trap avoidance: generic convergence of the trajectory to a local minimum.
- Same results for several discrete algorithms.
- Results transfer to the DIP training.

In the rest of the talk, focus on (ISEHD) and its discrete version (IGAHD)

IGAHD Algorithm

$$\min_{x \in \mathbb{R}^d} f(x), \qquad f \in C^2(\mathbb{R}^d), \inf f > -\infty.$$

$$\ddot{x}(t) + \gamma(t)\dot{x}(t) + \beta(t)\nabla^2 f(x(t))\dot{x}(t) + \nabla f(x(t)) = 0 \qquad \text{(ISEHD)}$$

$$\frac{x_{k+1} - 2x_k + x_{k-1}}{h^2} + \gamma(kh) \frac{x_{k+1} - x_k}{h} + \beta \frac{\nabla f(x_k) - \nabla f(x_{k-1})}{h} + \nabla f(x_k) = 0.$$

$$\begin{cases} y_k &= x_k + \alpha_k(x_k - x_{k-1}) - \beta_k(\nabla f(x_k) - \nabla f(x_{k-1})), \\ x_{k+1} &= y_k - s_k \nabla f(x_k). \end{cases}$$
(IGAHD)

$$\alpha_k \stackrel{\text{def}}{=} \frac{1}{1+\gamma_k h}, \gamma_k \stackrel{\text{def}}{=} \gamma(kh), \beta_k \stackrel{\text{def}}{=} \beta h \alpha_k, s_k \stackrel{\text{def}}{=} h^2 \alpha_k.$$

Convergence and rates of IGAHD

$$\min_{x \in \mathbb{R}^d} f(x), \qquad f \in C^2(\mathbb{R}^d), \inf f > -\infty.$$

$$\begin{cases} y_k &= x_k + \alpha_k (x_k - x_{k-1}) - \beta_k (\nabla f(x_k) - \nabla f(x_{k-1})), \\ x_{k+1} &= y_k - s_k \nabla f(x_k). \end{cases}$$

$$\alpha_k \stackrel{\text{def}}{=} \frac{1}{1 + \gamma_k h}, \gamma_k \stackrel{\text{def}}{=} \gamma(kh), \beta_k \stackrel{\text{def}}{=} \beta h \alpha_k, s_k \stackrel{\text{def}}{=} h^2 \alpha_k.$$
(IGAHD)

Theorem Let $f \in C^2(\mathbb{R}^d) \cap C_L^{1,1}(\mathbb{R}^d)$. Assume that h > 0, $\beta \geq 0$ and $c \leq \gamma_k \leq C$ for some c, C > 0.

- (i) If $\beta + \frac{h}{2} < \frac{c}{L}$, f is definable and $(x_k)_{k \in \mathbb{N}}$ is bounded, then $(\|x_{k+1} x_k\|)_{k \in \mathbb{N}} \in \ell^1(\mathbb{N})$ and $x_k \to x_\infty \in \operatorname{Crit}(f)$.
- (ii) If f is Łojasiewicz with exponent $q \in [0, 1[$, then

$$||x_k - x_\infty|| = \mathcal{O}(\rho^k).$$

• If
$$q \in]\frac{1}{2}, 1[$$
 then $||x_k - x_\infty|| = \mathcal{O}\left(k^{-\frac{1-q}{2q-1}}\right)$.

Outline

Outline

We proved only convergence to critical points.

- We proved only convergence to critical points.
- Finding global (and even local) minima is (NP-)hard in general.

- We proved only convergence to critical points.
- Finding global (and even local) minima is (NP-)hard in general.
- Local descent methods can get trapped at saddle points.

- We proved only convergence to critical points.
- Finding global (and even local) minima is (NP-)hard in general.
- Local descent methods can get trapped at saddle points.
- Can this be avoided?

- We proved only convergence to critical points.
- Finding global (and even local) minima is (NP-)hard in general.
- Local descent methods can get trapped at saddle points.
- Can this be avoided?
- Yes: center stable manifold theorem.

- We proved only convergence to critical points.
- Finding global (and even local) minima is (NP-)hard in general.
- Local descent methods can get trapped at saddle points.
- Can this be avoided?
- Yes: center stable manifold theorem.

Definition We will say that \hat{x} is a strict saddle point of $f \in C^2(\mathbb{R}^d)$ if $\hat{x} \in \operatorname{Crit}(f)$ and $\lambda_{\min}(\nabla^2 f(\hat{x})) < 0$.

 $f \in C^2(\mathbb{R}^d)$ has the strict saddle property if every critical point is either a local minimum or a strict saddle, i.e., no flat saddle points.

- We proved only convergence to critical points.
- Finding global (and even local) minima is (NP-)hard in general.
- Local descent methods can get trapped at saddle points.
- Can this be avoided?
- Yes: center stable manifold theorem.

Definition We will say that \hat{x} is a strict saddle point of $f \in C^2(\mathbb{R}^d)$ if $\hat{x} \in \operatorname{Crit}(f)$ and $\lambda_{\min}(\nabla^2 f(\hat{x})) < 0$.

 $f \in C^2(\mathbb{R}^d)$ has the strict saddle property if every critical point is either a local minimum or a strict saddle, i.e., no flat saddle points.

This property is generic over the space of C^2 (Morse) functions.

