Detailed treatment of uncertainties and correlations for jet energy calibration, jet cross section measurements, for the HVP contribution to $(g-2)_{\mu}$ and related phenomenological studies

Bogdan MALAESCU

LPNHE, CNRS

HDR Defence 27/03/2025

Areas of interest and topics for today

Statistics & Machine Learning techniques for: Unfolding; Calibration; Anomaly detection

QCD studies @ FCC-ee

B. Malaescu (CNRS)

 $(g-2)_{\mu}$

$BNL \rightarrow Fermilab$

Status of a before 1st / with 2nd Fermilab result

We have an interesting, long standing, multifaceted problem to solve...

Focusing here on the situation for the dispersive approach and the comparison with lattice QCD

Theoretical prediction

Why is it (so) complicated to compute one number ? (*very precisely*)

Hadronic Vacuum Polarization and Muon (g-2)

Dominant uncertainty for the theoretical prediction: from lowest-order HVP piece Cannot be calculated from pQCD (low E-scale), but one can use experimental data on $e^+e^- \rightarrow$ hadrons cross section

 \rightarrow Alternatively, one can use hadronic τ decays data + Isospin Breaking corrections

B. Malaescu (CNRS)

HVP: Data on $e^+e^- \rightarrow$ hadrons

B. Malaescu (CNRS)

BaBar results: "NLO" cross-section

Experimental data combination (Example: $e^+e^- \rightarrow \pi^+\pi^-$ channel)

Procedure and software (*HVPTools* - *Since* 2009) for combining cross section data with arbitrary point spacing/binning \rightarrow Validated through closure test. Featuring full & realistic (i.e. not too optimistic) treatment of uncertainties and correlations (between measurements (data points/bins) of a given experiment, b. experiments, b. different channels), fully accounting for systematic tensions between experiments. (1st motivation for DHMZ uncertainties = "baseline" in g-2 TI WP)

Combination procedure implemented in HVPTools software

 \rightarrow Define a (fine) final binning (to be filled and used for integrals etc.)

 \rightarrow Linear/quadratic splines to interpolate between the points/bins of each experiment

- for binned measurements: preserve integral inside each bin
- closure test: replace nominal values of data points by Gounaris-Sakurai model and re-do the combination
 - \rightarrow (non-)negligible bias for (linear)quadratic interpolation

→ Fluctuate data points taking into account correlations & re-do the splines for each (pseudo-)experiment - each uncertainty fluctuated coherently for all the points/bins that it impacts

- eigenvector decomposition for (statistical) covariance matrices

 \rightarrow In each final bin, compute: average value for each measurement & its uncertainty; correlation matrix between experiments

<u>Backup</u>

Combining the $e^+e^- \rightarrow \pi^+\pi^-$ data: relative differences

Combining the $e^+e^- \rightarrow \pi^+\pi^-$ data: relative differences

B. Malaescu (CNRS)

HDR Defence

12

Combination procedure: weights and tension

 \rightarrow For each narrow final bin minimize χ^2 to get average coefficients test locally the level of agreement \rightarrow Average weights account for bin sizes/point-spacing of measurements: compare precisions on same footing

 \rightarrow Average dominated by BaBar, CMD3, KLOE, SND20; BaBar covers full energy range \rightarrow Enhanced tensions, especially between KLOE & CMD3, which provide the smallest / largest cross-sections in the ρ region: *clear indication of underestimated uncertainties*

→ *Calls for conservative uncertainty treatment* in combination fit (fits / evaluation of weights)

→ Systematic effects beyond the local χ^2 /ndof rescaling: had already motivated the inclusion of the dominant BABAR-KLOE systematic by DHMZ since 2019 (2nd motivation for DHMZ uncertainties = "baseline" in g-2 *TI White Paper*), but *tensions are larger now*

B. Malaescu (CNRS)

Quantitative comparisons for a HVP

 \rightarrow Comparison of integrals computed in various restricted energy ranges, for individual e⁺e⁻ experiments: significance of the difference between different experiments, taking into account correlations

 \rightarrow Largest tensions between CMD3 and KLOE

Quantitative comparisons for a HVP

 \rightarrow Comparison of integrals computed in various restricted energy ranges, for τ / individual e⁺e⁻ experiments: significance of the difference between different experiments, taking into account correlations

 \rightarrow Largest tensions between Tau and KLOE

 \rightarrow Good agreement among the Tau measurements (<u>Backup</u>)

Combining the $e^+e^- \rightarrow \pi^+\pi^-$ data, BaBar & CMD3 & Tau(+IB)

B. Malaescu (CNRS)

HDR Defence

Impact of higher order photon emissions: *Unique '(N)NLO' BaBar study*

→ Studied in-situ in BaBar data, using kinematic fits: test the most frequently used Monte Carlo generators

- PHOKHARA: full NLO matrix element for ISR and FSR
- AFKQED: NLO and NNLO, with collinear approximation for additional ISR

B. Malaescu (CNRS)

BaBar results on higher order photon emissions

- → NLO small-angle ISR in Рнокнака higher than in data; large-angle ratios consistent with unity
- \rightarrow Independent Belle II confirmation of Phokhara problem
- → AFKQED: reasonable description of rate and energy distributions for '(N)NLO' data

→ NNLO contributions clearly observed in data

- \rightarrow BaBar measurements: loose selection incorporates NLO and HO radiation, minimising MC-dependence
- \rightarrow Other ISR measurements select 'LO' topology and rely on PHOKHARA for hard NLO (but with no NNLO)
- \rightarrow Aspects further studied with fast simulation, questioning the KLOE systematic uncertainties (2312.02053)

<u>Backup</u>

B. Malaescu (CNRS)

Sum of hadronic contributions

Channel	$a_{\mu}^{ m had,LO}~[10^{-10}]$	$\Delta \alpha_{ m had}(m_Z^2) \ [10^{-4}]$	
$\pi^0\gamma$	$4.41 \pm 0.06 \pm 0.04 \pm 0.07$	$0.35 \pm 0.00 \pm 0.00 \pm 0.01$	
$\eta\gamma$	$0.65\pm 0.02\pm 0.01\pm 0.01$	$0.08\pm 0.00\pm 0.00\pm 0.00$	\rightarrow 32 exclusive channels are
$\pi^+\pi^-$	$507.85 \pm 0.83 \pm 3.23 \pm 0.55$	$34.50 \pm 0.06 \pm 0.20 \pm 0.04$	· 52 enclusive enamers are
$\pi^+\pi^-\pi^0$	$46.21 \pm 0.40 \pm 1.10 \pm 0.86$	$4.60\pm 0.04\pm 0.11\pm 0.08$	integrated up to 1.8 GeV
$2\pi^+2\pi^-$	$13.68 \pm 0.03 \pm 0.27 \pm 0.14$	$3.58 \pm 0.01 \pm 0.07 \pm 0.03$	
$\pi^+\pi^-2\pi^0$	$18.03 \pm 0.06 \pm 0.48 \pm 0.26$	$4.45 \pm 0.02 \pm 0.12 \pm 0.07$	
$2\pi^+ 2\pi^- \pi^0 \ (\eta \text{ excl.})$	$0.69 \pm 0.04 \pm 0.06 \pm 0.03$	$0.21\pm 0.01\pm 0.02\pm 0.01$	
$\pi^+\pi^-3\pi^0 \ (\eta \text{ excl.})$	$0.49 \pm 0.03 \pm 0.09 \pm 0.00$	$0.15\pm 0.01\pm 0.03\pm 0.00$	
$3\pi^+3\pi^-$	$0.11 \pm 0.00 \pm 0.01 \pm 0.00$	$0.04 \pm 0.00 \pm 0.00 \pm 0.00$	
$2\pi^+ 2\pi^- 2\pi^0$ (η excl.)	$0.71 \pm 0.06 \pm 0.07 \pm 0.14$	$0.25 \pm 0.02 \pm 0.02 \pm 0.05$	
$\pi^+\pi^-4\pi^0$ (η excl., isospin)	$0.08 \pm 0.01 \pm 0.08 \pm 0.00$	$0.03 \pm 0.00 \pm 0.03 \pm 0.00$	Polative contributions to a from
$\eta \pi^+ \pi^-$	$1.19 \pm 0.02 \pm 0.04 \pm 0.02$	$0.35 \pm 0.01 \pm 0.01 \pm 0.01$	Kelative contributions to a from
$\eta\omega$	$0.35 \pm 0.01 \pm 0.02 \pm 0.01$	$0.11 \pm 0.00 \pm 0.01 \pm 0.00$	missing shown als (action stard
$\eta \pi^+ \pi^- \pi^0(\text{non-}\omega,\phi)$	$0.34 \pm 0.03 \pm 0.03 \pm 0.04$	$0.12 \pm 0.01 \pm 0.01 \pm 0.01$	missing channels (estimated
$\eta 2\pi^+ 2\pi^-$	$0.02\pm 0.01\pm 0.00\pm 0.00$	$0.01 \pm 0.00 \pm 0.00 \pm 0.00$	
$\omega\eta\pi^0$	$0.06 \pm 0.01 \pm 0.01 \pm 0.00$	$0.02 \pm 0.00 \pm 0.00 \pm 0.00$	based on isospin symmetry)
$\omega \pi^0 \ (\omega \to \pi^0 \gamma)$	$0.94 \pm 0.01 \pm 0.03 \pm 0.00$	$0.20 \pm 0.00 \pm 0.01 \pm 0.00$	
$\omega 2\pi ~(\omega ightarrow \pi^0 \gamma)$	$0.07 \pm 0.00 \pm 0.00 \pm 0.00$	$0.02 \pm 0.00 \pm 0.00 \pm 0.00$	
$\omega \ (\text{non-}3\pi,\pi\gamma,\eta\gamma)$	$0.04 \pm 0.00 \pm 0.00 \pm 0.00$	$0.00 \pm 0.00 \pm 0.00 \pm 0.00$	$\rightarrow 0.87 \pm 0.15$ % (DFH7 2003)
K^+K^-	$23.08 \pm 0.20 \pm 0.33 \pm 0.21$	$3.35 \pm 0.03 \pm 0.05 \pm 0.03$	0.07 ± 0.15 /0 (DEHE 2005)
	$12.82 \pm 0.06 \pm 0.18 \pm 0.15$	$1.74 \pm 0.01 \pm 0.03 \pm 0.02$	$\rightarrow 0.60 \pm 0.07.\%$ (DUM7 2010)
$\phi (\text{non-}KK, 3\pi, \pi\gamma, \eta\gamma)$	$0.05 \pm 0.00 \pm 0.00 \pm 0.00$	$0.01 \pm 0.00 \pm 0.00 \pm 0.00$	$\rightarrow 0.09 \pm 0.07 / 0 (DIIMZ 2010)$
$KK\pi$	$2.45 \pm 0.05 \pm 0.10 \pm 0.06$	$0.78 \pm 0.02 \pm 0.03 \pm 0.02$	(0.00 + 0.02.0) (DID (7.2017)
$KK2\pi$	$0.85 \pm 0.02 \pm 0.05 \pm 0.01$	$0.30 \pm 0.01 \pm 0.02 \pm 0.00$	$\rightarrow 0.09 \pm 0.02 \% (DHMZ 201/)$
ΚΚω	$0.00 \pm 0.00 \pm 0.00 \pm 0.00$	$0.00 \pm 0.00 \pm 0.00 \pm 0.00$	
$\eta \phi$	$0.33 \pm 0.01 \pm 0.01 \pm 0.00$	$0.11 \pm 0.00 \pm 0.00 \pm 0.00$	$\rightarrow 0.016 \pm 0.016$ % (DHMZ 2019)
$\eta K K (\text{non-}\phi)$	$0.01 \pm 0.01 \pm 0.01 \pm 0.00$	$0.00 \pm 0.00 \pm 0.01 \pm 0.00$	
$\omega 3\pi \ (\omega \to \pi^* \gamma)$	$0.06 \pm 0.01 \pm 0.01 \pm 0.01$	$0.02 \pm 0.00 \pm 0.00 \pm 0.00$	(Nearly complete set of exclusive
$\pi (3\pi^+ 3\pi^- \pi^- + \text{estimate})$	$0.02 \pm 0.00 \pm 0.01 \pm 0.00$	$0.01 \pm 0.00 \pm 0.00 \pm 0.00$	(Ivenity complete set of exerusive
J/ψ (BW integral)	6.20 ± 0.11	7.00 ± 0.13	measurements from $RARAR$
$\psi(2S)$ (BW integral)	1.56 ± 0.05	2.48 ± 0.08	measurements from DADAIN)
R data [3.7 - 5.0] GeV	$7.29 \pm 0.05 \pm 0.30 \pm 0.00$	$15.79 \pm 0.12 \pm 0.66 \pm 0.00$	
$R_{\rm QCD} \ [1.8 - 3.7 \ {\rm GeV}]_{uds}$	$33.45 \pm 0.28 \pm 0.65_{\rm dual}$	$24.27 \pm 0.18 \pm 0.28_{\rm dual}$	
$R_{\rm QCD} [5.0 - 9.3 {\rm GeV}]_{udsc}$	6.86 ± 0.04	34.89 ± 0.18	
$R_{\rm QCD} [9.3 - 12.0 \text{ GeV}]_{udscb}$	1.20 ± 0.01	15.53 ± 0.04	
$R_{\rm QCD} [12.0 - 40.0 \text{ GeV}]_{udscb}$	1.64 ± 0.00	77.94 ± 0.13	
$R_{\rm QCD} [> 40.0 \text{ GeV}]_{udscb}$	0.16 ± 0.00	42.70 ± 0.05	
$R_{\rm QCD} [> 40.0 \ {\rm GeV}]_t$	0.00 ± 0.00	-0.72 ± 0.01	
Sum	$694.0 \pm 1.0 \pm 3.5 \pm 1.6 \pm 0.1_{\psi} \pm 0.7_{\rm QCD}$	$275.29 \pm 0.15 \pm 0.72 \pm 0.23 \pm 0.15_{\psi} \pm 0.55_{\rm QCD}$	<u>Backup</u>

