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Major-Minor Loop Reconstruction

De/gridding Deconvolution
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Scaling the computation

4

➢Partition visibilities, process separately

➢Commonly by time and em frequency, 

partitioning relatively trivial

➢We look at spatial frequency, more 

complicated as not all frequencies are 
available for deconvolution
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Accounts for gridding 

frequency spillage, flat 
response, etc... 5



Example 1: Parallelized L1 
reconstruction
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Deconvolution framework for every major cycle   , similar to [1, 2]
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Deconvolution framework for every major cycle   , similar to [1, 2]Convolution by 

PSF operator
Wavelet transform 

operator 

(Daubechies 1-8)
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Deconvolution framework for every major cycle   , similar to [1, 2]

Visibility data-
fidelity term

Additional data-fidelity term 

for rest of frequency 
information 

(only from 2nd major cycle 

onwards)
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Example 2: Parallelized MS-CLEAN 
reconstruction 
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CLEAN iteratively removes the brightest source at 

the most relevant scale convolved by the PSF 

from the residual[1]. We can denote this as: 
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CLEAN iteratively removes the brightest source at 

the most relevant scale convolved by the PSF 

from the residual[1]. We can denote this as: 

Pseudo full-resolution dirty

Pseudo full-resolution PSF



Experiment Datasets
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Simulated

Real

➢ Initial images tapered and cutout from 1.28GHz mosaic 
produced in [1]

➢ Visibilities generated with SKA-Mid AA4, and SKA-Low AA4 
configurations

➢ Observation time of HA=[-2,2] with integration times of 30s, 

and 120s respectively, 1 channel at a pseudo-frequency of 
1GHz

➢ Degrid to get visibility values
➢ Visibility noise artificially added (to be ~2% of average 

signal)

➢ Angular resolutions of 0.18'' and 0.429'' respectively
➢ Pixel resolutions of 512x512
➢ Pseudo declinations also used to vary uv-coverages (-35 

and -50 respectively)

➢ Datasets taken from ALMA long baselines survey[2] and the 
VLA observation described in [3] for HL Tau and Cygnus A 
respectively

➢ ALMA Band 6 observation used for HL Tau (224.750GHz - 
228.750GHz, 239.250 - 243.250 GHz, 4 spectral windows, 4 

channels per spectral window, configuration 10)
➢ First spectral window (of 8) of VLA S-band used for Cygnus A 

(64 channels @ 1988.5 MHz – 2020.5 MHz, all 4 
configurations)

➢ Angular resolutions of 0.005'' and 0.125'' respectively

➢ Pixel resolutions of 1500x1500 and 1728x1728 respectively

Sgr B2 Sgr C

HL Tau Cygnus A 8



Dataset partitioning
➢ Ideally want to create partitions with equal number 

visibilities and similar amounts of spatial freq info

➢ Difficult for Sgr B2 dataset due to SKA-Mid AA4 array 
(BDA[1] or something similar may be needed)
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Example partition images are of the HL-Tau B6 dataset
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Example partition images are of the HL-Tau B6 dataset
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Results – Simulated
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Sgr B2 Sgr C

S/N obtained with comparison to ground truth

Poor parallelization for 
Sgr B2, much better for 

Sgr C. Mainly due to 
uneven partitioning.

Poor partitioning causes 
a lot of idle time for 

node with less visibilities.

Read uses a lot of time 
due to implementation 
and RASCIL overhead



Results – Real

11

HL Tau Cygnus A
Wasserstein-1 distance between residual and ideal 
residual obtained via visibility negation. Computed 

per pixel (windowed), with L2 being plotted.



Results – Real

11

HL Tau Cygnus A
Wasserstein-1 distance between residual and ideal 
residual obtained via visibility negation. Computed 

per pixel (windowed), with L2 being plotted.

Speedup much better 
for real datasets, close 

to optimal 2x



Results – Real

11

HL Tau Cygnus A
Wasserstein-1 distance between residual and ideal 
residual obtained via visibility negation. Computed 

per pixel (windowed), with L2 being plotted.

Speedup much better 
for real datasets, close 

to optimal 2x

Over 2x speedup can be 
due to RASCIL 

overheads.