Trap avoidance of IGAHD

$$\min_{x \in \mathbb{R}^d} f(x), \qquad f \in C^2(\mathbb{R}^d), \inf f > -\infty.$$

$$\begin{cases}
y_k &= x_k + \alpha_k (x_k - x_{k-1}) - \beta_k (\nabla f(x_k) - \nabla f(x_{k-1})), \\
x_{k+1} &= y_k - s_k \nabla f(x_k).
\end{cases}$$

$$\alpha_k \stackrel{\text{def}}{=} \frac{1}{1 + \gamma_k h}, \gamma_k \stackrel{\text{def}}{=} \gamma(kh), \beta_k \stackrel{\text{def}}{=} \beta h \alpha_k, s_k \stackrel{\text{def}}{=} h^2 \alpha_k.$$

Theorem Let $f \in C^2(\mathbb{R}^d) \cap C_L^{1,1}(\mathbb{R}^d)$ be a definable function. Assume that $\gamma_k \equiv c > 0$, $0 < \beta < \frac{c}{L}$, $\beta \neq \frac{1}{c}$, and $h < \min(2\left(\frac{c}{L} - \beta\right), \frac{1}{L\beta})$, then for almost all $x_0, x_1 \in \mathbb{R}^d$, x_k converges to a critical point of f that is not a strict saddle. Consequently, if f satisfies the strict saddle property then for almost all $x_0, x_1 \in \mathbb{R}^d$, x_k converges to a local minimum of f.

Trap avoidance of IGAHD

$$\min_{x \in \mathbb{R}^d} f(x), \qquad f \in C^2(\mathbb{R}^d), \inf f > -\infty.$$

$$\begin{cases}
y_k &= x_k + \alpha_k (x_k - x_{k-1}) - \beta_k (\nabla f(x_k) - \nabla f(x_{k-1})), \\
x_{k+1} &= y_k - s_k \nabla f(x_k).
\end{cases}$$

$$\alpha_k \stackrel{\text{def}}{=} \frac{1}{1 + \gamma_k h}, \gamma_k \stackrel{\text{def}}{=} \gamma(kh), \beta_k \stackrel{\text{def}}{=} \beta h \alpha_k, s_k \stackrel{\text{def}}{=} h^2 \alpha_k.$$

Theorem Let $f \in C^2(\mathbb{R}^d) \cap C_L^{1,1}(\mathbb{R}^d)$ be a definable function. Assume that $\gamma_k \equiv c > 0$, $0 < \beta < \frac{c}{L}$, $\beta \neq \frac{1}{c}$, and $h < \min(2\left(\frac{c}{L} - \beta\right), \frac{1}{L\beta})$, then for almost all $x_0, x_1 \in \mathbb{R}^d$, x_k converges to a critical point of f that is not a strict saddle. Consequently, if f satisfies the strict saddle property then for almost all $x_0, x_1 \in \mathbb{R}^d$, x_k converges to a local minimum of f.

Outline

Outline

$$\mathbf{y} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

$$\min_{m{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, m{ heta}))$$

$$\mathbf{g}(\mathbf{u}, \boldsymbol{\theta})$$

$$\mathbf{y} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

$$\min_{\boldsymbol{\theta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}))$$

$$\begin{split} & \text{(ISEHD)} \begin{cases} \ddot{\boldsymbol{\theta}}(t) + \alpha \dot{\boldsymbol{\theta}}(t) + \beta \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) = 0 \\ \boldsymbol{\theta}(0) &= \boldsymbol{\theta}_0, \dot{\boldsymbol{\theta}}(0) = 0. \end{cases} \\ & \text{(IGAHD)} \begin{cases} \boldsymbol{\eta}_{\ell} &= \boldsymbol{\theta}_{\ell} + \alpha s_{\ell}(\boldsymbol{\theta}_{\ell} - \boldsymbol{\theta}_{\ell-1}) - \beta s_{\ell}^2 \left(\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}_{\ell})) - \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}_{\ell-1})) \right), \\ \boldsymbol{\theta}_{\ell+1} &= \boldsymbol{\eta}_{\ell} - s_{\ell} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}_{\ell})). \end{cases} \end{split}$$

$$\mathbf{y} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

$$\min_{m{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, m{ heta}))$$

Assumptions

- $m{\mathcal{L}}_{\mathbf{y}}$: quadratic loss.
- $m{\Psi}$ $\phi \in \mathcal{C}^1(\mathbb{R})$ and $\exists B>0$ such that $\sup_{x\in\mathbb{R}}|\phi'(x)|\leq B$ and ϕ' is B-Lipschitz continuous.

$$\mathbf{y} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

$$\min_{m{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, m{ heta}))$$

Assumptions

- $m{\mathcal{L}}_{\mathbf{y}}$: quadratic loss.
- $m{\Psi}$ $\phi \in \mathcal{C}^1(\mathbb{R})$ and $\exists B>0$ such that $\sup_{x\in\mathbb{R}}|\phi'(x)|\leq B$ and ϕ' is B-Lipschitz continuous.

