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Challenges with high-redshift IFUs

• Low SNR: Weak signals dominated by noise due to 
large cosmological distances.

• Instrumental Noise: Detector artifacts and sky 
subtraction errors.

• Convolution Effects: PSF and beam smearing may 
distort flux values affecting flux conservation.

• Denoising Bias: Aggressive methods may lead to 
over-smoothing and can suppress real signals or 
overestimate “not-real” signal

• Lack of a large sample space

A I M S 

To analyse and compare denoising methods for spectral 
cubes across a broad parameter space, focusing on:

• Noise characteristics: Spatially correlated 
                                      Gaussian noise (ALMA)

• Noise levels: Varying signal-to-noise ratios
• Spatial resolutions: Resolved or unresolved by the 

                                   synthesised beam

And understand how each method performs under 
different conditions and identify the optimal approach for 
flux conservation and denoising, for specific datasets and 
noise characteristics, with application to observational data

M O T I V A T I O N
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Datasets

Toy models of 
rotating galaxies

Mock IFU data 
from cosmological 

simulations

Observational 
data (ALMA)

Spectral cubes 
multiple spectral observation of the 
same spatial area, where each (x,y) 

spatial point corresponds to a spectrum
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Constructing toy data of rotating galaxies

Describing the specific intensity profile in 3D space

Sérsic
profile

Exponential
profile



5

Constructing toy data of rotating galaxies

Describing the specific intensity profile in 3D space

Specific 
Intensity at a 

given location in 
3D space

Effective Specific 
Intensity: Specific 
intensity contained 
within the half-light 

radius

Constant depending 
on n, ensuring that 
the effective radius 
encloses half of the 
total light

Effective/half-light radius: 
radius at which half of the total 
light of the galaxy is contained

Sérsic index: 
determines 
the shape of 
the profile Scale height: 

determines how the 
flux density varies 
above or below the 
galactic mid-plane.

Sérsic profile Exponential profile

Integrated along Z-axis
(Face-on)

Integrated along Y-axis
(Edge-on)
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Constructing toy data of rotating galaxies

• The entire system is rotated and Z 
axis is chosen as the line of sight

• Nz 2D projections are made along 
line of sight based on vz bins

• Gaussian noise is overlaid onto 
the cube 

• Rotation velocity vectors (vx , vy, vz ) 

calculated in the plane of the disk

• Final spectral cube is convolved 
with 2D circular Gaussian beam

• Galaxies smaller than beam 
FWHM are unresolved, and 
larger than FWHM are resolved

Resolved source with multiple satellites 
showing double-horned spectra with well-

resolved kinematics

Unresolved source with compact emission 
with peak at systemic velocity and 

improperly-resolved kinematics
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Constructing toy data of rotating galaxies

Spatially correlated Gaussian noise (convolved 
with the beam) is overlaid onto the cube 

Focusing on very 
high noise regime!
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Datasets

Toy models of 
rotating galaxies

Mock IFU data 
from cosmological 

simulations

Observational 
data (ALMA)

Spectral cubes 
multiple spectral observation of the 
same spatial area, where each (x,y) 

spatial point corresponds to a spectrum
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Observational Reference: 

W2246–0526
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Datasets

Toy models of 
rotating galaxies

Mock IFU data 
from cosmological 

simulations

Observational 
data (ALMA)

Spectral cubes 
multiple spectral observation of the 
same spatial area, where each (x,y) 

spatial point corresponds to a spectrum
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Pre-processing mock IFU cubes from FIRE

W2246-like system

A multiple-merger system was 
discovered in the FIRE 

simulations - simulated at 
redshift 4.5, central galaxy with 

multiple satellites and visible 
bridges and streams of gas

Aim: To pre-process the raw, 
highly resolved mock IFU cube 

and convolve it with an 
appropriate beam to make the 
cube as close as possible to real 

observations (ALMA)
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Identifying emission regions

Fixed masks focusing on the central galaxies are 
constructed as a function of the effective diameter of the 

galaxy and the beam FWHM (both in pixels)

