Decentralizing radiointerferometric image reconstruction by spatial frequency

Sunrise Wang, Simon Prunet, Shan Mignot André Ferrari

Introduction

Introduction

Major-Minor Loop Reconstruction

Scaling the computation

- Partition visibilities, process separately
 Commonly by time and em frequency, partitioning relatively trivial
- >We look at spatial frequency, more complicated as not all frequencies are available for deconvolution

Deconvolution framework for every major cycle *n*, similar to [1, 2] $\alpha_n = \arg \min_{\alpha} \|\tilde{\imath}_n - HW\alpha\|_2^2 + \lambda_n \|\alpha\|_1$ $\bar{\imath}_n = W\alpha_n$

Deconvolution framework for every major cycle *n*, similar to [1, 2] $\alpha_n = \arg \min_{\alpha} \|\tilde{\imath}_n - HW\alpha\|_2^2 + \lambda_n \|\alpha\|_1$ $\bar{\imath}_n = W\alpha_n$

 $V_{\mathcal{L}} \text{ deconvolution}$ $\alpha_{V_{\mathcal{L}_n}} = \arg\min_{\alpha} \|G_{\mathcal{L}}(\tilde{\imath}_{\mathcal{L}_n} - H_{\mathcal{L}}W\alpha)\|_2^2 + \|G_{\mathcal{H}}(h_n - W\alpha)\|_2^2 + \lambda_{V_{\mathcal{L}_n}}\|\alpha\|_1$ $\bar{\imath}_{V_{\mathcal{L}_n}} = W\alpha_{V_{\mathcal{L}_n}}, h_n = \sum_{j=1}^{n-1} \bar{\imath}_{V_{\mathcal{H}_j}} - \sum_{j=1}^{n-1} \bar{\imath}_{V_{\mathcal{L}_n}} = \hat{\imath}_{V_{\mathcal{H}_{n-1}}} - \hat{\imath}_{V_{\mathcal{L}_{n-1}}}$

Example 2: Parallelized MS-CLEAN reconstruction

CLEAN iteratively removes the brightest source at the most relevant scale convolved by the PSF from the residual[1]. We can denote this as:

 $\bar{\imath} = \text{MS-CLEAN}(\tilde{\imath}, H)$

Example 2: Parallelized MS-CLEAN reconstruction

CLEAN iteratively removes the brightest source at the most relevant scale convolved by the PSF from the residual[1]. We can denote this as:

 $\bar{\imath} = \text{MS-CLEAN}(\tilde{\imath}, H)$

$$V_{\mathcal{L}} \text{ deconvolution}$$

$$\bar{\imath}_{V_{\mathcal{L}n}} = \text{MS-CLEAN}(\alpha G_{\mathcal{L}} \tilde{\imath}_{\mathcal{L}n} + \beta G_{\mathcal{H}} H_{\mathcal{H}} h_n, \alpha G_{\mathcal{L}} H_{\mathcal{L}} - \beta G_{\mathcal{H}} H_{\mathcal{H}})$$

$$h_n = \sum_{j=1}^{n-1} \bar{\imath}_{V_{\mathcal{H}}} - \sum_{j=1}^{n-1} \bar{\imath}_{V_{\mathcal{L}}}$$

Example 2: Parallelized MS-CLEAN reconstruction

Experiment Datasets

Simulated

Sgr B2

- Initial images tapered and cutout from 1.28GHz mosaic produced in [1]
- Visibilities generated with SKA-Mid AA4, and SKA-Low AA4 configurations
- Observation time of HA=[-2,2] with integration times of 30s, and 120s respectively, 1 channel at a pseudo-frequency of 1GHz
- Degrid to get visibility values
- Visibility noise artificially added (to be ~2% of average signal)
- > Angular resolutions of 0.18" and 0.429" respectively
- Pixel resolutions of 512x512
- Pseudo declinations also used to vary uv-coverages (-35 and -50 respectively)
- Datasets taken from ALMA long baselines survey[2] and the VLA observation described in [3] for HL Tau and Cygnus A respectively
- ALMA Band 6 observation used for HL Tau (224.750GHz -228.750GHz, 239.250 - 243.250 GHz, 4 spectral windows, 4 channels per spectral window, configuration 10)
- First spectral window (of 8) of VLA S-band used for Cygnus A (64 channels @ 1988.5 MHz – 2020.5 MHz, all 4 configurations)
- > Angular resolutions of 0.005" and 0.125" respectively
- Pixel resolutions of 1500x1500 and 1728x1728 respectively

Dataset partitioning

- Ideally want to create partitions with equal number visibilities and similar amounts of spatial freq info
- Difficult for Sgr B2 dataset due to SKA-Mid AA4 array (BDA[1] or something similar may be needed)

- Dataset partitioning
- visibilities and similar amounts of spatial freq info
- Difficult for Sgr B2 dataset due to SKA-Mid AA4 array (BDA[1] or something similar may be needed)