Goal

- Recovery guarantees of DIP when optimized with inertial methods in :
 - ullet Observation (y) space : convergence to zero-loss \Rightarrow implicit regularization.
 - ightharpoonup Object (x) space: restricted injectivity of the forward operator on Σ .
- NN architecture : role of overparametrization.

$$\mathbf{y} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$$
$$\ddot{\boldsymbol{\theta}}(t) + \alpha \dot{\boldsymbol{\theta}}(t) + \beta \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) = 0$$
 (ISEHD)

$$\mathbf{y} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$$

$$\ddot{\boldsymbol{\theta}}(t) + \alpha \dot{\boldsymbol{\theta}}(t) + \beta \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) = 0 \qquad \text{(ISEHD)}$$

$$\sigma_{\mathbf{A}} \stackrel{\text{def}}{=} \inf_{\mathbf{z} \in \mathrm{Ker}(\mathbf{A})^{\perp}} ||\mathbf{A}\mathbf{z}|| / ||\mathbf{z}|| > 0.$$

$$\mathbf{y} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$$

$$\mathbf{y} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$$

$$\ddot{\boldsymbol{\theta}}(t) + \alpha \dot{\boldsymbol{\theta}}(t) + \beta \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) = 0 \qquad \text{(ISEHD)}$$

$$\sigma_{\mathbf{A}} \stackrel{\text{def}}{=} \inf_{\mathbf{z} \in \text{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

Theorem Let $\theta(\cdot)$ be a solution trajectory of (ISEHD) with $\alpha = \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}$ and $\beta = \frac{1}{2\alpha}$ where the initialization

 θ_0 is such that

$$\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0)) > 0$$
 and $R' < R$,

where R' and R obev

$$R' = \eta \sqrt{\xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))} \quad \text{and} \quad R = \frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}{2\mathrm{Lip}_{\mathbb{B}(\boldsymbol{\theta}_0,R)}(\mathcal{J}_{\mathbf{g}})}$$

with

$$\xi = 1 + \frac{\kappa(\mathcal{J}_{\mathbf{g}}(0))^2 \kappa(\mathbf{A})^2}{4} \quad \text{and} \quad \eta = \frac{4 \max\left(\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}, \frac{1+\sqrt{2}}{2}\right)}{\min\left(\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2 \sigma_{\mathbf{A}}^2, \frac{3}{4}\right)}.$$

Then, the following holds:

(i) the loss converges to 0 at the rate

$$\mathcal{L}_{\mathbf{y}}(\mathbf{y}(t)) \le \xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0)) \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{2}t\right).$$

Moreover, $oldsymbol{ heta}(t)$ converges to a global minimizer $oldsymbol{ heta}_{\infty}$ at the rate

$$\|\boldsymbol{\theta}(t) - \boldsymbol{\theta}_{\infty}\| \le \eta \sqrt{\xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))} \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{4}t\right).$$

We have

$$\|\mathbf{y}(t) - \overline{\mathbf{y}}\| \le 2 \|\varepsilon\|$$
 when $t \ge \frac{4}{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}} \ln\left(\frac{\sqrt{2\xi\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))}}{\|\varepsilon\|}\right)$

$$\mathbf{y} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$$

$$\mathbf{y} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$$

$$\ddot{\boldsymbol{\theta}}(t) + \alpha \dot{\boldsymbol{\theta}}(t) + \beta \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) = 0 \qquad \text{(ISEHD)}$$

$$\sigma_{\mathbf{A}} \stackrel{\text{def}}{=} \inf_{\mathbf{z} \in \text{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

Theorem Let $\theta(\cdot)$ be a solution trajectory of (ISEHD) with $\alpha = \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}$ and $\beta = \frac{1}{2\alpha}$ where the initialization

 θ_0 is such that

$$\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0)) > 0$$
 and $R' < R$,

where R' and R obey

$$R' = \eta \sqrt{\xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))}$$
 and $R = \frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}{2\mathrm{Lip}_{\mathbb{B}(\boldsymbol{\theta}_0,R)}(\mathcal{J}_{\mathbf{g}})}$

Non-degenerate initialization

with

$$\xi = 1 + \frac{\kappa(\mathcal{J}_{\mathbf{g}}(0))^2 \kappa(\mathbf{A})^2}{4} \quad \text{and} \quad \eta = \frac{4 \max\left(\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}, \frac{1+\sqrt{2}}{2}\right)}{\min\left(\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2 \sigma_{\mathbf{A}}^2, \frac{3}{4}\right)}.$$

Then, the following holds:

(i) the loss converges to 0 at the rate

$$\mathcal{L}_{\mathbf{y}}(\mathbf{y}(t)) \le \xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0)) \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{2}t\right).$$

Moreover, $\boldsymbol{\theta}(t)$ converges to a global minimizer $\boldsymbol{\theta}_{\infty}$ at the rate

$$\|\boldsymbol{\theta}(t) - \boldsymbol{\theta}_{\infty}\| \le \eta \sqrt{\xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))} \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{4}t\right).$$

We have

$$\|\mathbf{y}(t) - \overline{\mathbf{y}}\| \le 2 \|\varepsilon\|$$
 when $t \ge \frac{4}{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}} \ln\left(\frac{\sqrt{2\xi\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))}}{\|\varepsilon\|}\right)$

$$\mathbf{y} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$$

$$\mathbf{y} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$$

$$\ddot{\boldsymbol{\theta}}(t) + \alpha \dot{\boldsymbol{\theta}}(t) + \beta \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) = 0 \qquad \text{(ISEHD)}$$

$$\sigma_{\mathbf{A}} \stackrel{\text{def}}{=} \inf_{\mathbf{z} \in \text{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

Theorem Let $\theta(\cdot)$ be a solution trajectory of (ISEHD) with $\alpha = \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}$ and $\beta = \frac{1}{2\alpha}$ where the initialization

 θ_0 is such that

$$\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0)) > 0$$
 and $R' < R$,

where R' and R obey

$$R' = \eta \sqrt{\xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))}$$
 and $R = \frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}{2\mathrm{Lip}_{\mathbb{B}(\boldsymbol{\theta}_0,R)}(\mathcal{J}_{\mathbf{g}})}$

