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Context and objectives

Example with the KTNG simulated dataset!

Simulated convergence map Corresponding shear map (real and imaginary parts)
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* Relation between the noisy shear 7Y (observable) and the convergence K (gty of interest):
vy=AKk+n
with noise 7rassumed Gaussian, zero-centered and with diagonal covariance matrix .
* Noise level (standard deviation per pixel): 2[]{;’ k] - O‘/Nk
* Objective: get a point estimate g with error bars, with coverage guarantees.

LK. Osato, J. Liu, and Z. Haiman, “KTNG: effect of baryonic processes on weak lensing with IllustrisTNG simulations,” Monthly Noticezs of
the Royal Astronomical Society, vol. 502, no. 4, pp. 5593-5602, Apr. 2021



Related work and proposed approach

Accurate Flexible Fastrec. Fast UQ
DeepMass v X v v
DeepPosterior v v X X
PnPMass (ours) v v v v

*Requires specific retraining for each new observation

Proposed approach:

e Based on plug-and-play (PnP) forward-backward splitting.

» Deep denoiser trained on simulated convergence map, corrupted by Gaussian white noise.
 Error bars estimated with an order-2 moment network.

» Coverage guarantees: calibration with conformal predictions.

DeepMass : Jeffrey, N., Lanusse, F., Lahav, O. & Starck, J.-L. MNRAS 492, 5023-5029 (2020)

DeepPosterior: Remy, B. et al. A&A 672, A51 (2023)

Moment networks: Jeffrey, N. & Wandelt, B. D. 2020, in Third Workshop on ML and the Phys. Sc. (NeurIPS 2020)
Conformal predictions: Romano, Y., Patterson, E., & Candes, E. 2019, in NeurlPS



PnP: a fixed point perspective

BA
step size noisy shear map (input)

l 7
T: k' +— Fe [ﬁ:" + 7B(v — AH,!)].
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denoising operator  linear operator lorward operator
noNn-expansive BA )

Zero-mearl outputs
Fixed-point property |
T" admits a unique fixed point K, and the series gL .= T(ﬁ:{k)) converges toward K.

Denoiser training
Hypothesis: k =~ k. Under this condition, at fixed point:

k=T(k)= Fé(fi + 7Bn).

/ T

Gaussian denoiser  ng ~ N (0, 72 BXB*)



PnP: a fixed point perspective

BA
step size noisy shear map (input)

l 7
T: k' +— Fe [ﬁ:" + 7B(v — AH,!)].
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denoising operator  linear operator lorward operator
non-expansive BA >0

o-mean outputs

Noise-whitening operator
Flexibility: We want ng to be independent of 32.

Proposed solution: B := AR 1/2 Then,
ng ~ N0, 7°A*A) = N(0, 7).



PnP: a fixed point perspective

BA
step size noisy shear map (input)

l 7
T: k' +— Fe [ﬁ:" + 7B(v — AH,!)].

denoising operator  linear operator lorward operator
non-expansive BA > ()

zero-mean outputs

Analogy with proximal-based optimization

Hyp. (probably wrong): F@) = prox,_ for some convex reg. function gr. Then:

(k+1) .
K = Prox,_

. ( N , 1 9
(H(k) — Tv_ff}»(m(k)))! with fv K 5 H"}/ — AH!HE_UQ :
—> Forward-backward algorithm [CWO05]: the fixed point satisfies:

k€ argmin f~(k') + g-(K)).
Hf



Pn P M a SS : n O i Se | evel PnPMass using a standard Unet

Training on 70K images, 20 epochs

- Nopise stdev = 1.4e-1
0.0200 + Noise stdev = 1.5e-1
. . . —— Range of noise levels
* NOISG. Stdev on WhICh to tra“? the —— Range of noise levels (10 real. per img)
denoiser: equal to the step size. ERLA
* However, the step size is conditioned by 0150
. . . .0190 A
the noise covariance matrix. w
[ ) [ X KJ E
—> How to keep flexibility? Sipe—
— Solution: train the network on a range
of noise levels. 0.0180 -
— Converges to a suboptimal fixed point!
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Iteration

Range of noise stdev: between 0.1 and 0.2
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PnPMass: noise level

— Solution: use a noise-aware model such as DRUNet.

PnPMass using a noise-aware DRUNet
Training on 70K images, 20 epochs
Noise stdev between 0.1 and 0.2

0.0200 - —— Step size = 1.0e-01
Step size = 1.2e-01
0.0195 —— Step size = 1.4e-01

— Step size = 1.6e-01
w 0.0190 -

@ 0.0185 A
0.0180 A

0.0175 A

0 1 2 3 4 5 6 7 8
PnP Iterations

— Better solutions are obtained for larger step sizes.



