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INTRODUCTION

Shape measurement of isolated radio galaxies in the image domain using a supervised
deep-learning framework, dubbed DeepShape.
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INTRODUCTION

Shape measurement of isolated radio galaxies in the image domain using a supervised
deep-learning framework, dubbed DeepShape. DeepShape is made up of two
independent modules:

1. Plug-and-play (PnP) image reconstruction algorithm [Zhang et al., 2017]

2. Shape measurement network that predicts shape using PSF-reconstructed image
pairs [Tripathi et al., 2024]
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IMAGE RECONSTRUCTION

Inverse problem: ip = Hir+n
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IMAGE RECONSTRUCTION

Inverse problem: ip = Hir+n
HQS objective: £, 1(i,2) = 5% [lip — Hil]> + A®(2) + 4li — z|)?

Data step
ina = argmin [[ip — Hill? + pyo? i = 24|
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IMAGE RECONSTRUCTION

Inverse problem: ip = Hir+n
HQS objective: £, 1(i,2) = 5% [lip — Hil]> + A®(2) + 4li — z|)?

Data step Regularization step
k1 = argmin llio = Hill* + pea?[li = ze|? e = A3 T ﬁHlk+1 —2|* + o(2)
k
_ 21\ —1 ; 2 .
= (H'H + o D)™ (Hio + o 2) = DNg(iks1i 7o)y 7o = VA e

Missing frequencies recovered via prior: Flip.1](A) = Flz](R)

We use Plug-and-Play (PnP) scheme rather than unfolding— allowing variable PSFs.
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SHAPE MEASUREMENT NETWORK

- Feature extraction via E(2)-equivariant CNN [Weiler and Cesa, 2019]
- Convolution kernels are expressed in a steerable E(2) basis:

8
RXlw) = " wi(r) Ye(e), Ye(a) =€, x=(r,q) (1)

£=1
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SHAPE MEASUREMENT NETWORK

- Feature extraction via E(2)-equivariant CNN [Weiler and Cesa, 2019]
- Convolution kernels are expressed in a steerable E(2) basis:

8
RXlw) = " wi(r) Ye(e), Ye(a) =€, x=(r,q) (1)

£=1

- PSF is compressed via a pre-trained CNN autoencoder

- Encoded PSF + extracted features — dense layers — shape prediction
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NETWORK ARCHITECTURE
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EXPERIMENTS



SIMULATION SETUP

- Galaxy Population: T-RECS SFG wide catalog [Bonaldi et al,, 2018], flux range
50 ply < 1 < 200 ply
- Morphology: Sérsic profile

I(r) =l eXp{—bns [(é)ws —1] } ns ~U(0.7,2)

- Image Domain: Isolated galaxies on 128 x 128 grid, pointing centered on galaxy
- Visibility Sampling: SKA-MID A4, vg = 1.4GHz, 8 hr obs, At = 300s = 1.8M visibilities
- Noise Model: Additive Gaussian noise A/ (0, ay), with

2RgTsys

oy = —————
NsAeftV/ 2Tint Av

~ 0.5 mly

- Imaging: Gridding via Briggs weighting (R = —0.5), resulting in RMS noise ¢ ~ 0.71 pJy
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HQS-PNP vs MS-CLEAN
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IMAGE RESIDUALS

- Residuals: ig = FIG(v — G'F?)
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- Residuals: ig = FIG(v — G'F?)

- If ig shows structure, further deconvolution is required — major-minor loops —
common in wide-field imaging

- HQS-PnP: Residuals appear noise-like = no extra correction needed

- MS-CLEAN: Residuals contain structure = further deconvolution could improve

results, but adds computational cost
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IMAGE RESIDUALS
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28
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- Residuals: ig = FIG(v — G'F?)
- If ig shows structure, further deconvolution is required — major-minor loops —
common in wide-field imaging
- HQS-PnP: Residuals appear noise-like = no extra correction needed
- MS-CLEAN: Residuals contain structure = further deconvolution could improve
results, but adds computational cost
- Note: Our analysis is at the pointing center = minimal w-term 8/22



DEPENDENCE ON PEAK S/N
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Figure 1: Variation of NMSE = ST
pliTli2
based on a test set containing 20,000 images split into 9 peak S/N bins.