Non-degenerate initialization

with

$$\xi = 1 + \frac{\kappa(\mathcal{J}_{\mathbf{g}}(0))^2 \kappa(\mathbf{A})^2}{4} \quad \text{and} \quad \eta = \frac{4 \max\left(\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}, \frac{1+\sqrt{2}}{2}\right)}{\min\left(\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2 \sigma_{\mathbf{A}}^2, \frac{3}{4}\right)}.$$

Then, the following holds:

(i) the loss converges to 0 at the rate

$$\mathcal{L}_{\mathbf{y}}(\mathbf{y}(t)) \le \xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0)) \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{2}t\right).$$

Moreover, $\boldsymbol{\theta}(t)$ converges to a global minimizer $\boldsymbol{\theta}_{\infty}$ at the rate

$$\|\boldsymbol{\theta}(t) - \boldsymbol{\theta}_{\infty}\| \le \eta \sqrt{\xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))} \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{4}t\right).$$

We have

$$\|\mathbf{y}(t) - \overline{\mathbf{y}}\| \le 2 \|\varepsilon\|$$
 when $t \ge \frac{4}{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}} \ln\left(\frac{\sqrt{2\xi\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))}}{\|\varepsilon\|}\right)$

Trajectory close to initialization

$$\mathbf{y} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$$

$$\mathbf{y} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$$

$$\ddot{\boldsymbol{\theta}}(t) + \alpha \dot{\boldsymbol{\theta}}(t) + \beta \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{A}\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}(t))) = 0$$
 (ISEHD)

$$\sigma_{\mathbf{A}} \stackrel{\text{def}}{=} \inf_{\mathbf{z} \in \text{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

Theorem Let $\theta(\cdot)$ be a solution trajectory of (ISEHD) with $\alpha = \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}$ and $\beta = \frac{1}{2\alpha}$ where the initialization

 θ_0 is such that

where R' and R obev

$$\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0)) > 0$$
 and $R' < R$,

$$R' = \eta \sqrt{\xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))}$$
 and $R = \frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}{2\mathrm{Lip}_{\mathbb{B}(\boldsymbol{\theta}_0,R)}(\mathcal{J}_{\mathbf{g}})}$

Non-degenerate initialization

with

$$\xi = 1 + \frac{\kappa(\mathcal{J}_{\mathbf{g}}(0))^2 \kappa(\mathbf{A})^2}{4} \quad \text{and} \quad \eta = \frac{4 \max\left(\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}, \frac{1+\sqrt{2}}{2}\right)}{\min\left(\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2 \sigma_{\mathbf{A}}^2, \frac{3}{4}\right)}.$$

Then, the following holds:

(i) the loss converges to 0 at the rate

$$\mathcal{L}_{\mathbf{y}}(\mathbf{y}(t)) \le \xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0)) \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{2}t\right).$$

Moreover, $\boldsymbol{\theta}(t)$ converges to a global minimizer $\boldsymbol{\theta}_{\infty}$ at the rate

$$\|\boldsymbol{\theta}(t) - \boldsymbol{\theta}_{\infty}\| \le \eta \sqrt{\xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))} \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{4}t\right).$$

We have

$$\|\mathbf{y}(t) - \overline{\mathbf{y}}\| \le 2 \|\varepsilon\|$$
 when $t \ge \frac{4}{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}} \ln\left(\frac{\sqrt{2\xi\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))}}{\|\varepsilon\|}\right)$

Implicit regularization Stable recovery by early stopping Trajectory close to initialization

$$\sigma_{\mathbf{A}} = \inf_{\mathbf{z} \in \operatorname{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

$$\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\mathbf{x})) = \inf\{\|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| : \mathbf{z} \in T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma})\}.$$

$$\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

$$T_{\Sigma}(\mathbf{x}) = \overline{\operatorname{conv}} \left(\mathbb{R}_{+} (\Sigma - \mathbf{x}) \right)$$

$$\sigma_{\mathbf{A}} = \inf_{\mathbf{z} \in \operatorname{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

$$\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

$$\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\mathbf{x})) = \inf\{\|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| : \mathbf{z} \in T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma})\}.$$

$$T_{\Sigma}(\mathbf{x}) = \overline{\operatorname{conv}}(\mathbb{R}_{+}(\Sigma - \mathbf{x}))$$

Theorem Assume the same assumptions on the parameters and initialization as above. If, moreover,

$$\ker\left(\mathbf{A}\right)\cap T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'})=\left\{0\right\} \quad \textit{with} \quad \Sigma'\stackrel{\mathrm{def}}{=}\Sigma_{\mathbb{B}_{R'+\parallel\boldsymbol{\theta}_0\parallel}},$$

then

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{\sqrt{2\xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))} \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{4}t\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))}\right) \operatorname{dist}(\overline{\mathbf{x}}, \Sigma') + \frac{\|\varepsilon\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))}.$$

$$\sigma_{\mathbf{A}} = \inf_{\mathbf{z} \in \operatorname{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

$$\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

$$\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\mathbf{x})) = \inf\{\|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| : \mathbf{z} \in T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma})\}.$$

$$T_{\Sigma}(\mathbf{x}) = \overline{\operatorname{conv}}\left(\mathbb{R}_{+}(\Sigma - \mathbf{x})\right)$$