B. Malaescu (CNRS)

A new perspective on a_{...} (HVP)

 \rightarrow The $\tau\text{-based}$ HVP contribution close to the values provided by BABAR and CMD-3

 \rightarrow Their combination (3.8 σ > KLOEpeak) is compatible with BMW for a_u , but a 2.9 σ tension persists for a_u^{win}

→ The BMW-based prediction is 1.8 σ below the experimental value; *not* incompatible with the EW fit (<u>Backup</u>) Combining BABAR, CMD-3, τ (+BMW): 2.5 σ (2.8 σ) difference with experiment When including KLOE in the dispersive calculation: > 5 σ w.r.t. experiment

 \rightarrow Tests of MC generators using KLOE data & in-situ studies of impact on the analysis are very much desirable

Lattice calculations and comparisons w.r.t. dispersive

→ Lattice: employ simulations to compute electromagnetic-current two-point function

Based on BMW'20: All contributions to C(t), with all limits taken: $a \rightarrow 0, L \rightarrow \infty, M_{\pi} \rightarrow M_{\pi}^{\phi}, ...$

- → Tensions between lattice (weighted sums of C(t) over t) and pre-CMD3 data-driven (DD) HVP results $\left[\Delta a_{\mu}^{\text{LO-HVP}}\right]_{\text{lat-DD}} \sim 2.1\sigma \quad \left[\Delta a_{\mu,\text{win}}^{\text{LO-HVP}}\right]_{\text{lat-DD}} \sim 4.0\sigma \quad \left[\Delta \alpha_{\text{had}}^{(5)}\left(-1 \rightarrow -10 \text{GeV}^2\right)\right]_{\text{lat-DD}} \sim 1.4\sigma, \dots$
- \rightarrow Simultaneous comparisons with correlations: ~dilution compared to $a_{\mu,\text{win}}^{\text{LO-HVP}}$ alone, but still significant tension
- \rightarrow New in this study: Correlations among lattice HVP observables and uncertainties on these correlations
- \rightarrow Differences could be explained by: a *C(t)* that is enhanced in *t* ~ [0.4, 1.5] fm
- \rightarrow Lattice \rightarrow R-ratio: inverse Laplace transform (ill-posed problem)
- \rightarrow Developed dedicated statistical methods, benefiting from experience with experimental measurements
- \rightarrow Differences could be explained by enhancing measured R-ratio around (/any larger interval including) ρ -peak, but rescalings beyond the uncertainties of Re⁺e⁻

2308.04221

 \rightarrow Outcome of the studies stable within stat. and syst. uncertainties on lattice covariance matrices

<u>Backup</u>

Merging dispersive and lattice HVP calculations

 \rightarrow Currently most precise prediction, based on improved lattice QCD (BMW) + data-driven inputs (DMZ) at large-t (input data in good agreement at low energy)

Backup

Uncertainties on uncertainties and correlations

- Numerous indications of uncertainties on uncertainties and on correlations, with a direct impact on combination fits
- \rightarrow Shapes of systematic uncertainties *evaluated* in ~wide mass ranges with sharp transitions
- \rightarrow One standard deviation is statistically not well defined for systematic uncertainties
- → Systematic uncertainties like acceptance, tracking efficiency, background etc. not necessarily fully correlated between low and high mass
- \rightarrow Are all systematic uncertainty components fully independent between each-other? (e.g. tracking / trigger)
- \rightarrow Yield uncertainties on uncertainties and on correlations
- → Tensions between measurements (BABAR/KLOE/CMD3; 3 KLOE results etc.): experimental indications of underestimated uncertainties
- \rightarrow Statistical methods (χ^2 with correlations, likelihood fits, ratios of measured quantities etc.) should not over-exploit the information on the amplitude and correlations of uncertainties

Topic of general interest, in other fields too (e.g. ATLAS JES and Jet Xsec studies)

Remarks and conclusions on (g-2)

We have an interesting, long standing, multifaceted problem... ... And very important elements to solve the puzzle started to become available !

→ Future e+e- measurements very important: independent 2π measurement from BaBar w/o PID this year Long-term collaboration with M. Davier, A.-M. Lutz, Z. Zhang Intense work by Leonard Polat & Andres Pinto (*PostDocs*)

Guiding ideas:

→ Need *rigorous* and *realistic* treatment of uncertainties and correlations at all levels (Underestimated uncertainties do not bring scientific progress & can put studies on wrong path)

 \rightarrow Caution about significance:

- statistics-dominated measurement; prediction uncertainty limited by non-Gaussian systematic effects
- → Studies for understanding differences between data-driven and Lattice QCD approaches need to follow similar standards as the g-2 experiment: *double-blinding*

Jet studies with ATLAS @ LHC

Jets @ LHC

Jets: "sprays" of (quasi-)stable particles called hadrons, observed in the ATLAS detector

- \rightarrow Proxy to fundamental interactions in Nature, probing the smallest scales accessible in laboratory: Test SM on wide phase-space; important ingredients to α_s and PDF fits; sensitivity to New Physics
- \rightarrow Precise and robust definition necessary for any quantitative studies:

anti- \mathbf{k}_{t} - infrared and collinear safe

Example of (un)folding problem @ LHC

Environment and unfolding strategy for jet studies @ LHC

Typical proton-proton collision: a complex process in a difficult environment

Calibration+Unfolding

Pile-up

Goal: publish data "corrected for detector effects" (on average, in the sense of an estimator), <u>with</u> <u>minimal bias and minimal model dependence</u>, with the full information needed for comparisons with theory predictions

 \rightarrow Typically implies unfolding to hadron level although there are cases where one can unfold to parton level

Hadronization & UE Jet energy response & resolution Hadronization & UE Jet energy response & resolution The second seco

NP corrections

Jet reconstruction and calibration procedure

In-situ η – intercalibration calibration method

$$\mathcal{A} = \frac{p_T^{\text{left}} - p_T^{\text{right}}}{p_T^{\text{avg}}} \qquad \mathcal{R} = \frac{c^{\text{right}}}{c^{\text{left}}} = \frac{2 + \langle \mathcal{A} \rangle}{2 - \langle \mathcal{A} \rangle} \approx \frac{\langle p_T^{\text{left}} \rangle}{\langle p_T^{\text{right}} \rangle}$$
$$S(c_{1x}, \dots, c_{Nx}) = \sum_{j=2}^N \sum_{i=1}^{j-1} \left(\frac{1}{\Delta \langle \mathcal{R}_{ijx} \rangle} (c_{ix} \langle \mathcal{R}_{ijx} \rangle - c_{jx}) \right)^2 + X(c_{ix})$$

 \rightarrow p_T balance in dijet *in-situ* events to achieve homogeneity of the calibration in η : using multiple combinations of central-forward bins to obtain a better statistical precision

 \rightarrow Over-constrained system: gained a factor ~1000 in speed by using analytic solution (*Robert Hankache - PhD*)

 \rightarrow Reduced modeling uncertainty by a factor ~2, avoiding double-counting of detector effects (Louis Ginabat - PhD)

 \rightarrow Detailed study of the compatibility of constraints, improved statistical uncertainties and correlations (*Line Delagrange - PhD*)

 \rightarrow Input for ML-based calibration (Laura Boggia - PhD)

γ -jet + Z-jet + MJB combination

- \rightarrow Combination of in-situ results with spline-based interpolations + weighted averages
- \rightarrow Testing also compatibility of in-situ inputs

(Inspired by methodology employed for hadronic spectra)

 \rightarrow Includes Z+jet method for jet calibration and resolution (*Guillaume Lefebvre - PhD*)

γ -jet + Z-jet + E/p combination

 \rightarrow Important improvement due to E/p method (Lata Panwar - PostDoc)

In-situ uncertainties affecting the combination result

 \rightarrow 47 in-situ uncertainty components (NPs) : full propagation of information on uncertainty & correlations

Using a diagonalization procedure to reduce the number of NPs

 \rightarrow Use part (N_{ev} -1) of the important (large) eigenvalues, plus an effective contribution for the others (rest term), to approximate the covariance matrix: percent-level precision on correlations (difference between original and approximate matrices)

 \rightarrow Keep track of uncertainty origin using a reduction by category:

"statistical", "modeling", "detector", "mixed (modeling/detector)", "special"

Uncertainties on JES correlations

 \rightarrow Derived two alternative configurations with stronger/weaker correlations w.r.t. nominal

(Inspired remarks about uncertainties on uncertainties for combinations of hadronic spectra)

Nominal correlation matrix

First γ -jet + Z-jet + Dijets + Zero Bias JER fit

 \rightarrow Good agreement (local χ^2 with correlations) between in-situ methods

- \rightarrow In-situ combination based on global fit of (N, S, C)
- \rightarrow Full propagation of uncertainties & correlations:

3 eigenvectors are enough for $\sim 10^{-3}$ precision on correlations

→ Coherent propagation of uncertainties & correlations in physics analyses (*Dimitris Varouchas - PostDoc*)

Detector effects, folding and unfolding

→ Unfolding of detector smearing effects is generally not a simple numerical problem <u>Regularization methods</u> are often necessary

B. Malaescu (CNRS)

HDR Defence

<u>Backup</u>

Data unfolding: methodology & studies

- \rightarrow Measurements corrected back to truth particle level using a matrix-based unfolding method
 - transfer matrix relating the true & reconstructed observable (MC): matching needed
 - 3 steps procedure: 1) matching (in)efficiency correction at reco level;

2) IDS / SVD / bin-by-bin / IBU unfolding for jets with matching;3) matching (in)efficiency correction at true level.

