

Blind Source Separation with Learnlets

Victor Bonjean with A. Gkogkou, J.-L. Starck and P. Tsakalides

TITAN-ARGOS-TOSCA Meeting - July 8th 2025

Funded by the European Union

What are Learnlets? (Ramzi et al., 2021)

→ Extension of wavelets (sparse) → Filters are learned (CNN) → Mathematical frame (component separation)

Data: $X \mapsto \{wt_1, wt_2, wt_3, wt_4, wt_5\}$

Data: $X \mapsto \{wt_1, wt_2, wt_3, wt_4, wt_5\}$ LP HP

Data: $X \mapsto \{wt_1, wt_2, wt_3, wt_4, wt_5\}$ LP HP LP HP

Data: $X \mapsto \{wt_1, wt_2, wt_3, wt_4, wt_5\}$ LP HP LP HP LP HP

Wavelets decomposition: Data: $X \mapsto \{wt_1, wt_2, wt_3, wt_4, wt_5\}$ LP HP LP HP LP HP HP LP

Wavelets decomposition: Data: $X \mapsto \{wt_1, wt_2, wt_3, wt_4, wt_5\}$ LP HP LP HP number of scales HP LP HP LP

* No humans were harmed during this experiment

 Wt_1

* No humans were harmed during this experiment

 Wt_1

* No humans were harmed during this experiment

* No humans were harmed during this experiment

 wt_1

 wt_2

 Wt_2

 wt_5 Wt_A * No humans were harmed during this experiment

 wt_1

 wt_2

wt₂

Data: $X \mapsto \{wt_1, wt_2, wt_3, wt_4, wt_5\}$

Example with starlet:

Wavelets decomposition:

* wt_5 wt_4 No humans were harmed during this experiment

 wt_1

 wt_2

 Wt_2

 Wt_5 Wt_A No humans were harmed during this experiment

 wt_1

 wt_2

 Wt_2

Denoising with wavelets: Data: $X \mapsto \{wt_1, wt_2, wt_3, wt_4, wt_5\}$

Denoising:

 t_2, wt_3, wt_4, wt_5 $\begin{cases} f_2, wt_3, wt_4, wt_5 \\ f_2, wt_3, wt_4, wt_5 \end{cases}$

Data: $X \mapsto \{wt_1, wt_2, wt_3, wt_4, wt_5\}$

Denoising:

Denoising with wavelets:

Sparser

0-mean + stay gaussian

Denoising with wavelets: Data: $X \mapsto \{wt_1, wt_2, wt_3, wt_4, wt_5\}$

Denoising:

0-mean + stay gaussian

for all wt_i

Learnlet network architecture

10.000 images from ImageNet:8.000 training1.000 validation1.000 test

10.000 images from ImageNet:8.000 training1.000 validation1.000 test

Performance of networks on the test set

10.000 images from ImageNet:8.000 training1.000 validation1.000 test

Significant lower number of free parameters

Performance of networks on the test set

10.000 images from ImageNet:
8.000 training
1.000 validation
1.000 test

Significant lower number of free parameters

Performance of networks on the test set

GitHub: https://github.com/vicbonj/ learnlet.git (PyTorch, pre-trained loaded weights)

Thresholds k_j learned

Thresholds k_j learned

Thresholds k_j learned

1st scale filters learned

Thresholds k_i learned

1st scale filters learned

Learnlet Component Separator (LCS)

 $\mathbf{Y} = \mathbf{A} \cdot \mathbf{S} + \mathbf{N}.$ BSS:

Illustr

Learnlet Component Separator (LCS)

BSS:
$$\mathbf{Y} = \mathbf{A} \cdot \mathbf{S} + \mathbf{N}$$
.

Two steps iterating algorithm (inspired by GMCA):

 $\mathscr{L}_{\mathbf{S}_{i}}$: Learnlets trained priorly on each components *i*

Learnlet Component Separator (LCS)

BSS:
$$\mathbf{Y} = \mathbf{A} \cdot \mathbf{S} + \mathbf{N}$$
.

Two steps iterating algorithm (inspired by GMCA):

+ last step: Learnlet final denoising of S with threshold computed from the known noise on Y (expected to be known):

 $\Sigma_{\hat{\mathbf{S}}} = \hat{\mathbf{A}}^{+} \Sigma_{\mathbf{N}} (\hat{\mathbf{A}}^{+})^{\mathsf{T}}$

 $\mathscr{L}_{\mathbf{S}_{i}}$: Learnlets trained priorly on each components *i*

Results of LCS

Toy model with multiple realizations of A (6 channels) and N (gaussian white) with evolving σ

Results of LCS

Toy model with multiple realizations of A (6 channels) and N (gaussian

Learnlets trained for each components *i*:

Results of LCS

Results of LCS

Learnlets trained for each components *i*:

2 classes:

banded

DTD texture dataset (Cimpoi et al, 2014), 120 images per 47 classes, here focused on

dotted

Results of LCS

Learnlets trained for each components *i*:

2 classes:

banded dotted One training per class: $\mathcal{L}_{\rm banded}$ and $\mathcal{L}_{\rm dotted}$ with 119 images (transfer learning from ImageNet)

DTD texture dataset (Cimpoi et al, 2014), 120 images per 47 classes, here focused on

Learnlets trained for each components *i*:

Results of LCS

Different realizations of A and N for different σ with the 120th images of the classes

Results of LCS in astrophysics: Application to supernovae remnant in X-ray images and comparison with LPALM (Fahes et al, 2022: Unrolling PALM for semi-blind source separation - supposing imperfect knowledge of A) -25

Application to supernovae remnant in X-ray images and comparison with LPALM (Fahes et al, 2022: Unrolling PALM for semi-blind source separation - supposing imperfect knowledge of A)

Application to supernovae remnant in X-ray images and comparison with LPALM (Fahes et al, 2022: Unrolling PALM for semi-blind source separation - supposing imperfect knowledge of A)

Application to CMB & Sunyaev-Zel'dovich effect extraction (3 components CMB, SZ, CIB, no beam, noise from Planck):

One training per class: \mathscr{L}_{CMB} , \mathscr{L}_{SZ} and \mathscr{L}_{CIB} (transfer learning from ImageNet) on patches from healpix numerical simulations WebSky (Stein et al., 2020)

Application to CMB & Sunyaev-Zel'dovich effect extraction (3 components CMB, SZ, CIB, no beam, noise from Planck):

One training per class: \mathscr{L}_{CMB} , \mathscr{L}_{SZ} and \mathscr{L}_{CIB} (transfer learning from ImageNet) on patches from healpix numerical simulations WebSky (Stein et al., 2020)

Comparison with ILC and GMCA:

For this application, column of CMB and SZ have been fixed to the theoretical weights, letting CIB being free

Method	CMB	SZ
ILC	32.88	27.90
GMCA	26.28	25.56
LCS	34.65	42.94

Summary

- A new Learnlet implementation (PyTorch)
- BSS algorithm based on Learnlets: LCS (combining expressivity of deep learning and mathematical properties of wavelets)
- Outperforms even SBSS (LPALM) algorithms when noise
- Promising for SKA (HI extraction) and SO, Litebird (CMB, SZ, dust)
 - Next steps
- Combine with deconvolution (Sia's work)
- Error estimation (Hubert?)
- To the sphere / Healpix