Theorem Assume the same assumptions on the parameters and initialization as above. If, moreover,

$$\ker\left(\mathbf{A}\right) \cap T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}) = \{0\}$$

with
$$\Sigma' \stackrel{\mathrm{def}}{=} \Sigma_{\mathbb{B}_{R'+\paralleloldsymbol{ heta}_0\parallel}}$$

 $\ker(\mathbf{A}) \cap T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}) = \{0\}$ with $\Sigma' \stackrel{\text{def}}{=} \Sigma_{\mathbb{B}_{R'+\parallel\boldsymbol{\theta}_0\parallel}}$, Restricted Injectivity Condition (RIC)

then

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{\sqrt{2\xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))} \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{4}t\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))}\right) \operatorname{dist}(\overline{\mathbf{x}}, \Sigma') + \frac{\|\varepsilon\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))}.$$

$$\sigma_{\mathbf{A}} = \inf_{\mathbf{z} \in \operatorname{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

$$\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

$$\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\mathbf{x})) = \inf\{\|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| : \mathbf{z} \in T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma})\}.$$

$$T_{\Sigma}(\mathbf{x}) = \overline{\operatorname{conv}}(\mathbb{R}_{+}(\Sigma - \mathbf{x}))$$

Theorem Assume the same assumptions on the parameters and initialization as above. If, moreover,

$$\ker\left(\mathbf{A}\right) \cap T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}) = \{0\}$$

with
$$\Sigma' \stackrel{\mathrm{def}}{=} \Sigma_{\mathbb{B}_{R'+\parallel oldsymbol{ heta}_0}}$$

 $\ker(\mathbf{A}) \cap T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}) = \{0\}$ with $\Sigma' \stackrel{\text{def}}{=} \Sigma_{\mathbb{B}_{R'+\parallel\boldsymbol{\theta}_0\parallel}}$, Restricted Injectivity Condition (RIC)

then

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{\sqrt{2\xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))} \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{4}t\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))}\right) \operatorname{dist}(\overline{\mathbf{x}}, \Sigma') + \frac{\|\varepsilon\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))}.$$

Optimization error

$$\sigma_{\mathbf{A}} = \inf_{\mathbf{z} \in \operatorname{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

$$\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

$$\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\mathbf{x})) = \inf\{\|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| : \mathbf{z} \in T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma})\}.$$

$$T_{\Sigma}(\mathbf{x}) = \overline{\operatorname{conv}}(\mathbb{R}_{+}(\Sigma - \mathbf{x}))$$

Theorem Assume the same assumptions on the parameters and initialization as above. If, moreover,

$$\ker\left(\mathbf{A}\right) \cap T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}) = \{0\}$$

with
$$\Sigma' \stackrel{\mathrm{def}}{=} \Sigma_{\mathbb{B}_{R'+\parallel oldsymbol{ heta}_0}}$$

 $\ker(\mathbf{A}) \cap T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}) = \{0\}$ with $\Sigma' \stackrel{\text{def}}{=} \Sigma_{\mathbb{B}_{R'+\parallel\boldsymbol{\theta}_0\parallel}}$, Restricted Injectivity Condition (RIC)

then

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{\sqrt{2\xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))} \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{4}t\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))}\right) \operatorname{dist}(\overline{\mathbf{x}}, \Sigma') + \frac{\|\varepsilon\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))}.$$

Optimization error

Approximation error

$$\sigma_{\mathbf{A}} = \inf_{\mathbf{z} \in \operatorname{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

$$\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

$$\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\mathbf{x})) = \inf\{\|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| : \mathbf{z} \in T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma})\}.$$

$$T_{\Sigma}(\mathbf{x}) = \overline{\operatorname{conv}}(\mathbb{R}_{+}(\Sigma - \mathbf{x}))$$

Theorem Assume the same assumptions on the parameters and initialization as above. If, moreover,

$$\ker\left(\mathbf{A}\right) \cap T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}) = \{0\}$$

with
$$\Sigma' \stackrel{\mathrm{def}}{=} \Sigma_{\mathbb{B}_{R'+\paralleloldsymbol{ heta}_0}}$$

 $\ker(\mathbf{A}) \cap T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}) = \{0\}$ with $\Sigma' \stackrel{\text{def}}{=} \Sigma_{\mathbb{B}_{R'+\parallel\boldsymbol{\theta}_0\parallel}}$, Restricted Injectivity Condition (RIC)

then

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{\sqrt{2\xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))} \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{4}t\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))}\right) \operatorname{dist}(\overline{\mathbf{x}}, \Sigma') + \frac{\|\varepsilon\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))}$$
Optimization error
Approximation error
Noise error

Noise error

$$\sigma_{\mathbf{A}} = \inf_{\mathbf{z} \in \operatorname{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

$$\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

$$\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\mathbf{x})) = \inf\{\|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| : \mathbf{z} \in T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma})\}.$$

$$T_{\Sigma}(\mathbf{x}) = \overline{\operatorname{conv}} \left(\mathbb{R}_{+} (\Sigma - \mathbf{x}) \right)$$

Theorem Assume the same assumptions on the parameters and initialization as above. If, moreover,

$$\ker(\mathbf{A}) \cap T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}) = \{0\}$$
 with $\Sigma' \stackrel{\text{def}}{=} \Sigma_{\mathbb{B}_{R'+\parallel\boldsymbol{\theta}_0\parallel}}$, Restricted Injectivity Condition (RIC)

then

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{\sqrt{2\xi\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))}\exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{4}t\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))}\right)\operatorname{dist}(\overline{\mathbf{x}}, \Sigma') + \frac{\|\varepsilon\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))}$$
Optimization error