- \rightarrow Numerous aspects studied in this context, among which:
 - choice of the phase-space
 - optimization of the choice of the binning
 - intrinsic unfolding uncertainties and choice of the regularization
 - propagation of statistical and systematic (JES, JER etc.) uncertainties, with their correlations
 - non-linear effects in the uncertainty propagation
 - statistical noise in the uncertainty propagation
 - modeling uncertainties and "hidden variables"

→ Developments of ML-based methods: will enable qualitative improvements of such measurements

Data-driven closure test: motivation, procedure, example

- → In-situ (i.e. *realistic*) determination of the unfolding uncertainty related to the data/MC shape difference and to the regularization (performed for several unfolding methods; choosing the most precise)
 - reweight true MC by (smooth) function: improved data/recoMC agreement Reweighting performed within fine bins / event-by-event
 - unfold the reweighted reconstructed MC
 - compare with reweighted true MC

Statistical uncertainties

- Due to data and MC
- Propagated using pseudo-experiments done separately/simultaneously for data and MC
- \rightarrow Bootstrap method
 - multiply event weights
 - by random number: Poisson(1)
 - seed given by event number
 - allows to correlate measurements
 with overlapping samples

ATL-PHYS-PUB-2021-011

• Publish covariance matrix and/or a series of results based on each pseudo-experiment (i.e. Bootstrap replicas)

Propagation of systematic uncertainties from inputs

 \rightarrow Modify input (pseudo-)data spectrum by $\pm 1\sigma$ of the (asymmetric) uncertainty, re-do unfolding and compare with nominal result

 \rightarrow Can also use 1...5 σ scans or pseudo-experiments

→ Bootstrap method to evaluate statistical uncertainties on the propagated systematics + rebinning/smoothing Evaluate statistical significance to avoid multiple-counting of statistical uncertainties (<u>1312.3524</u>)

 \rightarrow For resolution uncertainties, perform smearing of the transfer matrix: smearing factor given by quadratic difference between resolution enhanced by 1σ and nominal resolution

Propagation of systematic uncertainties from inputs

 \rightarrow Split of systematics in sub-components (fully correlated in phase-space, independent between each-other) allows to evaluate correlations between different phase-space regions and between different measurements

Relevant when effectively merging uncertainty components in ML-based methods

 \rightarrow Information made available in HEPData tables (http://hepdata.cedar.ac.uk/)

Inclusive jet and dijet cross sections - ATLAS

→ Double-differential measurements for anti- k_T jets with R=0.4, \sqrt{s} =13 TeV, L=3.2fb⁻¹ (p_T^{jet} ; |y|) (m_{ii} ; y*) compared to NLO pQCD + Non-pert. & EW corrections

 \rightarrow Uncertainties (~5% on wide range, sub-% statistical \rightarrow precision era)

<u>Backup</u>

Theoretical predictions and uncertainties

- \rightarrow Perturbative QCD predictions from NLOJET++
 - Uncertainties: renormalization & factorization scales (0.5 / 2 variations + p_T^{jet} vs. p_T^{max} scale choice), PDFs and α_s via APPLGRID
 - NNLO prediction (APPLfast)
- \rightarrow EW corrections
- → Non-perturbative corrections (accounting for hadronization and UE) and uncertainties: various Pythia tunes + different MC generators(Herwig++); strong dependence on R
 - additional comparisons to Powheg (NLO ME + PS)

Inclusive jet cross sections at $\sqrt{s}=8$ TeV: Theory/Data

 \rightarrow Good data/theory agreement within uncertainties observed for most PDF sets

Extraction of Physics information from measurements

 \rightarrow Involves using information on uncertainties and their correlations (between various measurement bins), keeping in mind that there are uncertainties impacting them too <u>Backup</u>

α_s from jet Xsec ratios: energy range for the RGE test and PDF sensitivity

 \rightarrow Observables like $R_{3/2}$, $R_{\Delta\Phi}$ and (A)TEEC non-trivial due to events that are not back-to-back dijets: sensitivity to α_s originates from probability of emission of extra radiation (3rd jet etc.)

 \rightarrow Relevant scale for RGE test related to $p_{T,3}$ (low), not to event-level observables (e.g. $p_T^{\text{lead. jet}}, p_T^{(\text{all jets})},$

 $(p_{T,1}+p_{T,2})/2, H_T/2)$

Observable [Ref.]	$lpha_{ m s}(M_{ m Z}^2)$	Range PDF variations
R_{32} [109]	$0.111 \pm 0.006 (\mathrm{exp})^{+0.016}_{-0.003} (\mathrm{PDF}, \mathrm{NP}, \mathrm{scale})$	0.109 - 0.116
R_{32} [110]	$0.1148 \pm 0.0014 ({ m exp}) \pm 0.0018 ({ m PDF}) \pm 0.0050 ({ m theory})$	0.1135 - 0.1148
3-jet mass [108]	$0.1171 \pm 0.0013 (\mathrm{exp}) \pm 0.0024 (\mathrm{PDF}) \pm 0.0008 (\mathrm{NP})^{+0.0069}_{-0.0040} (\mathrm{scale})$	0.1143 - 0.1183
2-jets [111]	$0.1159 \pm 0.0025({ m exp},{ m PDF},{ m NP})$	0.1159 - 0.1183
3-jets [111]	$0.1161 \pm 0.0021({\rm exp},{\rm PDF},{\rm NP})$	0.1159 - 0.1179
2- & 3-jets [111]	$0.1161 \pm 0.0021({\rm exp},{\rm PDF},{\rm NP})$	0.1161 - 0.1188
R_{32} [111]	$0.1150 \pm 0.0010 (\mathrm{exp}) \pm 0.0013 (\mathrm{PDF}) \pm 0.0015 (\mathrm{NP})^{+0.0050}_{-0.0000} (\mathrm{scale})$	0.1139 - 0.1184
TEEC [112]	$0.1162 \pm 0.0011 (\mathrm{exp}) \pm 0.0018 (\mathrm{PDF}) \pm 0.0003 (\mathrm{NP})^{+0.0076}_{-0.0061} (\mathrm{scale})$	0.1151 - 0.1177
ATEEC [112]	$0.1196 \pm 0.0013 (\mathrm{exp}) \pm 0.0017 (\mathrm{PDF}) \pm 0.0004 (\mathrm{NP})^{+0.0061}_{-0.0013} (\mathrm{scale})$	0.1185 - 0.1206
$R_{\Delta\phi}$ [113]	$0.1127^{+0.0019}_{-0.0018}(\mathrm{exp})\pm0.0006(\mathrm{PDF})^{+0.0003}_{-0.0001}(\mathrm{NP})^{+0.0052}_{-0.0019}(\mathrm{scale})$	0.1127 - 0.1156

 \rightarrow PDF uncertainties non-negligible for (α_s from) cross-section ratio measurements & (A)TEEC:

- probability of extra radiation sensitive to the type of partons in the initial state

- both α_s & PDF sensitivities of the observables reduced for ratios: both relevant for the α_s evaluation

<u>Backup</u>

Quantitative data/theory comparisons

 \rightarrow Generalized

$$\mathbf{d} \qquad \chi^{2}(\mathbf{d};\mathbf{t}) = \min_{\beta_{a}} \left\{ \sum_{i,j} \left[d_{i} - \left(1 + \sum_{a} \beta_{a} \cdot \left(\boldsymbol{\epsilon}_{a}^{\pm}(\beta_{a}) \right)_{i} \right) t_{i} \right] \cdot \left[C_{\mathrm{su}}^{-1}(\mathbf{t}) \right]_{ij} \right. \\ \left. \cdot \left[d_{j} - \left(1 + \sum_{a} \beta_{a} \cdot \left(\boldsymbol{\epsilon}_{a}^{\pm}(\beta_{a}) \right)_{j} \right) t_{j} \right] + \sum_{a} \beta_{a}^{2} \right\},$$

Accounts for correlations and asymmetries of experimental and theoretical uncertainties (stat. & syst.)

- \rightarrow Using frequentist method to compute p-value:
 - pseudo-experiments from theory prediction, with the full information on the uncertainties: build the generalized χ^2 distribution (no assumption needed)
 - observed χ^2 from the data/theory comparison

Quantitative comparison between data and NLO QCD+NP+EW

Comparisons performed for a large number of configurations:

- → PDFs: ABM11(as for 7TeV), CT14, MMHT 2014, NNPDF 3.0, HERAPDF 2.0, ABMP16
- \rightarrow Phase-space regions:

p_T ranges:

- "wide": > 70; > 100; 100 900; 100 400 GeV
- "narrow": 70 100; 100 240; 240 408; 408 642; 642 952; > 952 GeV

|y| ranges:

- "individual bins": |y| < 0.5; 0.5 1; 1 1.5; 1.5 2; 2 2.5; 2.5 3
- "full range": |y| < 3
- "pairs of consecutive bins": |y| < 1; 0.5 1.5; 1 2; 1.5 2.5; 2 3
- "central-forward pairs": |y| < 0.5 & 2.5 3; < 0.5 & 2 2.5; < 0.5 & 1.5 2

 \rightarrow R=0.4 and R=0.6; $p_T^{\text{leading jet}}$ and p_T^{jet} scale choices

- \rightarrow Generally good agreement for inclusive jets for individual & pairs of |y| bins
- \rightarrow Tension when including all |y| bins for inclusive jets
- \rightarrow Sensitive to treatment of correlations for "2-point" systematic uncertainties
- \rightarrow Good data/theory agreement for dijets

HDR Defence

Backup

Testing realistic alternative correlation assumptions

Inclusive jets - nominal χ^2/ndf for CT14 with $p_T^{\text{leading jet}}$ scale: 321 – 360/159 (8 TeV); 419/177(13 TeV)

Splitting a single systematic: some χ^2 reduction, but still small p-values.

Splitting simultaneously several uncertainties:

 \rightarrow JES Flavour Response, JES MJB Fragmentation, JES Pile-up Rho Topology: χ^2 reduction by up to 51 units (8 TeV)

→ Scale variations, alternative scale choice, non-perturbative correction: χ^2 reduction by up to 87 units (8 TeV) – more work needed on the correlations of theory uncertainties

→ Splitting both the experimental and theoretical uncertainties: χ^2 reduction by up to 96 units (8 TeV); 58 units (13 TeV)

 \rightarrow Possible (extra) motivation for including scale uncertainties in PDF fits - in progress

Note: there is also an uncertainty on the phase-space dependence for the size of 2-point systematics \rightarrow *may explain part of the observed tension*

Limits on New Physics using unfolded distributions

 \rightarrow Explore BSM physics directly at particle level

Contact Interaction Model (CI) New force mediated by heavy particle

20

10

30

40

50

60

70

Backup

80 χ²

 \rightarrow Full frequentist analysis (CLs), with generalized χ^2 as test statistic

- \rightarrow Accounts for correlations and asymmetries of uncertainties (stat. & syst.)
- \rightarrow Limits similar to the ones obtained by dedicated searches

(comparing reconstructed-level data with theory predictions folded with detector effects)

B. Malaescu (CNRS)

Generic Gaussian signals: folding-based method

- \rightarrow Limits on generic Gaussian signals can be re-interpreted in terms of various signal models
- → Previously studied at reconstructed-level hadron-level preferable (limits more straightforward to use)
- \rightarrow Folding method using MC-based transfer matrix allows to factorize physics & detector effects

(Robert Hankache - PhD)

 $f_y(M^{truth}) =$ truth entries for a given model. $F'_x(M^{reco}) =$ the expected reco entries.

$$F_{y}(M^{truth}) \xrightarrow{\text{Folding}} > F_{x}(M^{reco}) = \sum_{y} f_{y} * \underbrace{E_{y}^{T} * A_{xy}/E_{x}^{R}}_{\widetilde{A}}$$

 \rightarrow For resonance width ~ resolution: differences between folding result and reconstructed-level limits of up to 20% (different interpretation)

B. Malaescu (CNRS)

HDR Defence

Backup

Conclusion

- → Interesting QCD / New Physics-related questions to address both at the energy frontier, with jets, and in precision low-energy studies employing hadronic spectra
- \rightarrow Developed several methodologies relevant for both areas
- → Potential for multiple improvements of such measurements and their phenomenological interpretation

Thank you !!!