S/N obtained with comparison to ground truth

S/N obtained with comparison to ground truth

S/N obtained with comparison to ground truth

S/N obtained with comparison to ground truth

Results – Real

Results – Real

Results – Scaling to larger image sizes

Alg.	Node	Pix. res.	Deconv.	Degrid	Grid	Disk I/O	Transf.	Other
p-msc	$V_{\mathcal{L}}$	1728×1728	354.70s	92.27s	117.21s	342.12s	0.01s	13.51s
	$\mathbf{V}_{\mathcal{H}}$	1728×1728	288.83s	109.84s	129.62s	353.67s	0.01s	11.88s
	$V_{\mathcal{L}}$	$10k \times 10k$	17778.44s (× 50)	1450.58s (× 16)	2519.88s (× 21)	358.31s (× 1)	0.45s (× 52)	21.35s (× 2)
	$\mathbf{V}_{\mathcal{H}}$	$10k \times 10k$	18014.80s (× 62)	2159.66s (× 20)	2533.84s (× 20)	362.50s (× 1)	0.67s (× 51)	21.11s (× 2)
p-L1	$V_{\mathcal{L}}$	1728×1728	91.66s	92.44s	111.52s	332.31s	0.02s	11.52s
	$\mathbf{V}_{\mathcal{H}}$	1728×1728	89.33s	108.17s	126.85s	359.43s	0.02s	13.49s
	$V_{\mathcal{L}}$	$10k \times 10k$	3595.75s (× 39)	1449.08s (× 16)	2457.80s (× 22)	365.53s (× 1)	0.59s (× 30)	20.16s (× 2)
	$\mathrm{V}_{\mathcal{H}}$	$10k \times 10k$	3573.73s (× 40)	2173.30s (× 20)	2555.44s (× 20)	363.62s (× 1)	0.60s (× 25)	20.22s (× 1)

Average processing times for Cygnus A dataset per major cycle

Results – Scaling to larger image sizes

Alg.	Node	Pix. res.	Deconv.	Degrid	Grid	Disk I/O	Transf.	Other
p-msc	$V_{\mathcal{L}}$	1728×1728	354.70s	92.27s	117.21s	342.12s	0.01s	13.51s
	$\mathbf{V}_{\mathcal{H}}$	1728×1728	288.83s	109.84s	129.62s	353.67s	0.01s	11.88s
	$\mathbf{V}_{\mathcal{L}}$	$10k \times 10k$	17778.44s (× 50)	1450.58s (× 16)	2519.88s (× 21)	358.31s (× 1)	0.45s (× 52)	21.35s (× 2)
	$\mathbf{V}_{\mathcal{H}}$	$10k \times 10k$	18014.80s (× 62)	2159.66s (× 20)	2533.84s (× 20)	362.50s (× 1)	0.67s (× 51)	21.11s (× 2)
p-L1	$V_{\mathcal{L}}$	1728×1728	91.66s	92.44s	111.52s	332.31s	0.02s	11.52s
	$\mathbf{V}_{\mathcal{H}}$	1728×1728	89.33s	108.17s	126.85s	359.43s	0.02s	13.49s
	$V_{\mathcal{L}}$	$10k \times 10k$	3595.75s (× 39)	1449.08s (× 16)	2457.80s (× 22)	365.53s (× 1)	0.59s (× 30)	20.16s (× 2)
	$\mathrm{V}_{\mathcal{H}}$	$10k \times 10k$	3573.73s (× 40)	2173.30s (× 20)	2555.44s (× 20)	363.62s (× 1)	0.60s (× 25)	20.22s (× 1)

Average processing times for Cygnus A dataset per major cycle

Results – Scaling to larger image sizes

Alg.	Node	Pix. res.	Deconv.	Degrid	Grid	Disk I/O	Transf.	Other
p-msc	$V_{\mathcal{L}}$	1728×1728	354.70s	92.27s	117.21s	342.12s	0.01s	13.51s
	$\mathbf{V}_{\mathcal{H}}$	1728×1728	288.83s	109.84s	129.62s	353.67s	0.01s	11.88s
	$\mathbf{V}_{\mathcal{L}}$	$10k \times 10k$	17778.44s (× 50)	1450.58s (× 16)	2519.88s (× 21)	358.31s (× 1)	0.45s (× 52)	21.35s (× 2)
	$\mathbf{V}_{\mathcal{H}}$	$10k \times 10k$	18014.80s (× 62)	2159.66s (× 20)	2533.84s (× 20)	362.50s (× 1)	0.67s (× 51)	21.11s (× 2)
p-L1	$V_{\mathcal{L}}$	1728×1728	91.66s	92.44s	111.52s	332.31s	0.02s	11.52s
	$\mathbf{V}_{\mathcal{H}}$	1728×1728	89.33s	108.17s	126.85s	359.43s	0.02s	13.49s
	$\mathbf{V}_{\mathcal{L}}$	$10k \times 10k$	3595.75s (× 39)	1449.08s (× 16)	2457.80s (× 22)	365.53s (× 1)	0.59s (× 30)	20.16s (× 2)
	$\mathrm{V}_{\mathcal{H}}$	$10k \times 10k$	3573.73s (× 40)	2173.30s (× 20)	2555.44s (× 20)	363.62s (× 1)	0.60s (× 25)	20.22s (× 1)

Average processing times for Cygnus A dataset per major cycle

Primary bottlenecks seem to be deconvolution and de/gridding (to a lesser extent).