Approximation error

Noise error

Sample bounds for λ_{\min} can be given in a compressed sensing framework via the Gaussian width of the tangent cone.

$$\sigma_{\mathbf{A}} = \inf_{\mathbf{z} \in \operatorname{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

$$\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

$$\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\mathbf{x})) = \inf\{\|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| : \mathbf{z} \in T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma})\}.$$

$$T_{\Sigma}(\mathbf{x}) = \overline{\operatorname{conv}}(\mathbb{R}_{+}(\Sigma - \mathbf{x}))$$

Theorem Assume the same assumptions on the parameters and initialization as above. If, moreover,

$$\ker\left(\mathbf{A}\right)\cap T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'})=\left\{0\right\}$$
 with $\Sigma'\stackrel{\mathrm{def}}{=}\Sigma_{\mathbb{B}_{R'+\parallel\boldsymbol{\theta}_0\parallel}},$ Restricted Injectivity Condition (RIC)

then

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{\sqrt{2\xi\mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))}\exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{4}t\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))}\right)\operatorname{dist}(\overline{\mathbf{x}}, \Sigma') + \frac{\|\varepsilon\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))}$$
Optimization error

Approximation error

Noise error

- Sample bounds for λ_{\min} can be given in a compressed sensing framework via the Gaussian width of the tangent cone.
- Trade-off between the expressivity of the model and the RIC.

$$\sigma_{\mathbf{A}} = \inf_{\mathbf{z} \in \operatorname{Ker}(\mathbf{A})^{\perp}} \|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| > 0.$$

$$\Sigma = \{ \mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) : \boldsymbol{\theta} \in \Theta \}$$

$$\lambda_{\min}(\mathbf{A}; T_{\Sigma}(\mathbf{x})) = \inf\{\|\mathbf{A}\mathbf{z}\| / \|\mathbf{z}\| : \mathbf{z} \in T_{\Sigma}(\overline{\mathbf{x}}_{\Sigma})\}.$$

$$T_{\Sigma}(\mathbf{x}) = \overline{\operatorname{conv}}(\mathbb{R}_{+}(\Sigma - \mathbf{x}))$$

Theorem Assume the same assumptions on the parameters and initialization as above. If, moreover,

$$\ker\left(\mathbf{A}\right)\cap T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'})=\left\{0\right\}$$
 with $\Sigma'\stackrel{\mathrm{def}}{=}\Sigma_{\mathbb{B}_{R'+\parallel\boldsymbol{\theta}_0\parallel}},$ Restricted Injectivity Condition (RIC)

then

$$\|\mathbf{x}(t) - \overline{\mathbf{x}}\| \leq \frac{\sqrt{2\xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))} \exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{4}t\right)}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))} + \left(1 + \frac{\|\mathbf{A}\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))}\right) \operatorname{dist}(\overline{\mathbf{x}}, \Sigma') + \frac{\|\varepsilon\|}{\lambda_{\min}(\mathbf{A}; T_{\Sigma'}(\overline{\mathbf{x}}_{\Sigma'}))}$$
Optimization error
Approximation error
Noise error

- Sample bounds for λ_{\min} can be given in a compressed sensing framework via the Gaussian width of the tangent cone.
- Trade-off between the expressivity of the model and the RIC.
- ullet Optimization error of GF : $O\left(\exp\left(-rac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))^2\sigma_{\mathbf{A}}^2}{4}t
 ight)
 ight)$.
- ullet Optimization error of ISEHD : $O\left(\exp\left(-\frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}}{4}t\right)\right)$.

TTW'25-24

Non-degenerate initialization

$$\min_{\boldsymbol{\theta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}))$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

$$\ddot{\boldsymbol{\theta}}(t) + \alpha \dot{\boldsymbol{\theta}}(t) + \beta \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}(t))) + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}(t))) = 0 \quad \text{(ISEHD)}$$

Theorem Let $\theta(\cdot)$ be a solution trajectory of (ISEHD) with $\alpha = \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}$ and $\beta = \frac{1}{2\alpha}$ where the initialization

 $oldsymbol{ heta}_0$ is such that

where R' and R obey

$$\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0)) > 0$$
 and $R' < R$,

$$R' = \eta \sqrt{\xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))}$$
 and $R = \frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}{2\mathrm{Lip}_{\mathbb{B}(\boldsymbol{\theta}_0,R)}(\mathcal{J}_{\mathbf{g}})}$

Non-degenerate initialization

etc.

Non-degenerate initialization

$$\min_{m{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, m{ heta}))$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

$$\ddot{\boldsymbol{\theta}}(t) + \alpha \dot{\boldsymbol{\theta}}(t) + \beta \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}(t))) + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}(t))) = 0 \quad \text{(ISEHD)}$$

Theorem Let $\theta(\cdot)$ be a solution trajectory of (ISEHD) with $\alpha = \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}$ and $\beta = \frac{1}{2\alpha}$ where the initialization

 $oldsymbol{ heta}_0$ is such that

where R' and R obey

$$\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0)) > 0$$
 and $R' < R$,

$$R' = \eta \sqrt{\xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))}$$
 and $R = \frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}{2\mathrm{Lip}_{\mathbb{B}(\boldsymbol{\theta}_0,R)}(\mathcal{J}_{\mathbf{g}})}$

Non-degenerate initialization

etc.