Backup

The $(g-2)_{\mu}$: definition & experimental measurement

• Magnetic dipole moment of a charged lepton:

$$\vec{\mu} = g \frac{e}{2m} \vec{s}$$

• "anomaly" = deviation w.r.t. Dirac's prediction: $a = \frac{g-2}{2}$

- Experimental "ingredients" to measure a_{ij} :
- \rightarrow Polarised muons from pion decays (parity violation)

\rightarrow "Anomalous frequency"

(difference between spin precession and cyclotron frequency) proportional to a_{μ} for the "magic γ "

$$\vec{\omega}_a = \frac{e}{m_\mu c} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} \right] \approx \frac{e}{m_\mu c} a_\mu \vec{B}$$

 \rightarrow Parity violation in muon decays

(electron emitted in the direction opposite to the muon spin)

 $\mu_{\text{polarised}}^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$

B. Malaescu (CNRS)

From BNL to Fermilab

BNL \rightarrow 1 month long trip for the g-2 storage ring

 \rightarrow Fermilab July 26, 2013 This is NOT an UFO !!!

 $a_{\mu}^{Exp}(BNL)$: (11 659 208.9 ±6.3) 10⁻¹⁰ $a_{\mu}^{Exp}(Fermilab runs 1-3 + BNL)$: (11 659 205.9 ± 2.2) 10⁻¹⁰ (0.19 ppm) \rightarrow One of the most precise quantities ever measured - Expectation for final publication: another factor 2 improvement for the statistical precision

B. Malaescu (CNRS)

The $(g-2)_{\mu}$ experiment

HDR Defence

 $a_{\mu}^{Exp}(BNL)$: (11 659 208.9 ±6.3) 10⁻¹⁰

 \rightarrow Expected uncertainty reduction by a factor 4 with the experiment at Fermilab

- improved apparatus and enhanced statistics: more intense (x20) and pure muon beam; B-field mapped every 3 days with special trolley with probes pulled through beampipe (homogeneity ~ ppm); tracking system for electron detectors etc.

- 1st publication: similar precision & good agreement with BNL (7th of April 2021) PRL 126, 141801 (2021)

 $a_{\mu_{E}}^{\text{Exp}}(\text{Fermilab}): (11\ 659\ 204.0\ \pm 5.1\ \pm 1.8)\ 10^{-10} \rightarrow 6\% \text{ of total data}$

 a_{μ}^{Exp} (Fermilab + BNL): (11 659 206.1 ± 4.1) 10⁻¹⁰ (0.35 ppm)

- 2nd publication: uncertainty reduction by a factor ~2 (10th of August 2023) PRL 131, 161802 (2023) (+Run 2 & 3 data) a_{μ}^{Exp} (Fermilab): (11 659 205.5 ±2.4) 10⁻¹⁰ (0.20 ppm) a_{μ}^{Exp} (Fermilab + BNL): (11 659 205.9 ± 2.2) 10⁻¹⁰ (0.19 ppm)

 \rightarrow One of the most precise quantities ever measured

- Expectation for final publication: another factor 2 improvement for the statistical precision

 \rightarrow Initiative for a measurement using slow muons (KEK, Japan)

B. Malaescu (CNRS)

Precision of the $(g-2)_{u}$ experiments

CERN Courier March-April '25

Lepton Magnetic Anomaly: from Dirac to QED

- Magnetic dipole moment of a charged lepton: $\vec{\mu} = g \frac{e}{2m} \vec{s}$ Dirac (1928) $g_e=2$ $a_e=0$
- "anomaly" = deviation w.r.t. Dirac's prediction: $a = \frac{g-2}{2}$

anomaly discovered: Kusch-Foley (1948) $a_e^{=} (1.19 \pm 0.05) 10^{-3}$

and explained by O(α) QED contribution: Schwinger (1948) $a_e = \alpha/2\pi = 1.16 \ 10^{-3}$

first triumph of QED

 \Rightarrow a_e sensitive to quantum fluctuations of fields

More Quantum Fluctuations

$$a = a^{\text{QED}} + a^{\text{had}} + a^{\text{weak}} + ? a^{\text{new physics}} ?$$
typical contributions:
QED up to O(α^5) (Kinoshita et al.)
Hadrons vacuum polarization
Iight-by-light (dispersive & lattice QCD)
 π^0, η, η'
 q_1
 q_2
new physics at high mass scale
 m^0, η, η'
 q_1
 q_2
 m^0, η, η'
 q_2
 m^0, η, η'
 q_1
 q_2
 m^0, η, η'
 q_1
 q_2
 m^0, η, η'
 q_2
 m^0, η, η'
 q_1
 q_2
 m^0, η, η'
 q_3
 q_2
 m^0, η, η'
 q_3
 q_4
 m^0, η, η'
 q_5
 m^0, η, η'
 m^0, η'

B. Malaescu (CNRS)

HDR Defence

?

Theory initiative white paper executive summary & new results

Contribution	Section	Equation	Value $\times 10^{11}$	References
Experiment (E821)		Eq. (8.13)	116 592 089(63)	Ref. [1]
HVP LO (e^+e^-)	Sec. 2.3.7	Eq. (2.33)	6931(40)	Refs. [2–7]
HVP NLO (e^+e^-)	Sec. 2.3.8	Eq. (2.34)	-98.3(7)	Ref. [7]
HVP NNLO (e^+e^-)	Sec. 2.3.8	Eq. (2.35)	12.4(1)	Ref. [8]
HVP LO (lattice, <i>udsc</i>)	Sec. 3.5.1	Eq. (3.49)	7116(184)	Refs. [9–17]
HLbL (phenomenology)	Sec. 4.9.4	Eq. (4.92)	92(19)	Refs. [18–30]
HLbL NLO (phenomenology)	Sec. 4.8	Eq. (4.91)	2(1)	Ref. [31]
HLbL (lattice, <i>uds</i>)	Sec. 5.7	Eq. (5.49)	79(35)	Ref. [32]
HLbL (phenomenology + lattice)	Sec. 8	Eq. (8.10)	90(17)	Refs. [18-30, 32]
QED	Sec. 6.5	Eq. (6.30)	116 584 718.931(104)	Refs. [33, 34]
Electroweak	Sec. 7.4	Eq. (7.16)	153.6(1.0)	Refs. [35, 36]
HVP $(e^+e^-, LO + NLO + NNLO)$	Sec. 8	Eq. (8.5)	6845(40)	Refs. [2–8]
HLbL (phenomenology + lattice + NLO)	Sec. 8	Eq. (8.11)	92(18)	Refs. [18–32]
Total SM Value	Sec. 8	Eq. (8.12)	116 591 810(43)	Refs. [2-8, 18-24, 31-36]
Difference: $\Delta a_{\mu} := a_{\mu}^{\exp} - a_{\mu}^{SM}$	Sec. 8	Eq. (8.14)	279(76)	

 \rightarrow Dominant uncertainty: HVP LO \rightarrow Merging of model independent results: DHMZ and KNT (and CHHKS for $\pi^+\pi^-$ & $\pi^+\pi^-\pi^0$) Central value from simple average; BABAR-KLOE tension & correlations between channels from DHMZ; Max(DHMZ & KNT uncertainties) in each channel

 \rightarrow HLbL also has an important uncertainty

 \rightarrow Lattice QCD (+QED) results become more and more interesting; *Precision of BMW20 (to be cross-checked* by other lattice groups) became *similar to the one of dispersive approaches; Good agreement* using Euclidean time windows (related to HVP with suppression of very low and high energies) for which various groups achieved similar precision; *If BMW20 result is fully confirmed, the difference w.r.t. dispersive results* to be understood.

 \rightarrow A tension between the BNL measurement and the reference SM prediction: ~ 3.7 σ (~ 4.2 σ including FNAL)

 \rightarrow Tension significantly smaller when using BMW20 for the LO HVP

Status of a before/with 1st Fermilab result

statistics-dominated measurement; prediction uncertainty limited by non-Gaussian systematic effects

- → Nevertheless, large discrepancy between measurement and reference SM prediction (to be significantly improved in view of the forthcoming updates of the Fermilab measurement)
- → Tension significantly smaller when using BMW20 for the LO HVP (TBC by other lattice groups), *not* incompatible with the EW fit (*see below*)
- B. Malaescu (CNRS)

The ISR method for the $e^+e^- \rightarrow \pi^+\pi^-$ channel at BaBar

- *High energy ISR photon (E* $^*_{v}$ >3 *GeV) detected at large angle*, back-to-back to hadrons \rightarrow defines $\sqrt{s'}$ and provides strong background rejection $\ln(\chi^2_{FSR}+1)$ \rightarrow high acceptance, large boost to hadrons (start @ threshold; easier PID)
- Final state can be hadronic or leptonic (QED)
 - $\rightarrow \mu^+ \mu^- \gamma_{ISR}(\gamma_{FSR}), \pi^+ \pi^- \gamma_{ISR}(\gamma_{FSR})$ and $K^+ K^- \gamma_{ISR}(\gamma_{FSR})$ measured simultaneously $\rightarrow \mu^+ \mu^- \gamma(\gamma)$ used for ISR luminosity: add. ISR almost cancels for $\pi \pi \gamma(\gamma) / \mu \mu \gamma(\gamma)$
- *Kinematic fit* including ISR photon (+ additional ISR/FSR) \rightarrow removes multihadronic background \rightarrow improves mass resolution (a few MeV)
- Data/MC corrections for efficiencies and acceptance •
- Continuous measurement from threshold to 3-5 GeV

 \rightarrow reduced systematic uncertainties compared to multiple data sets with different colliders and detectors

B. Malaescu (CNRS)

HDR Defence

 $\gamma \pi^+ \pi^-$ (data)

Back

Impact of higher order photon emissions studied with fast simulation

M_{trk} : common track mass of the two charged particles, computed under the LO assumption

2312.02053

 \rightarrow Sensitivity of the KLOE selection to additional 'NLO' photon emissions (E > 5 MeV) in the same/opposite hemispheres w.r.t. the hard ISR photon Back

B. Malaescu (CNRS)

Impact of higher order photon emissions studied with fast simulation

2312.02053

 M_{trk} : common track mass of the two charged particles, computed under the LO assumption

 \rightarrow Sensitivity of the KLOE selection to additional 'NLO' photon emissions (E > 10 MeV) in the same/opposite hemispheres w.r.t. the hard ISR photon

B. Malaescu (CNRS)

Impact of higher order photon emissions studied with fast simulation

2312.02053

→ The angular separation between FSR and LA ISR events is pronounced at high CM energy (BABAR), still visible at intermediate CM energy (BESIII), and vanishes at low CM energy (KLOE)

The BaBar ISR program for differential hadronic Xsec measurements

→ Large effort invested from many groups (Frascati, Mainz, Novosibirsk, Orsay - Paris, ...)