,as a function of peak S/N. The statistics were calculated
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SHAPE MEASUREMENT
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Figure 2: Shape residuals from three methods: DeepShape, SuperCALS, and RadioLensfit. Contours via KDE; dashed lines show

best-fit trends.

- SuperCALS [Harrison et al,, 2020]: Image-domain method; uses MS-CLEAN for deconvolution and calibrates
shape estimates by injecting known model sources and correcting measured biases.
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SHAPE MEASUREMENT
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Figure 2: Shape residuals from three methods: DeepShape, SuperCALS, and RadioLensfit. Contours via KDE; dashed lines show

best-fit trends.

- SuperCALS [Harrison et al,, 2020]: Image-domain method; uses MS-CLEAN for deconvolution and calibrates
shape estimates by injecting known model sources and correcting measured biases.

- RadioLensfit [Rivi et al., 2016]: Visibility-domain parametric model-fitting using exponential brightness

profile; ellipticity estimated by marginalizing the likelihood over nuisance parameters.
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SUMMARY

Table 1: Comparison metrics for the ellipticity measurements from different methods.

Ngal | Method | p [1;”:3] [1514] CECIR

20000 SuperCALS 0.939 | —373.5+1.6 —71+5.5 0.128
DeepShape | 0.993 —8.1+0.9 3.6+29 0.041

1800 RadioLensfit | 0.992 —15.74+2.9 19.3 +9.5 0.040
DeepShape 0.990 | —12.2+3.3 | —20.2 +10.6 0.045
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Table 1: Comparison metrics for the ellipticity measurements from different methods.

Ngal | Method | p [1;”:3] [1514] CECIR

20000 SuperCALS 0.939 | —373.5+1.6 —71+5.5 0.128
DeepShape | 0.993 —8.1+0.9 3.6+29 0.041

1800 RadioLensfit | 0.992 —15.74+2.9 19.3 +9.5 0.040
DeepShape 0.990 | —12.2+3.3 | —20.2 +10.6 0.045

Table 2: Computational time

Method H SuperCALS ‘ RadiolLensfit ‘ DeepShape
Prediction time || 0.18sec | 4min | 022 sec
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SHEAR MEASUREMENT
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Figure 3: Shear measurement residuals as a function of input shear. Each point represents the
average of shape measurements from DeepShape derived from 10,000 galaxies with varying
properties, but sharing the same shear.
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Figure 4: Estimated multiplicative shear bias (M,) improves when applying quality cuts on galaxy
ensembles based on ellipticity and flux.
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WIDE FIELD MEASUREMENTS




OVERVIEW

- The SKA-MID primary beam will be around 1 deg? containing upto 10,000 galaxies.

- Galaxies are not localized in the visibility domain, making source separation
complicated
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OVERVIEW

- The SKA-MID primary beam will be around 1 deg? containing upto 10,000 galaxies.

- Galaxies are not localized in the visibility domain, making source separation
complicated

- Model-based shape measurement methods [Chang et al,, 2004, Rivi et al., 2016]
jointly fill all sources in the FoV

- Another method would be to create small facets around each source in the FoV
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FACETING

- Visibilities w.rt. pointing center (lo, mo) = (0, 0):
V(u,v,w) = // I(l = Lo, m — mo) o~ 2mi(ull=lo)+v(m—mo)+w(n—no—="1) 3/ qm

withn =+v1— 12 —m?
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FACETING

- Visibilities w.rt. pointing center (lo, mo) = (0, 0):
V(u,v,w) = // I(l = Lo, m — mo) o~ 2mi(ull=lo)+v(m—mo)+w(n—no—="1) 3/ qm

withn =+v1— 12 —m?

- To center a facet at (lg, mg), visibilities are phase-rotated by e™?™% with ¢ = ulg + vmg + wng:
\//(U, v, W) _ // I([ _ lg, m— mg) e7271'j(U(l*lg)‘FV(m*mg)‘FW(n*ﬂg*1)) dldm

- The (u,v,w) coordinates are rotated to make the facet plane tangent to the celestial sphere:
(u',V W) = R(ag,54)R" (a0, 0)(u, v, w) "

where
—sina cos «v 0
R(a,0) = | —sindcosa —sindsina  cosé
Cos  cos & cosdsina  sind
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FACET PLANE

D%

Figure 5: Left: Phase shifting alone limits the field of view. Right: Rotating (u, v, w) aligns facets with
the sky, forming a polyhedral tiling. Source: [Taylor et al,, 1999].
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FAR SIDELOBE CONFUSION NOISE