Results – Scaling to larger image 
sizes

12

Average processing times for Cygnus A dataset per major cycle



Results – Scaling to larger image 
sizes

12

Average processing times for Cygnus A dataset per major cycle

Primary bottlenecks seem to be 
deconvolution and de/gridding 

(to a lesser extent).



Results – Scaling to larger image 
sizes

12

Average processing times for Cygnus A dataset per major cycle

Primary bottlenecks seem to be 
deconvolution and de/gridding 

(to a lesser extent).

Transfer time also increases similarly to 
deconvolution, but cost negligible. Even for 

100kx100k images, with the current cost 
increases, a transfer only takes ~72s which is 

substantially less than even the 10kx10k 

deconvolution.



Results – 5 partitions on simulated

13

Sgr B2

Sgr C

➢ Partition configurations

o Cuts made at <4, 2-11, 9-36, 34-71, >69

o Visibilities per partition for Sgr B2: 
4710396,2569876,1565927,922346,942517

o Visibilities per partition for Sgr C: 
4196451,3975415,3910825,2742692,3152216

➢ Total processing times:

o Sgr B2:
▪ 726.66s (serial) vs 462.46s (parallel) 

for l1 after 5 major cycles
▪ 1192.22s (serial) vs 654.69s (parallel) 

for msc after 10 major cycles

o Sgr C:
▪ 1215.17s (serial) vs 514.02s (parallel) 

for l1 after 5 major cycles
▪ 1880.88s (serial) vs 615.99s (parallel) 

for msc after 10 major cycles

➢ 1.57x (l1) and 1.82x (msc) speedup for Sgr B2
➢ 2.36x (l1) and 3.05x (msc) speedup for Sgr C



Short-baselines density problem
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Baseline Dependent Averaging
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SKA AA4 Mid

SKA AA4 Low

Baseline dependent averaging (BDA)[1] averages 

visibilities based on decorrelation.

• Shorter baselines -> less decorrelation

• Evens out visibility distributions

Time and frequency decorrelation Visibilities averaged with



Future Work
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More complex network topologies
Incorporate BDA

Reconstruct very large images (32k x 32k – 
100k x 100k), image source[1]

Reconstruct single-dish + interferometric



Appendices
Appendices



IUWT vs Daubechies
First major-cycle residuals for Sgr A

IUWTDaubechies

IUWT seems worse at reconstructing 

large-scale anisotropic extended 
emissions.
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Linear vs circular convolution

• Using linear convolution instead 

of circular can be desired so that 
bright extended sources don't 
wrap around.

• More complicated to find the 
step size as operator does not 

diagonalize with Fourier 
transform, have to rely on 
something like power iteration.

• Results don't necessarily seem 
better as shown on the left.

• More expensive to compute

19



Filters

20

• 1-D filters used as distance in 2-D, resulting in an 
annulus

• Filters have hard cut-off in Fourier domain, may result 

in either oscillations or infinite support in spatial 
domain

• Testing with windowed-sinc and Parks-McClellan, no 
conclusive results yet, but preliminary experiments 

suggest no large difference.



Selection of

21

Preliminary results suggested that lambda should be normalized by the norm of the image, 

and be increased as the major-cycles progress to maximize S/N. We use:

The above strategy no longer works well for larger numbers of partitions. For this case, and 

onwards, For the multipartition problem:

We use:



Naively adding separately 
deconvolved images

• Naïve parallel reconstructions seem always 
worse.

• Possibly due to terms not regularized 
together, which introduces some 
assumptions on sparsity.

• Can probably tune lambda so that the 
same result is obtained, but unclear how.

21

Low-resolution Reconstruction

De/gridding Deconvolution

High-resolution Reconstruction

De/gridding Deconvolution



Evaluating on real datasets

23

• Reference residual obtained by 
randomly negating half of the visibilities

• Residual after imaging compared to 
reference statistically in a per-pixel 
manner

• 5x5 sliding window used as only 1 
realization of imaging residual

• Wasserstein-1 distance used for 
statistical test

• L2 norm of Wasserstein distances used 

as final metric

Reference residual

Imaging residual

Wasserstein-1 distances using 5x5 sliding 
window
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