Non-degenerate initialization

$$\min_{m{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, m{ heta}))$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

$$\ddot{\boldsymbol{\theta}}(t) + \alpha \dot{\boldsymbol{\theta}}(t) + \beta \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}(t))) + \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}(t))) = 0$$
 (ISEHD)

Theorem Let $\theta(\cdot)$ be a solution trajectory of (ISEHD) with $\alpha = \sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))\sigma_{\mathbf{A}}$ and $\beta = \frac{1}{2\alpha}$ where the initialization

 $oldsymbol{ heta}_0$ is such that

where R' and R obey

$$\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0)) > 0$$
 and $R' < R$,

$$R' = \eta \sqrt{\xi \mathcal{L}_{\mathbf{y}}(\mathbf{y}(0))} \quad \text{and} \quad R = \frac{\sigma_{\min}(\mathcal{J}_{\mathbf{g}}(0))}{2\mathrm{Lip}_{\mathbb{B}(\boldsymbol{\theta}_0,R)}(\mathcal{J}_{\mathbf{g}})}$$

Non-degenerate initialization

etc.

The role of overparametrization

Wide two-layer DIP

$$\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) = \frac{1}{\sqrt{k}} \mathbf{V} \phi(\mathbf{W} \mathbf{u})$$

- ullet **u** uniform vector on \mathbb{S}^{d-1} .
- $oldsymbol{\Psi}(0)$ has iid $\mathcal{N}(0,1)$ entries.
- ightharpoonup V(0) independent from W(0) and u, and its entries are zeromean independent D-bounded random variables of unit variance.

Overparametrization bound

Theorem Consider the one-hidden layer DIP network with the architecture parameters where both layers are trained with the architecture parameters obeying

$$k \gtrsim (1 + \kappa(\mathbf{A})^4) \frac{\max(\sigma_{\mathbf{A}}^4, c_1)}{\min(\sigma_{\mathbf{A}}^8, c_2)} n \left(\|\mathbf{A}\|^4 n^2 + \left(1 + \text{SNR}^{-1}\right)^4 m^2 \right).$$

Then with probability at least $1-5e^{-(n-1)}-2n^{-1}$, $\boldsymbol{\theta}(0)=(\mathbf{W}(0),\mathbf{V}(0))$ is a non-degenerate initial point. Here c_1,c_2 are absolute constants.

Overparametrization bound

Theorem Consider the one-hidden layer DIP network with the architecture parameters where both layers are trained with the architecture parameters obeying

$$k \gtrsim (1 + \kappa(\mathbf{A})^4) \frac{\max(\sigma_{\mathbf{A}}^4, c_1)}{\min(\sigma_{\mathbf{A}}^8, c_2)} n \left(\|\mathbf{A}\|^4 n^2 + \left(1 + \text{SNR}^{-1}\right)^4 m^2 \right).$$

Then with probability at least $1-5e^{-(n-1)}-2n^{-1}$, $\boldsymbol{\theta}(0)=(\mathbf{W}(0),\mathbf{V}(0))$ is a non-degenerate initial point. Here c_1,c_2 are absolute constants.

- The bound scales as $k \gtrsim n^3 + nm^2$.
- ullet Improved to $k\gtrsim n^2m$ if ${f V}$ is fixed and only is ${f W}$ is optimized.
- (ISEHD) achieves an optimal exponential rate but at the price of a more stringent condition on compared to GF.

What about (IGAHD)

$$\mathbf{g}(\mathbf{u}, \boldsymbol{\theta})$$

$$\mathbf{y} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

$$\min_{oldsymbol{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, oldsymbol{ heta}))$$

$$(\mathsf{IGAHD}) \begin{cases} \boldsymbol{\eta}_{\ell} &= \boldsymbol{\theta}_{\ell} + \alpha s_{\ell} (\boldsymbol{\theta}_{\ell} - \boldsymbol{\theta}_{\ell-1}) - \beta s_{\ell}^{2} \left(\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}} (\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}_{\ell})) - \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}} (\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}_{\ell-1})) \right), \\ \boldsymbol{\theta}_{\ell+1} &= \boldsymbol{\eta}_{\ell} - s_{\ell} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}} (\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}_{\ell})). \end{cases}$$

What about (IGAHD)

$$\mathbf{y} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

$$\min_{oldsymbol{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, oldsymbol{ heta}))$$

$$(\mathsf{IGAHD}) \begin{cases} \boldsymbol{\eta}_{\ell} &= \boldsymbol{\theta}_{\ell} + \alpha s_{\ell} (\boldsymbol{\theta}_{\ell} - \boldsymbol{\theta}_{\ell-1}) - \beta s_{\ell}^{2} \left(\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}} (\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}_{\ell})) - \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}} (\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}_{\ell-1})) \right), \\ \boldsymbol{\theta}_{\ell+1} &= \boldsymbol{\eta}_{\ell} - s_{\ell} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}} (\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}_{\ell})). \end{cases}$$

Beware of local Lipschitz continuity only of g(u, .).