Fast uncertainty quantification

0= 0
Training set (x;, y;)i" ¢, drawn i.i.d. from (X, Y). " |
_ 7 Forward ~ Backward — Fé
Fe (order-1) Ge, (order-2) /
2 -
Ground truth Ly (x; — F, @(ys))‘ 7 —{Forward | Backward — Fg
A boroximat o Posterior mean | Posterior variance S rw— /
APPTOXIIALEs |- g X|Y=y]| VIX|Y=y,] OIWAE N Backward G

Adaptation to PnPMass: one additional iteration for UQ).



Fast uncertainty quantification

Example : PnPMass run with 3 iterations
Variance (DRUNet)

Ground truth

0.25
0.20
0.15
0.10
0.05
0.00

Lower bound (DRUNet)

IU.Z

- 0.1
- 0.0

- —0.1

I—G.Z

Point estimate (DRUNet)

0.15
0.10
0.00

Upper bound (DRUNet)

lﬂ.Z

- 0.1
- 0.0

-—0.1

I—ﬂ.2

0.004

0.003

0.002

0.001

0.000

10



Fast uncertainty quantification

Training set (x;, y;)i" ¢, drawn i.i.d. from (X, Y).

Fé (order-1) Gﬁ (OI‘(]GI‘-Q){
Ground truth X, (x; — F@(yi))z

Approximates

Adaptation to PnPMass: one additional iteration for UQ).

Posterior mean

EX|Y =y,

Posterior variance
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Y —
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* Non-iterative UQ method, initially designed for end-to-end methods such as DeepMass

* Assumes perfect data knowledge — aleatoric uncertainty (irreducible)

— Model (or epistemic) uncertainty overlooked — error bars must be adjusted

—> Solution: calibration with conformal prediction
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Conformal prediction

> Pred. interval before calibration

P | P
R R AT
® | ® > Pred. interval after calibration
K- — A\ K T4\

~__ Calibration parameter, one for each pixel

— Based on a simulated calibration set (v;, K;)!":

— Compute conformity scores A;, which depend on a (target miscoverage rate).
— Get the (1 — a)(1 +1/m)-th empirical quantile of (X;)" ,, denoted by A.

1 ”— N

a— — < IP’{K[k] ¢ {K k], K+[k]” <a
m

 Target error rate: 4.6% (2-sigma confidence).

* Minimal size for the calibration set: 21 images.

* In our experiments: 100 images.
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Benchmark with other approaches
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All methods have been calibrated using conformal prediction.
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Benchmark with other approaches
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* Wiener, MCALens: error bars before calibration initialized to 0.

* DeepMass, PnPMass: error bars before calibration obtained with moment networks.

* DeepMass: miscoverage rate at target (4.6%), even before calibration.

* Results for PnPMass degraded if we train for more noise levels = increase nb of training epochs
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Robustness to cosmology

* In practice, the true cosmological parameters are unknown. On which dataset to
train our model?

— We need to test the robustness of PnPMass to the choice of cosmology.

* Training on the CosmoSLICS dataset = simulations generated from 25 sets of
cosmological parameters.

* Results expected soon (Andreas).



To be continued
Conditional calibration

* Coverage guarantee obtained in average.

* What if we focus on high-density regions (peaks)?

— No longer valid, even after calibration.

—> Possible solution to explore: conditional conformal prediction.

* Note however that calibration wrt to arbitrary conditions is impossible!

Gibbs, Isaac, John J. Cherian, and Emmanuel J. Candes, 2024
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To be continued
PnPMass with Wiener initialization

* Wiener, MCALens and DeepMass incorporate physics in their pipeline: mass
distributions originate from a Gaussian field, with known power spectrum.

* Can we take advantage of this for PnPMass?

— Possible solution: Wiener initialization, and PnPMass on the residual (non-
Gaussian component).

* For training, extracting the non-Gaussian part from the training set may be
necessary — no unique solution!

* Investigation in progress.



Conclusion

Contributions:

* Application of PnP-FBS to the mass mapping problem:;

* Careful choice of “noise-whitening” data fidelity, allowing flexibility and faster convergence;
* Fast UQ method based on moment networks, adapted to the PnP framework;
* Implementation using PyTorch and Deeplnverse

Results:

* Near state-of-the-art results, with more flexibility than related work;

* Caveat: increasing the noise level interval degrades performance.

Work in progress / Future work:

* PnPMass with Wiener initialization;

* Robustness to cosmological parameters using CosmoSLICS simulations;

* Conditional conformal prediction.

https://deepinv.github.io/deepinv/
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