Accurate emission masks constructed using 
astrodendro, which identifies regions with strong 

emission hierarchically in the whole cube

< However,  astrodendro masks are unable to get accurate 
apertures on data with very high levels of correlated noise, 

hence we use fixed masks for our comparative analysis
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Denoising Methods

Principal 
Component 

Analysis (PCA)

Independent 
Component 

Analysis (ICA)

Blind Source 
Separation (BSS)

2D-1D Wavelet 
Decomposition

Deep 
Learning

Single-step Iterative

Hard Thresholding Soft Thresholding

3D U-Net
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Denoising Methods

Principal 
Component 

Analysis (PCA)

Independent 
Component 

Analysis (ICA)

Blind Source 
Separation (BSS)

2D-1D Wavelet 
Decomposition

Deep 
Learning

Single-step Iterative

Hard Thresholding Soft Thresholding

3D U-Net
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Spectral cube

Each spectral slice…

2D decomposition: Starlet transform on each 
spectral slice : undecimated and non orthogonal 

(dimensions of each slice are preserved)

…is decomposed into n2d scales

2D-1D wavelet decomposition

Scale #1 Scale #2 Scale #3 Scale #4
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2D-1D wavelet decomposition

Cube at one
2D scale

Each (x,y) 
spatial point 

corresponds to 
an element of the 

spectrum 

Example velocity spectrum for one 
spaxel (each element of 1 D array is the 

flux density at an (x,y) spaxel
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Spectrum of length 
Nz (number of 
spectral slices)

2D-1D wavelet decomposition

1D decomposition: The spectra associated with each 
spaxel is decomposed with a 1D wavelet transform

1D wavelet transform
(Downsamples the 
data in each scale)

Scale #1
length Nz /2

Scale #2
length Nz /4

into n1d scales
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2D-1D wavelet decomposition

Spectral cube

2D Decomposition

1D
Decomposition

This method ensures that the 
wavelet scales contain both 

spatial and spectral 
information, as spatial and 

spectral data are not 
independent of each other
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Denoising Methods

Principal 
Component 

Analysis (PCA)

Independent 
Component 

Analysis (ICA)

Blind Source 
Separation (BSS)

2D-1D Wavelet 
Decomposition

Deep 
Learning

Single-step Iterative

Hard Thresholding Soft Thresholding  

3D U-Net



Single-Step Hard & Soft Thresholding
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Denoising Methods

Principal 
Component 

Analysis (PCA)

Independent 
Component 

Analysis (ICA)

Blind Source 
Separation (BSS)

2D-1D Wavelet 
Decomposition

Deep 
Learning

Single-step Iterative

Hard Thresholding Soft Thresholding 
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Re-weighted Iterative Soft Thresholding

In subsequent iterations, weights are 
calculated as a function of the closeness 

of the coefficient magnitudes of the 
previous iteration to the threshold value

Re-weighted thresholding is applied in the 
next iteration after a gradient step, which 

pushes the data closer to the input

Coefficients that are closer to the 
threshold are thresholded more 

aggressively (higher w) and shrunken 
more towards 0 and the remaining 

coefficients are shrunken less

The residual is wavelet-transformed, and the final learned weights from the reweighting 
phase are applied to perform weighted soft thresholding on the residual coefficients. 
The resulting denoised residual is reconstructed and added to the previous output
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Denoising Methods

Principal 
Component 

Analysis (PCA)

Independent 
Component 

Analysis (ICA)

Blind Source 
Separation (BSS)

2D-1D Wavelet 
Decomposition

Deep 
Learning

Single-step Iterative

Hard Thresholding Soft Thresholding

3D U-Net 
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U-Net3D 
Architecture



Analysis & Results
  



PUNCH IT CHEWIE, 
LET’S MAKE THE JUMP TO LIGHT MODE



27

RMSE reduction & Flux conservation

• PCA & ICA:

- RMSE ratio after denoising remains close to 1 
almost no noise suppression.