 \rightarrow Developed *innovative methods* allowing to obtain a large number of *robust and precise measurements*

Back

Combination for the $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ channel

New data for the $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ channel

<u>2110.00520</u>

- \rightarrow Unfolded measurement (0.62-3.5 GeV) to correct for detector resolution
- \rightarrow ISR lumi' derived from total luminosity base on Bhabha (and di-muon) events

B. Malaescu (CNRS)

 $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-, e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

 \rightarrow Essentially normalization differences w.r.t. τ data: *cross-checks very desirable*

Combination for the $e^+e^- \rightarrow K^+K^-$ channel

B. Malaescu (CNRS)
Combination for the $e^+e^- \rightarrow KK\pi$ and $KK2\pi$ channels

HDR Defence

Examples of ~new high-multiplicity measurements

HDR Defence

Contributions from the 1.8 - 3.7 GeV region

 \rightarrow Contribution evaluated from pQCD (4 loops) + O(α_s^2) quark mass corrections

- \rightarrow Uncertainties: α_{s} , truncation of perturbative series, CIPT/FOPT, m
- \rightarrow 1.8-2.0 GeV: 7.65±0.31(data excl.); 8.30±0.09(QCD); added syst. 0.65 [10⁻¹⁰]
- \rightarrow 2.0-3.7 GeV: 25.82±0.61(data); 25.15 ± 0.19(QCD); agreement within 1 σ
- \rightarrow BES III results to be included: ~tension with pQCD and with KEDR 16 (*next slide*)

Comparison of inclusive measurements with pQCD

<u>2112.11728</u>

 \rightarrow BES III results to be included: ~tension with pQCD and with KEDR 16

 \rightarrow Another example of "uncertainties on the uncertainties" / systematic effects to be understood at the level of precision that is claimed

Contributions from the charm resonance region

Comparison of SND measurement with BABAR and KLOE

HDR Defence

Combine cross section data: goal and requirements

- \rightarrow Goal: combine experimental spectra with arbitrary point spacing / binning
- \rightarrow Requirements:
- Properly propagate uncertainties and correlations
- *Between measurements (data points/bins) of a given experiment* (covariance matrices and/or detailed split of uncertainties in sub-components)
- *Between experiments* (common systematic uncertainties, e.g. VP) based on detailed information provided in publications
- *Between different channels* motivated by understanding of the meaning of systematic uncertainties and identifying the common ones
- BABAR luminosity (ISR or BhaBha), efficiencies (photon, Ks, Kl, modeling); BABAR radiative corrections; $4\pi 2\pi^0 - \eta\omega$ CMD2 $\eta\gamma - \pi^0\gamma$; CMD2/3 luminosity; SND luminosity; FSR; hadronic VP (old experiments)

(1st motivation for using DHMZ uncertainties as "baseline" in the g-2 TI White Paper)

- Minimize biases
- Optimize g-2 integral uncertainty

(without overestimating the precision with which the uncertainties of the measurements are known)

Back

Combination procedure implemented in HVPTools software

For each final bin:

- \rightarrow Compute an average value for each measurement and its uncertainty
- \rightarrow Compute correlation matrix between experiments
- \rightarrow Minimize χ^2 and get average coefficients (weights)
- \rightarrow Compute average between experiments and its uncertainty

Evaluation of integrals and propagation of uncertainties:

- → Integral(s) evaluated for nominal result and for each set of toy pseudo-experiments; uncertainty of integrals from RMS of results for all toys
- → The pseudo-experiments also used to derive (statistical & systematic) covariance matrices of combined cross sections → Integral evaluation
- \rightarrow Uncertainties also propagated through $\pm 1\sigma$ shifts of each uncertainty:
 - allows to account for correlations between different channels (for integrals and spectra)
- \rightarrow Checked consistency between the different approaches

Combination procedure: weights of various measurements

For each final bin:

 \rightarrow Minimize χ^2 and get average coefficients

<u>Note</u>: average weights must account for bin sizes / point spacing of measurements (do not over-estimate the weight of experiments with large bins)

- → Weights in fine bins evaluated using a common (large) binning for measurements + interpolation
- \rightarrow Compare the precisions on the same footing

 \rightarrow Bins used by KLOE larger than the ones by BABAR in ρ - ω interference region (factor ~3)

→ Average dominated by BaBar, CMD3, KLOE, SND20 BaBar covering full range

Back

Combination procedure: compatibility between measurements

For each final bin:

 $\rightarrow \chi^2$ /ndof: test locally the level of agreement between input measurements, *taking into account correlations* \rightarrow Scale uncertainties in bins with χ^2 /ndof > 1 (PDG): *locally* conservative; Adopted by KNT since '17

 \rightarrow Tension between measurements, especially between KLOE & CMD3, which provide the smallest / largest cross-sections in the ρ region:

Indication of underestimated uncertainties

Motivates conservative uncertainty treatment

in combination fit (evaluation of weights / fits based on analyticity & unitarity to constrain uncertainties at low $\sqrt{s} - \underline{below}$)

 \rightarrow Observed (systematic) tension between measurements, beyond the local χ^2 /ndof rescaling

 \rightarrow (Since 2019) Included extra (dominant) uncertainty: 1/2 difference between integrals w/o either BABAR or KLOE (2nd motivation for using DHMZ uncertainties as "baseline" in the TI WP)

Extra uncertainty started to be adopted in other studies (2205.12963)

However, tensions are larger now and we need to understand their source!

Two panel TI discussions with 49 questions addressed to CMD3 did not allow to identify any major problem. CMD2 / CMD3 tension still open question!

Combination for the $e^+e^- \rightarrow \pi^+\pi^-$ channel (DHMZ '19)

0.8

√s [GeV]

√s [GeV]

More on the combination for the $e^+e^- \rightarrow \pi^+\pi^-$ channel (DHMZ '19)

Other experiments not yet precise enough to discriminate

(see however update from SND: ~significant tension with KLOE above 720 MeV)

Combining the $e^+e^- \rightarrow \pi^+\pi^-$ data: weights and tension (DHMZ '19)

Improving a₁₁ through fits for the $e^+e^- \rightarrow \pi^+\pi^-$ channel (*Since 2019*)

 \rightarrow Fit bare form-factor using 6 param. model based on *analyticity* and *unitarity*

$$\begin{split} |F_{\pi}^{0}|^{2} &= |R(s) \times J(s)|^{2} \\ R(s) &= 1 + \alpha_{V}s + \frac{\kappa s}{m_{\omega}^{2} - s - im_{\omega}\Gamma_{\omega}} \quad (1611.09359, \text{C. Hanhart et al.}) \\ J(s) &= e^{1 - \frac{\delta_{1}(s_{0})}{\pi}} \left(1 - \frac{s}{s_{0}}\right)^{\left[1 - \frac{\delta_{1}(s_{0})}{\pi}\right]\frac{s_{0}}{s}} \left(1 - \frac{s}{s_{0}}\right)^{-1} e^{\frac{s}{\pi}\int_{4m_{\pi}^{2}}^{s_{0}} dt \frac{\delta_{1}(t)}{t(t-s)}} \\ \text{Omnès integral} \end{split}$$

(hep-ph/0402285, F.J. Yndurain et al.)

$$\cot \delta_{1}(s) = \frac{\sqrt{s}}{2k^{3}} \left(m_{\rho}^{2} - s\right) \left[\frac{2m_{\pi}^{3}}{m_{\rho}^{2}\sqrt{s}} + B_{0} + B_{1}\omega(s)\right]$$

$$k = \frac{\sqrt{s - 4m_{\pi}^{2}}}{2}$$

$$\omega(s) = \frac{\sqrt{s} - \sqrt{s_{0} - s}}{\sqrt{s} + \sqrt{s_{0} - s}} \qquad \sqrt{s_{0}} = 1.05 \text{ GeV}$$
(1102.2183, F.J. Yndurain et al.)

→ Conservative χ^2 (diagonal matrix) & local rescaling of input uncertainties → Full propagation of uncertainties & correlations using pseudo-experiments

<u>Back</u>

DHMZ - 1908.00921

Fit parameters, uncertainties and correlations $e^+e^- \rightarrow \pi^+\pi^-$

	$lpha_V$	$\kappa[10^{-4}]$	B_0	B_1	$m_{\rho} \; [\text{MeV}]$	$m_{\omega} [\text{MeV}]$
$\overline{lpha_V}$	0.133 ± 0.020	0.52	-0.45	-0.97	0.90	-0.25
$\kappa[10^{-4}]$		21.6 ± 0.5	-0.33	-0.57	0.64	-0.08
B_0			1.040 ± 0.003	0.40	-0.40	0.29
B_1				-0.13 ± 0.11	-0.96	0.20
$m_{\rho} [\text{MeV}]$					774.5 ± 0.8	-0.17
$m_{\omega} [{ m MeV}]$						782.0 ± 0.1

 $\rightarrow \kappa$ corresponds to a Br ($\omega \rightarrow \pi^+\pi^-$) of (2.09 ± 0.09) $\cdot 10^{-2}$, in agreement with the result extracted from the fit of arXiv:1810.00007, (1.95 ± 0.08) $\cdot 10^{-2}$. Both values disagree with the PDG average (1.51 ± 0.12) $\cdot 10^{-2}$, dominated by the result of arXiv:1611.09359 which uses fits to essentially the same data.

→ The fitted ω mass is found to be lower than the PDG average obtained from 3π decays by $(0.65 \pm 0.12 \pm 0.12_{\text{PDG}})$ MeV, in agreement with previous fits of the $\rho - \omega$ interference in the 2π spectrum (see e.g. arXiv:1205.2228 and arXiv:1810.00007).

Fit performed up to 1 GeV: comparison with data

B. Malaescu (CNRS)

HDR Defence

Fit performed up to 1 GeV, Result used up to 0.6 GeV

√s range	a _µ ^{had} [10 ⁻¹⁰]	a _µ had [10 ⁻¹⁰]
[GeV]	Fit	Data Integration
0.3 - 0.6	$109.80 \pm 0.37_{exp} \pm 0.36_{para^*}$	$109.6 \pm 1.0_{exp}$

- \rightarrow Use fit only below 0.6 GeV for a_u integral:
 - where data is less precise and scarce
 - less impacted by potential uncertainties of inelastic effects

 $\rightarrow \text{The difference } 0.2 \pm 0.9$ (72% correlation accounted for)

 \rightarrow The fit improves the precision by a factor ${\sim}2$

^(*) Parameter uncertainty corresponds to variations with/without the B_1 term in the phase shift formula and $\sqrt{s_0}$ varied from 1.05 GeV to 1.3 GeV (absolute values summed linearly), *checked to be statistically significant*

Combined results: Fit [<0.6GeV] + Data[0.6-1.8GeV]

 \rightarrow Full uncertainty propagation using the same pseudo-experiments as for the spline-based combination: 62% correlation among the two contributions

- \rightarrow The difference "All but BABAR" and "All but KLOE" = 5.6, to be compared with 1.9 uncertainty with "All data"
 - The local error inflation is not sufficient to amplify the uncertainty
 - Global tension (normalisation/shape) not previously accounted for
 - Potential underestimated uncertainty in at least one of the measurements?
 - Other measurements not precise enough to discriminate BABAR / KLOE
- \rightarrow Given the fact we do not know which dataset is problematic, we decide to:
 - Add half of the discrepancy (2.8x10⁻¹⁰) as an uncertainty (corrected local PDG inflation to avoid double counting)
 - Take ("All but BABAR" + "All but KLOE") / 2 as central value

Channel	$a_{\mu}^{\rm had, LO} \ [10^{-10}]$	$\Delta lpha_{ m had}(m_Z^2) \; [10^{-4}]$
$\pi^+\pi^-$	$507.85 \pm 0.83 \pm 3.23 \pm 0.55$	$34.50 \pm 0.06 \pm 0.20 \pm 0.04$

 \rightarrow Potential precision improvement for a_{μ} ; less important for $\Delta \alpha_{had}(m_Z^2)$, BABAR-KLOE syst. ~16% of total uncertainty

α_s extraction from the Adler function and test of the RGE

$$D(Q^2) \equiv \sum_{i,j} Q_i Q_j D_{ij}(Q^2) = 3\pi Q^2 \frac{d\Delta\alpha_{\text{had}}(Q^2)}{\alpha \, dQ^2}$$

 \rightarrow Experimental values with correlations; Theoretical predictions: perturbative + non-perturbative corrections (OPE)

 \rightarrow Using W.Av. $\alpha_{s}(M_{z})$ value ~0.118: OPE prediction in good agreement with Lattice QCD, above dispersive