What about (IGAHD)

$$\mathbf{y} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$$

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$

$$\min_{m{ heta} \in \Theta} \mathcal{L}_{\mathbf{y}}(\mathbf{Ag}(\mathbf{u}, m{ heta}))$$

$$(\mathsf{IGAHD}) \begin{cases} \boldsymbol{\eta}_{\ell} &= \boldsymbol{\theta}_{\ell} + \alpha s_{\ell} (\boldsymbol{\theta}_{\ell} - \boldsymbol{\theta}_{\ell-1}) - \beta s_{\ell}^{2} \left(\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}} (\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}_{\ell})) - \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}} (\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}_{\ell-1})) \right), \\ \boldsymbol{\theta}_{\ell+1} &= \boldsymbol{\eta}_{\ell} - s_{\ell} \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathbf{y}} (\mathbf{Ag}(\mathbf{u}, \boldsymbol{\theta}_{\ell})). \end{cases}$$

Beware of local Lipschitz continuity only of g(u, .).

Similar guarantees hold with a backtracking procedure within (IGAHD)

$$\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) = \frac{1}{\sqrt{k}} \mathbf{V} \phi(\mathbf{W} \mathbf{u})$$

 $\mathbf{A}_{ij} \text{ iid } \mathcal{N}(0,1/m)$

Empirical probability of (IGAHD) to achieve numerical accuracy over the loss in less than 15000 iterations for varying (k,α) . β =0.05.

 $\mathbf{A}_{ij} \ \mathsf{iid} \ \mathcal{N}(0,1/m)$

$$\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) = \frac{1}{\sqrt{k}} \mathbf{V} \phi(\mathbf{W} \mathbf{u})$$

Substantial gain in the overparametrized regime

Empirical probability of (IGAHD) to achieve numerical accuracy over the loss in less than 15000 iterations for varying (k,α) . β =0.05.

Empirical probability of (IGAHD) to achieve numerical accuracy over the loss in less than 15000 iterations for varying (k,α) . β =0.05.

$$\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) = \frac{1}{\sqrt{k}} \mathbf{V} \phi(\mathbf{W} \mathbf{u})$$

Well-adjusted parameters: acceleration and oscillation reduction.

Training to zero-loss

$$\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) = \frac{1}{\sqrt{k}} \mathbf{V} \phi(\mathbf{W} \mathbf{u})$$

Well-adjusted parameters: acceleration and oscillation reduction.

$$\mathbf{g}(\mathbf{u}, \boldsymbol{\theta}) = \frac{1}{\sqrt{k}} \mathbf{V} \phi(\mathbf{W} \mathbf{u})$$

Well-adjusted parameters: acceleration and oscillation reduction.

Outline

Outline

Inertia (viscous and geometric) is good even for non-convex problems if properly used.

- Inertia (viscous and geometric) is good even for non-convex problems if properly used.
- Convergence and trap avoidance.

- Inertia (viscous and geometric) is good even for non-convex problems if properly used.
- Convergence and trap avoidance.
- Impact on recovery guarantees of DIP when optimized with inertia.

- Inertia (viscous and geometric) is good even for non-convex problems if properly used.
- Convergence and trap avoidance.
- Impact on recovery guarantees of DIP when optimized with inertia.
- NN design: need for overparametrization.

- Inertia (viscous and geometric) is good even for non-convex problems if properly used.
- Convergence and trap avoidance.
- Impact on recovery guarantees of DIP when optimized with inertia.
- NN design: need for overparametrization.
- Empirical results agree with theoretical predictions.

- Inertia (viscous and geometric) is good even for non-convex problems if properly used.
- Convergence and trap avoidance.
- Impact on recovery guarantees of DIP when optimized with inertia.
- NN design: need for overparametrization.
- Empirical results agree with theoretical predictions.
- Stochastic setting.

- Inertia (viscous and geometric) is good even for non-convex problems if properly used.
- Convergence and trap avoidance.
- Impact on recovery guarantees of DIP when optimized with inertia.
- NN design: need for overparametrization.
- Empirical results agree with theoretical predictions.
- Stochastic setting.
- Non-smooth setting.

- Inertia (viscous and geometric) is good even for non-convex problems if properly used.
- Convergence and trap avoidance.
- Impact on recovery guarantees of DIP when optimized with inertia.
- NN design: need for overparametrization.
- Empirical results agree with theoretical predictions.
- Stochastic setting.
- Non-smooth setting.
- Long time behaviour (occupation measures).

- Inertia (viscous and geometric) is good even for non-convex problems if properly used.
- Convergence and trap avoidance.
- Impact on recovery guarantees of DIP when optimized with inertia.
- NN design: need for overparametrization.
- Empirical results agree with theoretical predictions.
- Stochastic setting.
- Non-smooth setting.
- Long time behaviour (occupation measures).
- Other NN-based frameworks: PINNs, supervised setting.

- Inertia (viscous and geometric) is good even for non-convex problems if properly used.
- Convergence and trap avoidance.
- Impact on recovery guarantees of DIP when optimized with inertia.
- NN design: need for overparametrization.
- Empirical results agree with theoretical predictions.
- Stochastic setting.
- Non-smooth setting.
- Long time behaviour (occupation measures).
- Other NN-based frameworks: PINNs, supervised setting.
- Other overparametrization regimes.

- Inertia (viscous and geometric) is good even for non-convex problems if properly used.
- Convergence and trap avoidance.
- Impact on recovery guarantees of DIP when optimized with inertia.
- NN design: need for overparametrization.
- Empirical results agree with theoretical predictions.
- Stochastic setting.
- Non-smooth setting.
- Long time behaviour (occupation measures).
- Other NN-based frameworks: PINNs, supervised setting.
- Other overparametrization regimes.
- Other data-driven methods for IP: PnP, unrolling, generative models.

Preprint on arxiv and paper on

https://fadili.users.greyc.fr/

Thanks Any questions?