Transfer time also increases similarly to deconvolution, but cost negligible. Even for 100kx100k images, with the current cost increases, a transfer only takes ~72s which is substantially less than even the 10kx10k deconvolution.

Results – 5 partitions on simulated

Short-baselines density problem

Baseline Dependent Averaging

Baseline dependent averaging (BDA)[1] averages visibilities based on decorrelation.

- Shorter baselines -> less decorrelation
- Evens out visibility distributions

Time and frequency decorrelation

$$\rho_{total} = \rho_t \times \rho_f$$

$$\rho_t = 1 - \frac{\pi^2 T^2}{6} \left(\frac{\mathrm{d}u}{\mathrm{d}t} l + \frac{\mathrm{d}v}{\mathrm{d}t} m \right)^2$$

$$\rho_f = \|\operatorname{sinc}(\frac{\pi \Delta \nu \tau_g}{2})\|$$

Visibilities averaged with $\max(\rho_{total}) = 0.99$

Future Work

More complex network topologies

Incorporate BDA

Reconstruct very large images (32k x 32k – 100k x 100k), image source[1]

Reconstruct single-dish + interferometric

Appendices

IUWT vs Daubechies

IUWT seems worse at reconstructing large-scale anisotropic extended emissions.

Linear vs circular convolution

- Using linear convolution instead of circular can be desired so that bright extended sources don't wrap around.
- More complicated to find the step size as operator does not diagonalize with Fourier transform, have to rely on something like power iteration.
- Results don't necessarily seem better as shown on the left.
- More expensive to compute

Filters

$$r > \ell + \delta : \quad |g_{\mathcal{H}}(r)|^2 = 1/\sigma^2, \ g_{\mathcal{L}}(u) = 0$$

$$r < \ell - \delta : \quad g_{\mathcal{H}}(r) = 0, \ |g_{\mathcal{L}}(r)|^2 = 1/\eta^2$$

$$\ell - \delta < r < \ell + \delta : \quad \sigma^2 |g_{\mathcal{H}}(r)|^2 + \eta^2 |g_{\mathcal{L}}(r)|^2 = 1$$

$$g_{\mathcal{L}}(r) = \alpha(r) \left(1 - \sin\left(\frac{\pi}{2\delta}(r - \ell)\right)\right)$$

$$g_{\mathcal{H}}(r) = \alpha(r) \left(1 + \sin\left(\frac{\pi}{2\delta}(r - \ell)\right)\right)$$

- 1-D filters used as distance in 2-D, resulting in an annulus
- Filters have hard cut-off in Fourier domain, may result in either oscillations or infinite support in spatial domain
- Testing with windowed-sinc and Parks-McClellan, no conclusive results yet, but preliminary experiments suggest no large difference.

Selection of
$$\lambda$$

Preliminary results suggested that lambda should be normalized by the norm of the image, and be increased as the major-cycles progress to maximize S/N. We use:

$$\lambda_{\mathcal{L}_n} = 0.05 \|\tilde{\imath}_{\mathcal{L}_n}\|_2 \times 2^n$$
$$\lambda_{\mathcal{H}_n} = 0.05 \|\tilde{\imath}_{\mathcal{H}_n}\|_2 \times 2^n$$
$$\lambda_n = 0.01 \|\tilde{\imath}_n\|_2 \times 2^n$$

The above strategy no longer works well for larger numbers of partitions. For this case, and onwards, For the multipartition problem:

$$\|G_j(\tilde{\imath} - HW\alpha)\|^2 + \sum_{\substack{i=1\\i\neq j}} \|G_iC_i - W\alpha)\|^2 + \lambda \|W\alpha\|_1$$

We use:

$$\lambda_n = \eta_n \lambda_{max_n}$$

$$\eta_n = \alpha + (1 - \alpha) \frac{e^{\beta t_n} - 1}{e^{\beta} - 1}$$

$$t_n = \frac{n}{N - 1}$$

$$max_n = 2 \|W^{\dagger} (H_j^{\dagger} G_j^{\dagger} G_j \tilde{\imath}_{n_j} + \sum_{i=1, i \neq j} G_i^{\dagger} G_i C_{n_i})\|_{\infty}$$

Naively adding separately deconvolved images

- Naïve parallel reconstructions seem always worse.
- Possibly due to terms not regularized together, which introduces some assumptions on sparsity.
- Can probably tune lambda so that the same result is obtained, but unclear how.

Evaluating on real datasets

- Residual after imaging compared to reference statistically in a per-pixel manner
- 5x5 sliding window used as only 1 realization of imaging residual
- Wasserstein-1 distance used for statistical test
- L2 norm of Wasserstein distances used as final metric

Wasserstein-1 distances using 5x5 sliding window