 \rightarrow Fit DHMZ data: $\alpha_s^{(n_f=5)}(M_Z^2)=0.1136\pm 0.0025$

 \rightarrow Performing RGE test and evaluating its precision, with different correlation scenarios for theory uncertainties

Correlation matrix

B. Malaescu (CNRS)

Back

2302.01359

Combining the τ data in the $\pi\pi$ channel

<u>1312.1501</u>

Combination: compatibility between measurements

For each final bin:

 $\rightarrow \chi^2$ /ndof: test locally the level of agreement between input measurements, *taking into account correlations* \rightarrow Scale uncertainties in bins with χ^2 /ndof > 1 (PDG)

 \rightarrow Level of agreement significantly better than the one observed for $e^+e^- \rightarrow \pi^+\pi^-$ data

Combination: weights of various measurements

For each final bin:

 \rightarrow Minimize χ^2 and get average coefficients

Note: average weights must account for bin sizes / point spacing of measurements

(Compare the precisions on the same footing: do not over-estimate the weight of experiments with large bins) \rightarrow Weights in fine bins evaluated using a common (large) binning for measurements + interpolation

 \rightarrow weights in fine one evaluated using a common (large) of mining for measurements + interpolation \rightarrow Their determination also integrates him to him statistical & sustaination completions on moderate energy

 \rightarrow Their determination also integrates bin-to-bin statistical & systematic correlations on moderate energy ranges

 \rightarrow Shape information provided mainly by Belle (reflected by the weights from the combination of spectra)

Combining the τ data in the $\pi\pi$ channel

\rightarrow Normalisation dominated by ALEPH (directly impacting and very relevant for the integrals)

	$a_{}^{\rm had, LO}[\pi\pi, \tau]$ (10 ⁻¹⁰)			
Experiment	$2m_{\pi^{\pm}} - 0.36 \text{ GeV}$	$0.36-1.8~{ m GeV}$		
ALEPH	$9.80 \pm 0.40 \pm 0.05 \pm 0.07$	$501.2 \pm 4.5 \pm 2.7 \pm 1.9$		
CLEO	$9.65 \pm 0.42 \pm 0.17 \pm 0.07$	$504.5 \pm 5.4 \pm 8.8 \pm 1.9$		
OPAL	$11.31 \pm 0.76 \pm 0.15 \pm 0.07$	$515.6 \pm 9.9 \pm 6.9 \pm 1.9$		
Belle	$9.74 \pm 0.28 \pm 0.15 \pm 0.07$	$503.9 \pm 1.9 \pm 7.8 \pm 1.9$		
Combined	$9.82\pm 0.13\pm 0.04\pm 0.07$	$506.4 \pm 1.9 \pm 2.2 \pm 1.9$		

Table 6. The isospin-breaking-corrected $a_{\mu}^{\text{had},\text{LO}}[\pi\pi,\tau]$ (in units of 10^{-10}) from the measured mass spectrum by ALEPH, CLEO, OPAL and Belle, and the combined spectrum using the corresponding branching fraction values. The results are shown separately in two different energy ranges. The first errors are due to the shapes of the mass spectra, which also include very small contributions from the τ -mass and $|V_{ud}|$ uncertainties. The second errors originate from $B_{\pi\pi^0}$ and B_e , and the third errors are due to the isospin-breaking corrections, which are partially anti-correlated between the two energy ranges. The last row gives the evaluations using the combined spectra.

Individual measurements with the corresponding uncertainties:

ALEPH: 511.0 ± 5.3 (± 1.9 common, from IB)

CLEO: 514.2 ± 10.1

OPAL: 526.9 ± 12.3

Belle: 513.7 ± 8.0

 \rightarrow Most precise determination from ALEPH, due to most precise Br

- → Uncertainty from combined spectra (±2.9) smaller than uncertainty from weighted average of integrals (±3.8): Due to better use of the available information on the precision of the measurements (Br and mass-dependent uncertainties)
- χ^2 : 1.45/3 dof, when averaging the 4 individual integrals
- χ^2 : 1.88/3-4 dof, when comparing the 4 individual integrals with the integral of the combined spectrum
- \rightarrow Excellent agreement among the 4 measurements

Moment integrals from τ data (2 π channel) with IB corrections

 $\begin{aligned} \sigma_{e^+e^- \to \pi^+\pi^-}^{I=1} &= \frac{4\pi\alpha^2}{s} v_{1,\pi^-\pi^0\nu_\tau} \\ \text{uncertainties from combined spectrum} \quad v_{1,X^-}(s) &= \frac{m_\tau^2}{6|V_{ud}|^2} \frac{\mathcal{B}_{X^-}}{\mathcal{B}_e} \frac{1}{N_X} \frac{dN_X}{ds} \times \left(1 - \frac{s}{m_\tau^2}\right)^2 \left(1 + \frac{2s}{m_\tau^2}\right)^{-1} \frac{R_{\text{IB}}(s)}{S_{\text{EW}}} \\ &\pm 2.12 \times 10^{-10} \\ \text{uncertainties from normalisation (Be \& B\pi\pi^0)} \\ &\pm 1.9 \times 10^{-10} \end{aligned}$

uncertainties from IB uncertainties

 a_{μ} [0.36, 1.775 GeV] = (507.51 ± 3.41) × 10⁻¹⁰

uncertainties from combined spectrum, normalisation (Be & $B\pi\pi^0$) and IB uncertainties

 \rightarrow Next slides:

Display of energy dependence for IB corrections and uncertainties

$$R_{\rm IB}(s) = rac{{
m FSR}(s)}{G_{
m EM}(s)} rac{eta_0^3(s)}{eta_-^3(s)} \left|rac{F_0(s)}{F_-(s)}
ight|^2$$

 a_{μ} [0.36, 1.775 GeV] = (-6.05 ± 0) × 10⁻¹⁰ \rightarrow Corrections and uncertainties from *IB beta* ($\pi^{\pm} - \pi^{0}$ mass splitting) 0.2 0.15 $\beta_0^3(s)$ 40È $\beta^3(s)$ 30 E 0.1 20 E 6 0.05 10E 0E 0E -10È 1-0.05 -20 - (suo, -0.1E -30 E -0.15 -40-50^{E.}0.4 0.2 0.4 1.6 0.6 1.6 0.6 1.2 1.2 0.8 1.4 0.8 1.4 √s [GeV] √s [GeV]

B. Malaescu (CNRS)

a_{μ} [0.36 , 1.775 GeV] = (-5.82 ± 1.57) × 10⁻¹⁰

 \rightarrow IB EM decay corrections and uncertainties from IB EM decay + KS-GS (conservative sum of uncertainties)

\rightarrow Note:

Various models for description of ρ - ω interference in IB corrections adjusted to the same e+e- data KS-GS uncertainty, using external parameters, conservatively covers this effect

Comparison with IB-corrected τ data

$$\sigma_{e^+e^- \to \pi^+\pi^-}^{I=1} = \frac{4\pi\alpha^2}{s} v_{1,\pi^-\pi^0\nu_\tau} \qquad \qquad v_{1,X^-}(s) = \frac{m_\tau^2}{6|V_{ud}|^2} \frac{\mathcal{B}_{X^-}}{\mathcal{B}_e} \frac{1}{N_X} \frac{dN_X}{ds} \times \left(1 - \frac{s}{m_\tau^2}\right)^2 \left(1 + \frac{2s}{m_\tau^2}\right)^{-1} \frac{R_{\rm IB}(s)}{S_{\rm EW}}$$

 \rightarrow Comparing corrections used by Davier et al. with the ones by F. Jegerlehner

Comparison with IB-corrected τ data

- \rightarrow for a_{μ} , $e^+e^- \tau$ difference of 2.2 σ (Davier et al.)
- \rightarrow the ρ - γ mixing correction proposed in arXiv:1101.2872 (FJ) seems to over-estimate the e⁺e⁻ - τ difference

The new context for dispersive HVP since White Paper 2020 and Tau data

• At the time of WP 2020 $\Delta a_{\mu}^{\text{HVP LO}} (10^{-10})$ KLOE_{peak} (0.6-0.9+comb) 2.3

BABAR 3.8 BABAR – KLOE difference 9.8 (5.6 found with all-KLOE/all-BABAR)

- Now
- $\rightarrow \gamma$ - ρ mixing not justified from theoretical point of view (discussions with several TI theorists) CMD-3 4.2 result changing e+e- data landscape CMD-3 - KLOE difference 21.6

BABAR LO/NLO/NNLO study: points to a necessary revisiting of KLOE analysis

• Focusing on τ for 2π (competitive with best $e^+e^- 2\pi$) + e^+e^- for the rest (non- 2π + I=0)

data
$$1.9_{\text{spectrum}} \oplus 2.2_{\text{BR}} = 2.9$$

IB correction -14.9 ± 1.9 uncertainty x11 smaller than CMD3-KLOE \neq

 \rightarrow Motivated by the previous findings, combine τ , BABAR and CMD-3 spectra

HDR Defence

- \rightarrow Average dominated by BaBar and CMD3; BaBar and τ cover full energy range
- \rightarrow Some tension between BaBar & CMD3 in the ρ region
- \rightarrow Much larger tension (slope and shift) when comparing KLOE with the BABAR + CMD-3 + τ combination

 a_{μ} [0.3 ; 1.8 GeV] = 519.8 ±3.3 (±1.3(stat) ±3.1 (syst))

Without applying the χ^2 /ndof rescaling of uncertainties: a_u [0.3 ; 1.8 GeV] = 519.8 ±2.5 (±1.0 (stat) ±2.3 (syst))

→ Coherent with DHLMZ value (2312.02053, EPJ C) obtained from average of BaBar, CMD3 and τ integrals: 518.0 ±3.3 (after uncertainty rescaling x1.5) (Different e+e- combination to complete CMD3 energy range; Using fit of τ data to complete their integral for [Thr.;0.36 GeV]) a_{μ}^{win} [0.3 ; 1.8 GeV] = 148.5 ±1.0 (±0.4(stat) ±0.9 (syst))

Without applying the χ^2 /ndof rescaling of uncertainties: $a_{\mu}^{\text{win}} [0.3 ; 1.8 \text{ GeV}] = 148.5 \pm 0.7 (\pm 0.3 \text{ (stat)} \pm 0.6 \text{ (syst)})$

 a_{μ} [0.6; 0.9747 GeV] = 394.6 ±2.5 (±1.3 (stat) ±2.2 (syst))

Without applying the χ^2 /ndof rescaling of uncertainties: a_u [0.6 ; 0.9747 GeV] = 394.6 ±1.8 (±0.9(stat) ±1.6 (syst)) a_{μ}^{win} [0.6 ; 0.9747 GeV] = 127.4 ±0.8 (±0.4 (stat) ±0.7 (syst))

Without applying the χ^2 /ndof rescaling of uncertainties: a_{μ}^{win} [0.6 ; 0.9747 GeV] = 127.4 ±0.6 (±0.3(stat) ±0.5 (syst))

→ Still non-negligible effect of uncertainty enhancement through the local χ^2 /ndof rescaling; In addition, an extra uncertainty accounting for systematic deviations between measurements has to be added, as done for DHMZ'19 x 10⁻¹⁰
Treatment of the KLOE correlation matrices

 \rightarrow Statistical and systematic correlation matrices among the 3 measurements

Treatment of the KLOE data – eigenvector decomposition

→ Problem of negative eigenvalues for previous systematic covariance matrix solved (informed KLOE collaboration about the problem in summer 2016)

Treatment of the KLOE data – eigenvector decomposition

 \rightarrow Each normalized eigenvector ($\sigma_i^* V_i$) treated as an uncertainty fully correlated between the bins \rightarrow All these uncertainties are independent between each-other

$$C = \sum_{i=1}^{N_{bins}} \sigma_i^2 \cdot C(V_i)$$

 \rightarrow Checked exact matching with the original matrices + with all a_{μ} integrals and uncertainties published by KLOE

