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• Relation between the noisy shear      (observable) and the convergence      (qty of interest):

      with noise     assumed Gaussian, zero-centered and with diagonal covariance matrix .
• Noise level (standard deviation per pixel):
• Objective: get a point estimate      with error bars, with coverage guarantees.

1 K. Osato, J. Liu, and Z. Haiman, “κTNG: effect of baryonic processes on weak lensing with IllustrisTNG simulations,” Monthly Notices of 
the Royal Astronomical Society, vol. 502, no. 4, pp. 5593–5602, Apr. 2021

Context and objectives
Example with the κTNG simulated dataset1

Simulated convergence map Corresponding shear map (real and imaginary parts)
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Related work and proposed approach

DeepMass : Jeffrey, N., Lanusse, F., Lahav, O. & Starck, J.-L. MNRAS 492, 5023–5029 (2020)
DeepPosterior: Remy, B. et al. A&A 672, A51 (2023)
Moment networks: Jeffrey, N. & Wandelt, B. D. 2020, in Third Workshop on ML and the Phys. Sc. (NeurIPS 2020)
Conformal predictions: Romano, Y., Patterson, E., & Candes, E. 2019, in NeurIPS

Proposed approach:
• Based on plug-and-play (PnP) forward-backward splitting.
• Deep denoiser trained on simulated convergence map, corrupted by Gaussian white noise.
• Error bars estimated with an order-2 moment network.
• Coverage guarantees: calibration with conformal predictions.

*Requires specific retraining for each new observation
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PnP: a fixed point perspective
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PnP: a fixed point perspective



6

PnP: a fixed point perspective
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PnPMass: noise level

• Noise stdev on which to train the 
denoiser: equal to the step size.

• However, the step size is conditioned by 
the noise covariance matrix.

→ How to keep flexibility?
→ Solution: train the network on a range 
of noise levels.
→ Converges to a suboptimal fixed point!

PnPMass using a standard Unet
Training on 70K images, 20 epochs

Range of noise stdev: between 0.1 and 0.2
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PnPMass: noise level
PnPMass using a noise-aware DRUNet

Training on 70K images, 20 epochs
Noise stdev between 0.1 and 0.2

→ Solution: use a noise-aware model such as DRUNet.

→ Better solutions are obtained for larger step sizes.



9

Fast uncertainty quantification
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Fast uncertainty quantification
Example : PnPMass run with 3 iterations



11

Fast uncertainty quantification

• Non-iterative UQ method, initially designed for end-to-end methods such as DeepMass
• Assumes perfect data knowledge → aleatoric uncertainty (irreducible)
→ Model (or epistemic) uncertainty overlooked → error bars must be adjusted
→ Solution: calibration with conformal prediction
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Conformal prediction

• Target error rate: 4.6% (2-sigma confidence).
• Minimal size for the calibration set: 21 images.
• In our experiments: 100 images.
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Benchmark with other approaches

All methods have been calibrated using conformal prediction.
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Benchmark with other approaches

• Wiener, MCALens: error bars before calibration initialized to 0.
• DeepMass, PnPMass: error bars before calibration obtained with moment networks.
• DeepMass: miscoverage rate at target (4.6%), even before calibration.
• Results for PnPMass degraded if we train for more noise levels → increase nb of training epochs
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Robustness to cosmology
• In practice, the true cosmological parameters are unknown. On which dataset to 

train our model?
→ We need to test the robustness of PnPMass to the choice of cosmology.
• Training on the CosmoSLICS dataset → simulations generated from 25 sets of 

cosmological parameters.
• Results expected soon (Andreas).
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To be continued
Conditional calibration

• Coverage guarantee obtained in average.
• What if we focus on high-density regions (peaks)?
→ No longer valid, even after calibration.
→ Possible solution to explore: conditional conformal prediction.
• Note however that calibration wrt to arbitrary conditions is impossible!

Gibbs, Isaac, John J. Cherian, and Emmanuel J. Candès, 2024 
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To be continued
PnPMass with Wiener initialization

• Wiener, MCALens and DeepMass incorporate physics in their pipeline: mass 
distributions originate from a Gaussian field, with known power spectrum.

• Can we take advantage of this for PnPMass?
→ Possible solution: Wiener initialization, and PnPMass on the residual (non-
Gaussian component).
• For training, extracting the non-Gaussian part from the training set may be 

necessary → no unique solution!
• Investigation in progress.
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Conclusion
Contributions:
• Application of PnP-FBS to the mass mapping problem;
• Careful choice of “noise-whitening” data fidelity, allowing flexibility and faster convergence;
• Fast UQ method based on moment networks, adapted to the PnP framework;
• Implementation using PyTorch and DeepInverse
Results:
• Near state-of-the-art results, with more flexibility than related work;
• Caveat: increasing the noise level interval degrades performance.
Work in progress / Future work:
• PnPMass with Wiener initialization;
• Robustness to cosmological parameters using CosmoSLICS simulations;
• Conditional conformal prediction. 

https://deepinv.github.io/deepinv/
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