Figure 6: The far sidelobes of the PSF can pick up distant sources, causing noise-like contamination
in the dirty image. The dirty image needs to be large enough so that these sources can be properly
deconvolved.
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FAR SIDELOBE CONFUSION NOISE

Dirty 128 106 Dirty 384 x10-6 Dirty 512 xig
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FAR SIDELOBE CONFUSION NOISE
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GALAXY DEBLENDING




VAE DEBLENDER [ARCELIN ET AL., 2020]
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Figure 7: The VAE is first trained to generate centered, isolated galaxy images. This is followed by
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THEORY

- A VAE learns to encode observed data x into latent variables z, and decode z back to
X, in order to maximize the marginal likelihood log p(x).

20/22



THEORY

- A VAE learns to encode observed data x into latent variables z, and decode z back to
X, in order to maximize the marginal likelihood log p(x).

- In practice, this is done by maximizing the evidence lower bound (ELBO):

log p(X) = Eqzx)[log p(x2)]  —  BKL(a(zX) [ p(2)) (2)
——
(-ve) Recon loss (-ve) KL loss

- The reconstruction term ensures data fidelity, while the KL term (second term)

regularizes the latent space by encouraging the approximate posterior g(z|x) to align
with the prior p(2).

20/22



THEORY

- A VAE learns to encode observed data x into latent variables z, and decode z back to
X, in order to maximize the marginal likelihood log p(x).

- In practice, this is done by maximizing the evidence lower bound (ELBO):

log p(X) = Eqzx)[log p(x2)]  —  BKL(a(zX) [ p(2)) (2)
——
(-ve) Recon loss (-ve) KL loss

- The reconstruction term ensures data fidelity, while the KL term (second term)
regularizes the latent space by encouraging the approximate posterior g(z|x) to align
with the prior p(2).

- The deblender is trained using:

¢y = argmin KL(qg, (z1]x1) || G, (221X2)) + KL(Gg, (221%2) | 9 (21]%1)) (3)
b2
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GALAXY DEBLENDING

VAE output clustered images [= 0.001]
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GALAXY DEBLENDING
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GALAXY DEBLENDING
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SHAPE MEASUREMENT
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Figure 8: Shape measurement comparison for blended (red) and deblended
(blue) stamps using GalSim. 22/22
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TRAINING DETAILS

- DRUNET is initialized using pre-trained weights provided by the Deeplnverse library.
These weights are subsequently fine-tuned on a training set comprising 250 000
galaxy image pairs, each consisting of a noiseless and a corresponding noisy image.

- Autoencoder is trained using a training set of 100,000 PSFs

- DeepShape is trained using a two-step procedure
1. The network is pre-trained using a training set of 250,000 true noiseless galaxy images
2. The network is fine-tuned using a training set of 250,000 reconstructed galaxy image-PSF

pairs.



RADIOLENSFIT [RIVI ET AL., 2016]

- Works using visibilities
- Galaxy brightness profile: I(r) = lp exp(—r/«),

- Transformation matrix A with ellipticity parameters e = (e4, €;) such that:

my —e; 1+e m
- Observed visibility due to a galaxy at point k = (u,v) can be given by:

27ra2/0 5
Vs(u,v) = 2mikTXx 4
s(UV) = R amzazjarryy < &P 2K (%)

- Perform a Bayesian marginalization of the likelihood over Iy, « and source centroid
position Xo = (lo, mg) = P(A|D)



SUPERCLASS CALIBRATION [HARRISON ET AL., 2020]

- Reconstruct image by deconvolving the PSF from the dirty image and estimate
ellipticity e

* In the residual image, inject model sources with the same size and flux properties,
but known ellipticity €™ = {0, +0.2375, £0.475, £0.7125, £0.95}

- Simulate visibilities = Dirty Image = Reconstructed Image = Measure ellipticity €°®

- Fit second order 2D polynomial by(e™, eb') = €25 — "

. cali inticiti ing € — ecal lc_ccal
Calibrate observed ellipticities using €7, = 73" — bp(€3%", €5%°)

- Repeat for e



RECONSTRUCTION USING TANH SCALING

VAE output clustered images 8= 0.01]
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RECONSTRUCTION USING TANH SCALING
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