Treatment of the KLOE data – eigenvector decomposition

- → Eigenvectors carry the general features of the correlations:
 - long-range for systematics
 - ~short-range for statistical uncertainties + correlations between KLOE 08 & 12

Local comparison of the 3 KLOE measurements

 \rightarrow Local χ^2 /ndof test of the local compatibility between KLOE 08 & 10 & 12, taking into account the correlations: some tensions observed

→ Does not probe general trends of the difference between the measurements (e.g. slopes in the ratio)

Ratios between measurements

- \rightarrow Compute ratio between pairs of KLOE measurements
- → Full propagation of uncertainties and correlations using pseudo-experiments (agreement with analytical linear uncertainty propagation)

 \rightarrow Good agreement between KLOE 10 and KLOE 12

Ratios between measurements

B. Malaescu (CNRS)

HDR Defence

Direct comparison of the 3 KLOE measurements

 \rightarrow Quantitative comparison between the ratios and unity, taking into account correlations

KLOE 10 / KLOE 08

 χ^2 [0.35;0.85] GeV² : 79.0 / 50(DOF) p-value= 0.0056

 χ^2 [0.35;0.58] GeV² : 46.2 / 23(DOF) p-value= 0.0028

 χ^2 [0.58;0.85] GeV² : 29.7 / 27(DOF) p-value= 0.33

 χ^2 [0.64;0.85] GeV² : 20.7 / 21(DOF) p-value= 0.47

KLOE 12 / KLOE 08

 χ^2 [0.35;0.95] GeV² : 73.7 / 60(DOF) p-value= 0.11

 χ^2 [0.35;0.58] GeV² : 21.8 / 23(DOF) p-value= 0.53

 χ^2 [0.35;0.64] GeV² : 27.5 / 29(DOF) p-value= 0.55

 χ^2 [0.64;0.95] GeV² : 39.4 / 31(DOF) p-value= 0.14

Quantitative comparisons of the KLOE measurements

- \rightarrow Quantitative comparison between the ratios and unity, taking into account correlations
- \rightarrow Fitting the ratio taking into account correlations
- \rightarrow Full propagation of uncertainties and correlations 3 methods yielding consistent results: ±1 σ shifts of each uncertainty, pseudo-experiments and fit uncertainties from Minuit

Comparison with Unity: χ^2 [0.35;0.85] GeV² : 79.0 / 50(DOF) p-value= 0.0056 χ^2 [0.35;0.58] GeV² : 46.2 / 23(DOF) p-value= 0.0028 χ^2 [p0 + p1 \sqrt{s}]: 36.1 / 21(DOF) p-value= 0.02

p0: 0.745 ± 0.085 p1: 0.341 ± 0.117

- → Significant shift & slope (~2.5-3σ) at low √s, no significant shift at high √s Similar shift & slope for KLOE 12 / KLOE 08 (see below)
- \rightarrow Should motivate conservative treatment of uncertainties and correlations in combination

Direct comparison of the 3 KLOE measurements

- \rightarrow Fitting the ratio taking into account correlations
- \rightarrow Full propagation of uncertainties and correlations 3 methods yielding consistent results: ±1 σ shifts of each uncertainty, pseudo-experiments and fit uncertainties from Minuit

 $p1: 0.159 \pm 0.081$

KLOE12 / KLOE08 Total uncertainty 1.08 Statistical component 1.06 1.04 1.02 0.98 0.96 0.94 0.92 0.9 0.95√s [GeV] χ^2 [p0]: 38.4 / 30(DOF) p-value=0.14

 $p0: 1.009 \pm 0.009$

 \rightarrow Significant shift and slope (~2 σ) at low \sqrt{s} , no significant shift at high \sqrt{s}

HDR Defence

Direct comparison of the 3 KLOE measurements

→ Significant shift and slope (~2.5-3 σ) at low \sqrt{s} , no significant shift at high \sqrt{s}

Treatment of the combined KLOE data

B. Malaescu (CNRS)

HDR Defence

Combining the 3 KLOE measurements

B. Malaescu (CNRS)

HDR Defence

Comparison of / consequences for combination methods

Analysis aspect	DHMZ	KNT		
Blinding	Not necessary (No ad-hoc choices to make)	Included for upcoming update		
Binning	 Fine (≤ 1 MeV) final binning for average and integrals. Large (O(100 MeV) or less) common binning @ intermediate step: compare statistics of experiments coherently for deriving weights in fine bins. 	Re-bin data into "clusters". Scans over cluster configurations for optimisation.		
Closure test	Using model for spectrum: negligible bias. (since 2009)	Not performed		
Additional constraints	Analyticity constraints for 2π channel.	None		
Fitting	χ^2 minimisation with correlated uncertainties incorporated locally (in fine & large bins), for deriving weights. Full propagation of uncertainties & correlations.	χ^2 minimisation with correlated uncertainties incorporated globally.		
Integration / interpolation	Av. of quadratic splines (3 rd order polynomial), integral preservation in bins of measurements. Analyticity-based function for 2π (< 0.6 GeV).	Trapezoidal for continuum, quintic for resonances.		
Uncertainty inflation	Local χ^2 uncertainty inflation. (since 2009) Extra BABAR-KLOE systematic. (since 2019)	Local χ^2 uncertainty inflation. (adopted since 2017)		
Inter-channel correlations	Taken into account. (since 2010)	Not included.		
Missing channels	Estimated based on isospin symmetry. (since 1997 - ADH)	Adopted in subsequent updates		
→ Large DHMZ/KNT dif as well as for the shape	WP TIDHMZ19KNT19 $a_{\mu}^{\rm HVP, LO} \times 10^{10}$ 694.0(4.0)692.8(2.4)			

 \rightarrow CHS approach for 2π and 3π : Analyticity and global χ^2 fit

B. Malaescu (CNRS)

$a_{\mu}^{\pi\pi}$ contribution [0.28; 1.8] GeV – spline-based (2018)

 \rightarrow Updated result:

 $506.70 \pm 2.32 (\pm 1.01 \text{ (stat.)} \pm 2.08 \text{ (syst.)}) [10^{-10}]$

(after uncertainty enhancement by $\sim 14\%$ caused by the tension between inputs, taken into account through a local rescaling)

Total uncertainty: $5.9 (2003) \rightarrow 2.8 (2011) \rightarrow 2.6 (2017) \rightarrow 2.3 (2018)$

$a_{\mu}^{\pi\pi}$ contribution [0.28; 1.8] GeV – spline-based (2018)

 \rightarrow with KLOE-08-10-12 (KLOE-KT) used as input: 506.55 ± 2.38 [10⁻¹⁰]

(after uncertainty enhancement by 18% caused by the tension between inputs, taken into account through a local rescaling)

 \rightarrow Compensation between uncertainty reduction for KLOE-08-10-12 (KLOE-KT), inducing a change of weights in DHMZ combination, and tension enhancement

Uncertainties on uncertainties and on correlations

Topic of general interest, in other fields too <u>1908.00921(DHMZ), 2006.04822(WP Theory Initiative)</u>

Two different approaches for combining (e⁺e⁻) data

DHMZ:

- $\rightarrow \chi^2$ computed locally (in each fine bin), taking into account correlations between measurements (see previous slides)
- → Used to determine the weights on the measurements in the combination and their level of agreement
- \rightarrow Uncertainties and correlations propagated using pseudo-experiments or $\pm 1\sigma$ shifts of each uncertainty component

KNT:

 $\rightarrow \chi^2$ computed globally (for full mass range)

$$\chi_{I}^{2} = \sum_{i=1}^{N_{\text{tot}}} \sum_{j=1}^{N_{\text{tot}}} \left(R_{i}^{(m)} - \mathcal{R}_{m}^{i,I} \right) \mathbf{C}_{I}^{-1} \left(i^{(m)}, j^{(n)} \right) \left(R_{j}^{(n)} - \mathcal{R}_{n}^{j,I} \right)$$
KNT (1802.02995)

$$\chi^{2} = \sum_{i=1}^{150} \sum_{j=1}^{150} \left(\sigma^{0}_{\pi\pi(\gamma)}(i) - \bar{\sigma}^{0}_{\pi\pi(\gamma)}(m) \right) \mathbf{C}^{-1} \left(i^{(m)}, j^{(n)} \right) \left(\sigma^{0}_{\pi\pi(\gamma)}(j) - \bar{\sigma}^{0}_{\pi\pi(\gamma)}(n) \right)$$
 KLOE-KMT (1711.03085)

 \rightarrow relies on description of correlations on long ranges

 \rightarrow One of the main sources of differences for the uncertainty on a_{μ}

Evaluation of uncertainties and correlations (e⁺e⁻)

	$\sigma_{\pi\pi\gamma}$	$\sigma_{\pi\pi}^0$	F_{π}	$\Delta^{\pi\pi}a_{\mu}$	
Reconstruction Filter	negligible			e	Π
Background subtraction		Tab. 1		0.3%	Ī
Trackmass		(0.2%		Ĩ
Pion cluster ID		neg	gligibl	е	
Tracking efficiency		(0.3%		
Trigger efficiency		(0.1%		
Acceptance	Tab. 2 0		0.2%		
Unfolding	Tab. 3 negligi		negligible	Π	
L3 filter	0.1%				
\sqrt{s} dependence of H	- Tab. 4 0.2%		0.2%	Ī	
Luminosity		(0.3%		
Experimental systematics				0.6%	
FSR resummation	-		0.3	3%	
Radiator function H	-		0.5	5%	
Vacuum Polarization	-	0.1%	-	0.1%	
Theory systematics				0.6%	Π

→ Systematics *evaluated* in ~wide mass ranges with sharp transitions

	$M_{\pi\pi}^2$ range (GeV ²)	Systematic error (%)
	$0.35 \le M_{\pi\pi}^2 < 0.39$	0.6
	$0.39 \le M_{\pi\pi}^2 < 0.43$	0.5
-	$0.43 \le M_{\pi\pi}^2 < 0.45$	0.4
	$0.45 \le M_{\pi\pi}^2 < 0.49$	0.3
	$0.49 \le M_{\pi\pi}^2 < 0.51$	0.2
	$0.51 \le M_{\pi\pi}^2 < 0.64$	0.1
	$0.64 \le M_{\pi\pi}^2 < 0.95$	2

KLOE 08 (0809.3950)

KLOE 10 (1006.5313)

	$\sigma_{\pi\pi\gamma}$	$\sigma^{ m bare}_{\pi\pi}$	$ F_{\pi} ^2$	$\Delta a_{\mu}^{\pi\pi}$			
	threshold ; ρ -peak			$(0.1 - 0.85 \text{ GeV}^2)$			
Background Filter	1	0.5%; $0.1%$, D	negligible			
Background subtraction		3.4%; $0.1%$	ò	0.5%			
$f_0 + \rho \pi$ bkg.		6.5%; negl		0.4%			
$\Omega \operatorname{cut}$		1.4%; negl		0.2%			
Trackmass cut		3.0%; $0.2%$, D	0.5%			
π -e PID	1	0.3% ; negl		negligible			
Trigger		0.3%; 0.2%	, D	0.2%			
Acceptance	1	1.9%; $0.3%$, D	0.5%			
Unfolding	negl. ; 2.0%		negligible				
Tracking	0.3%						
Software Trigger (L3)	0.1%						
Luminosity	0.3%						
Experimental syst.				1.0%			
FSR treatment	-	7% ; n	egl.	0.8%			
Radiator function H	-		0.	5%			
Vacuum Polarization	-	Ref. 34	-	0.1%			
Theory syst.				0.9%			