- Flux appears well-conserved, but mainly because noise is not effectively 
removed — giving a misleading impression of good performance.

- Ineffective for correlated 3D noise in spectral cubes.

• 2D1D IST:

- RMSE reduced by ~40-50% 
Significant noise reduction compared to PCA/ICA.

- Flux is underestimated at very low SNRs 
(due to conservative thresholding) but improves as SNR increases.

- Better balance between noise suppression and signal preservation 
thanks to its multi-scale representation.

• U-Net3D-64:

- Best overall performance: RMSE reduced by ~80%  
Superior noise suppression even at low SNRs.

- Flux conservation is excellent for resolved sources.

- For unresolved sources at very low SNR, U-Net tends to overestimate 
flux by ~5-10%, which improves at higher SNRs. Likely due to the U-
Net learning to recover compact signal patterns more aggressively 
than real emission.
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Spectral Feature Retention

• 2D1D IST:

For both resolved and unresolved sources, reconstruction is poor 
at low peak-SNRs, but for higher peak-SNR, compact spectral 
shape of unresolved source is well preserved. For resolved, the 
shape is recovered at low peak-SNRs, but the overall spectrum 
(especially in channels with low flux) are not accurately recovered.

• U-Net3D-64:

For both resolved and unresolved 
sources, even at low peak-SNR, the U-
net is able to recover accurate spectral 
structures, and model kinematic features, 
getting better for high peak-SNR.



29

Deep learning challenges: Hallucinations



Application of 
methodology to 
FIRE mock IFU 
& W2246 CII IFU



FIRE Mock IFU

W2246 CII IFU

• FIRE Mock IFU

- The RMSE ratio for both U-Net and 2D1D Wavelet-IST show 
expected trends.

- The flux conservation trends are in line with what is expected for 
an unresolved central galaxy in the toy cubes. Flux is very well 
estimated for higher peak-SNRs but for low peak-SNRs there 
is an overestimation of flux by ~ 10-15%

- U-Net trained completely on toy cubes show promising 
generalisation to cubes with sophisticated modelling in 
cosmological simulations

• W2246 CII IFU

- The RMSE and flux conservation trends are similar to the 
previous case and what is expected for unresolved central galaxy 
BUT:

- The total flux as a whole is underestimated in this case, 
despite systematic overestimation at low peak-SNRs

- W2246 has significant diffuse emission and faint 
morphological features - tidal tails, bridges - no priors on the 
U-Net as it is trained on toy cubes

- U-Net trained completely on toy cubes show promising results as 
it is able to recover at least >50% of the total flux of a real 
ALMA observed high-redshift galaxy!



• Developed a multi-tiered evaluation framework: from synthetic toy 
cubes → FIRE simulations → real ALMA (W2246–0526).

• Created configurable toy datasets with controlled morphologies & 
noise, ideal for training & benchmarking denoisers.

• Benchmarked 4 methods (PCA, ICA, 2D1D-Wavelet-IST, 3D U-Net) 
— highlighting their strengths & weaknesses:

• PCA/ICA: limited; fail at noise suppression in low SNR.

• Wavelet-IST: robust, interpretable, preserves flux well in medium-
high SNR, struggles with faint diffuse emission.

• 3D U-Net: best overall performance; recovers structure even in low 
SNR, generalizes to real data — but tends to hallucinate features & 
overestimate flux in some cases.

• Demonstrated that our toy dataset is powerful for training deep 
denoisers and can serve as a robust first stage in transfer learning.

Conclusions

• Use more realistic priors in training set 
(e.g., feedback & dust).

• Develop uncertainty-aware & probabilistic 
denoisers to quantify confidence.

• Combine wavelets & deep learning 
(e.g., Learnlets) for hybrid methods.

• Incorporate regularization & loss terms to 
reduce flux bias & hallucinations.

• Implement hallucination detection & 
statistical uncertainty bounds (e.g., quantile 
regression and conformal predictions).

Future work:

(& thank you 
for your time)


