
“Unsupervised Cloud Removal and Change 

Detection on Multi-Temporal Images via Unrolled 

Tensor Decomposition Network”

Anastasia Aidini

Post-doctoral researcher at ICS-FORTH

ARGOS-TITAN-TOSCA Workshop, 7/7/2025
Heraklion, Greece



Multi-temporal Observations

• Massive timely and spatio-spectral observations 

• Useful information for various applications

• Satellite data from multiple sources can contribute 

to various earth observation applications:

❖ Disaster assessment 

❖ Change detection

❖ Environmental monitoring
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Change detection of extreme events in multi-temporal images

• Monitor and assess the impacts of extreme events

• Multitemporal images enable more accurate detection

• Identify changes in image time series

• Better understanding of their formation, development, and associated impacts
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Challenges

• The location of actual changes is not available in real-world scenarios

• Cloud cover and cloud shadows can hinder further analysis

• Consider the structure of the multi-way relations of the data

• Leverage both spatio-spectral and temporal information

• High demands on their analysis process
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Unsupervised change detection in bi-

temporal images:

• Pixel-by-pixel analysis to generate a 

difference image

• Deep learning-based methods

• Tensor-based methods

• CD-TDL method: Detect the changes by comparing the 

features extracted from the representation of the images in 

the learned feature space using the Tensor Decomposition 

Learning method

• RaVÆn method: A variational autoencoder is utilized to 

generate a latent representation of incoming sensor data.

Related Work
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Unsupervised change detection in multi-temporal images:



Proposed Method

• Tensor-based unrolled network that simultaneously reconstructs 

cloud-occluded regions and learns the feature space of the images

• Impute the missing parts of the images

• Effectively detect the effects of extreme events by comparing the 

learned representation of the images

• Unsupervised learning approach 

(lack of cloud-free observations and ground truth labels)

• Consider the structure of high-dimensional data

• Applied to multi-temporal multispectral images
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Preliminaries

Tensor decomposition techniques:

❖ Reduce the complexity of the representation space

❖ Capture high-order relationships in the data

❖ Used in machine/deep learning

❖ Tucker decomposition:

Factor matrices = Set of basis functions onto which the data is projected

Algorithmic unrolling technique:

❖ Connection of iterative algorithms with neural networks

❖ Higher representation power than the iterative algorithms

❖ Better generalization than generic networks

❖ Fewer parameters and less training data
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Optimization Problem

Our model is formulated by:

By introducing the auxiliary variable      , we solve the problem by minimizing the Lagrangian function:

using ADMM. We optimize each variable alternatively while fixing the others.
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Tensor Decomposition Network

Trainable Parameters: Factor matrices                                          and the step sizes 

(the same for all layers)

At each layer we update the variables:

❖ Core tensor

❖ Auxiliary variable

❖ Recovered tensor                                                                                                             

where 

❖ Lagrange multipliers:

Loss function

where      is the number of layers.
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Training Process:  Tensor Decomposition Network

• Impute the cloud-occluded regions of the image time series

• Learn the feature space, e.g., the factor matrices

• Use available satellite image time series for training

10

Tensor Decomposition Network

n-th layer

Cloud 
Recovery

Learned Factor 
Matrices Feature

Space



Run-time Phase:   Change Detection Method

It is applied to small patches of the images, and we classify each pixel by examining the patch around it.
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Experiments

Training: 

• Samples: 46080 patches of size 8 x 8 x 13 x 

History acquired from a location in Attica for 

an entire year (2022)

• 10 layers

• Reduction of spectral and temporal 

dimensions
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Testing Dataset

• Wildfires in different locations in Greece

• Multi-temporal multi-spectral optical images acquired by Sentinel-2 

(12 images before the event, 1 image after the event)

• 13 spectral bands, 10m pixel resolution

• Patches of images of each location of size 256 x 256

• Event masks representing the affected areas
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Recovery Results
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Change Detection Results

AUPRC
Eastern

Peloponnese
Corfu Euboea

Prefecture
Attica

(Koropi)
Korinthia

3 History
Frames

0.8980 0.8397 0.9174 0.9045 0.7904

12 History 
Frames 

0.9813 0.9650 0.9813 0.9065 0.8923

Table: Change detection performance of the proposed method for different 
numbers of history frames at 5 different locations.  
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Comparison

Table: Comparison of the proposed method with the existing unsupervised 
change detection approaches for multitemporal data at 5 different locations, 

using 3 history frames.  

AUPRC
Eastern

Peloponnese
Corfu Euboea

Prefecture
Attica

(Koropi)
Korinthia

Proposed 
Method

0.8980 0.8397 0.9174 0.9045 0.7904

CD-TDL 0.8793 0.8021 0.8895 0.8444 0.7209

RaVÆn 0.8279 0.7834 0.8259 0.6909 0.6576
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Predicted Maps
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Conclusion

• Proposed unsupervised tensor-based unrolled network

• Simultaneous cloud removal and change detection of extreme events effects

• Applied to multitemporal observations

• Tensor decomposition in the deep learning context

• Experiments on real satellite images of wildfire event detection
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