HDR Defence

Sources	0.3-0.4	0.4-0.5	0.5-0.6	0.6-0.9	0.9-1.2	1.2-1.4	1.4-2.0	2.0-3.0
trigger/ filter	5.3	2.7	1.9	1.0	0.7	0.6	0.4	0.4
tracking	3.8	2.1	2.1	1.1	1.7	3.1	3.1	3.1
π -ID	10.1	2.5	6.2	2.4	4.2	10.1	10.1	10.1
background	3.5	4.3	5.2	1.0	3.0	7.0	12.0	50.0
acceptance	1.6	1.6	1.0	1.0	1.6	1.6	1.6	1.6
kinematic fit (χ^2)	0.9	0.9	0.3	0.3	0.9	0.9	0.9	0.9
correl $\mu\mu$ ID loss	3.0	2.0	3.0	1.3	2.0	3.0	10.0	10.0
$\pi \pi / \mu \mu$ non-cancel.	2.7	1.4	1.6	1.1	1.3	2.7	5.1	5.1
unfolding	1.0	2.7	2.7	1.0	1.3	1.0	1.0	1.0
ISR luminosity	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
sum (cross section)	13.8	8.1	10.2	5.0	6.5	13.9	19.8	52.4

BABAR (1205.2228)

→ Systematics *evaluated* in ~wide mass ranges with sharp transitions (statistics limitations when going to narrow ranges)

Combining the 3 KLOE measurements

Local combination (DHMZ)

Information propagated between mass regions, through shifts of systematics - relying on correlations, amplitudes and shapes of systematics (KLOE-KT)

Combining the 3 KLOE measurements - $a_{\mu}^{\pi\pi}$ contribution

KLOE08 a_{μ} [0.6 ; 0.9] : 368.3 ± 3.2 [10⁻¹⁰] KLOE10 a_{μ} [0.6 ; 0.9] : 365.6 ± 3.3 KLOE12 a_{μ} [0.6 ; 0.9] : 366.8 ± 2.5 → Correlation matrix:

08	10	12
----	----	----

08	1	0.70	0.35
10	0.70	1	0.19
12	0.35	0.19	1

 \rightarrow Amount of independent information provided by each measurement

→ KLOE-08-10-12(DHMZ) - $a_{\mu}[0.6; 0.9]$: 366.5 ± 2.8 (Without χ^2 rescaling: ± 2.2) → Conservative treatment of uncertainties and correlations (*not perfectly known*) in weight determination

 \rightarrow KLOE-08-10-12(KLOE-KT) - $a_{\mu}[0.6; 0.9]$ GeV : 366.9 ± 2.2 (Includes χ^2 rescaling)

 \rightarrow Assuming perfect knowledge of the correlations to minimize average uncertainty

χ^2 definitions and properties

- \rightarrow Two χ^2 definitions, with systematic uncertainties included in covariance matrix or treated as fitted "nuisance parameters"
- → Equivalent for symmetric Gaussian uncertainties (1312.3524 - ATLAS)
- → Both approaches assume the knowledge of the amplitude, shape (phase-space dependence) and correlations of systematic uncertainties

Back

Comparing lattice QCD and data-driven results in systematically improvable ways

2308.04221 (BMW & DMZ)

Guiding ideas:

- → Need *rigorous* and *realistic* treatment of uncertainties and correlations at all levels (Underestimated uncertainties do not bring scientific progress & can put studies on wrong path)
- → Caution about significance: statistics-dominated measurement; prediction uncertainty limited by non-Gaussian systematic effects
- → Studies for understanding differences between data-driven and Lattice QCD approaches need to follow similar standards as the g-2 experiment: *double-blinding*

Lattice calculations and comparisons w.r.t. dispersive

→ Lattice: employ simulations to compute electromagnetic-current two-point function

B. Malaescu (CNRS)

Lattice ↔ R-ratio comparison: *requirements*

- $C(t)=rac{1}{24\pi^2}\int_0^\infty ds\,\sqrt{s}R(s)\,e^{-|t|\sqrt{s}}$
- \rightarrow R-ratio \rightarrow lattice: "straightforward" (integrate R-ratio)
- \rightarrow Lattice \rightarrow R-ratio: inverse Laplace transform (ill-posed problem)

(Former) Status for lattice calculations:

- \rightarrow Very few HVP quantities computed on lattice with:
 - All contributions to C(t): flavors, various contractions, QED and SIB corrections
 - All limits taken: $a \rightarrow 0, L \rightarrow \infty, M_{\pi} \rightarrow M_{\pi}^{\phi}, ...$
- \rightarrow None with correlations among lattice HVP observables
- → None with uncertainties on these correlations (important for checking stability of inverse problem)

\rightarrow Developed statistical approach that:

- Provides useful information with limited lattice input
- Can be systematically improved with more lattice input
- Can (eventually) incorporate physical constraints
- Includes measure of agreement of lattice & R-ratio results with comparison hypothesis
- Accounts for all correlations in lattice and R-ratio observables ...
- ... including uncertainties on these

Lattice covariances: method

 \rightarrow Uncertainties and correlations critical for comparisons

 \rightarrow Use extension of BMW uncertainty method with stat. resampling and syst. histogram, with flat and Akaike Information Criterion (AIC) weights

 \rightarrow Applicable for observables: $\{a_j\} = \left\{a_{\mu}^{\text{LO-HVP}}, a_{\mu,\text{win}}^{\text{LO-HVP}}, \delta\left(\Delta \alpha_{\text{had}}^{(5)}\right), \dots \right\}$

 \rightarrow Build covariance matrix from quantiles of three 1D distributions $\left(a_{\mu}^{\text{LO-HVP}}, a_{\mu,\text{win}}^{\text{LO-HVP}}, a_{\mu}^{\text{LO-HVP}} + a_{\mu,\text{win}}^{\text{LO-HVP}}\right)$

 \rightarrow Separate stat. & syst. by solving (for $\lambda = 2$)

 $C_{stat} + C_{syst} = C$ $\lambda C_{stat} + C_{syst} = C_{\lambda}$

Lattice covariances: results

 $\rightarrow \delta\left(\Delta \alpha_{\text{had}}^{(5)}\right)$ largely uncorrelated with other two observables

 \rightarrow Uncertainties and correlations of $a_{\mu}^{\text{LO-HVP}}$ & $a_{\mu,\text{win}}^{\text{LO-HVP}}$ contributions (units of 10⁻¹⁰)

 \rightarrow Double peak structure due to the variation $\alpha_{\rm s}^{(n=0,3)}$ in continuum extrapolation

 \rightarrow Taken into account by considering $1\sigma \& 2\sigma$ quantiles

Uncertainties on lattice covariances

- → Uncertainties on covariance matrix could potentially compromise the inverse problem
- → Stat. error on error estimated from bootstrap on only 48 jackknife samples (sufficient for this study)
- \rightarrow Syst. error on error from:
- For: ud, s, QED, SIB connected, and disconnected
 - \rightarrow Get uncertainties from 1 or 2σ quantiles

 $\rightarrow 0$ or 100% correlations in a $\rightarrow 0$ uncertainties of $T = a_{\mu}^{\text{LO-HVP}}$ and $W = a_{\mu,\text{win}}^{\text{LO-HVP}}$, with C = T - W

$$C_{TW} = C_{TW}^{ ext{other}} + egin{bmatrix} (dW)^2 + (dC)^2 & \{0,1\} imes (dW)^2 \ \{0,1\} imes (dW)^2 & (dW)^2 \end{bmatrix}_{ ext{cont}}$$

- Similarly for c
- \rightarrow Result (in units of 10^{-20}):

$$C_{\text{lat}}^{1\sigma,0\%} = \begin{bmatrix} 30.13(4.88) & -0.05(0.03) \\ -0.05(0.03) & 1.95(0.47) \end{bmatrix} \qquad C_{\text{lat}}^{2\sigma,0\%} = \begin{bmatrix} 34.04(16.80) & 0.32(0.05) \\ 0.32(0.05) & 1.12(0.07) \end{bmatrix}$$
$$C_{\text{lat}}^{1\sigma,100\%} = \begin{bmatrix} 30.13(4.88) & 1.56(0.03) \\ 1.56(0.03) & 1.95(0.47) \end{bmatrix} \qquad C_{\text{lat}}^{2\sigma,100\%} = \begin{bmatrix} 34.04(16.80) & 1.94(0.05) \\ 1.94(0.05) & 1.12(0.07) \end{bmatrix}$$

Testing lattice

\rightarrow 1-by-1 comparison of moment integrals

Observable	lattice BMW'20	data-driven	diff.	% diff.	σ	p-value [%]
$a_{\mu}^{ m LO-HVP} imes 10^{10}$	707.5(5.5)	694.0(4.0)	13.5(6.8)	1.9(1.0)	2.0	4.7
$a_{\mu,\mathrm{win}}^{\mathrm{LO-HVP}} imes 10^{10}$	236.7(1.4)	229.2(1.4)	7.5(2.0)	3.2(0.8)	3.8	0.01
$\left[\Delta_{\rm had}^{(5)}\alpha(-10{\rm GeV}^2) - \Delta_{\rm had}^{(5)}\alpha(-1{\rm GeV}^2)\right] \times 10^4$	48.67(0.32)	48.02(0.32)	0.65(0.45)	1.3(0.9)	1.4	15.

 \rightarrow Simultaneous comparisons with correlations

$$\chi^{2}(a_{j}) = \sum_{j,k} \left[a_{j}^{\text{lat}} - a_{j} \right] \left[C_{\text{lat}}^{-1} \right]_{jk} \left[a_{k}^{\text{lat}} - a_{k} \right] + \sum_{j,k} \left[a_{j}^{\text{R}} - a_{j} \right] \left[C_{\text{R}}^{-1} \right]_{jk} \left[a_{k}^{\text{R}} - a_{k} \right]$$

$$\chi^{2}_{\text{min}} = \sum_{j,k} \left[a_{j}^{\text{lat}} - a_{j}^{\text{R}} \right] \left[(C_{\text{lat}} + C_{\text{R}})^{-1} \right]_{jk} \left[a_{k}^{\text{lat}} - a_{k}^{\text{R}} \right]$$

$$\frac{\# \text{ observ. } \chi^{2}/\text{dof} \qquad p \text{-value } [\%]}{2 \qquad 14.4/2 - 18.8/2 \qquad 0.002 - 0.017}$$

$$3 \qquad 14.4/3 - 18.8/3 \qquad 0.009 - 0.63$$

 \rightarrow Some dilution compared to $a_{\mu,\text{win}}^{\text{LO-HVP}}$ alone, but still significant tension

 \rightarrow (Taking into account the shapes of integral kernels) Differences could be explained by: a *C(t)* that is enhanced in *t* ~ [0.4, 1.5] fm, also probably for *t* \gtrsim 1.5 fm, with possible suppression for *t* \lesssim 0.4 fm

Consequences of direct lattice / dispersive moments comparison for C(t)

 \rightarrow SD:ID:LD windows

- 10%:33%:57% for $a_{\mu}^{\text{LO-HVP}}$ 70%:29%:1% for $\delta\left(\Delta \alpha_{\text{had}}^{(5)}\right)$

+ Taking into account the tensions and agreements above:

- \rightarrow Excess in C(t) for $t \sim [0.4, 1.5]$ fm
- \rightarrow Probably for $t \gtrsim 1.5$ fm

 \rightarrow Possible suppression for $t \leq 0.4$ fm (mainly based on preliminary $\delta(\Delta \alpha_{had}^{(5)})$)

B. Malaescu (CNRS)

HDR Defence

Testing R-ratio: methodology

 \rightarrow Chop a_j^{R} into contributions $a_{j,b}^{\text{R}}$ from same \sqrt{s} -intervals I_b for all j:

$$a_j^{ ext{R}} = \sum_b a_{j,b}^{ ext{R}} \ a_j^{ ext{lat}} = \sum_b \gamma_b \cdot a_{j,b}^{ ext{R}}$$

b

 \rightarrow To accommodate lattice results a_j^{lat} , allow common rescaling of $a_{j,b}^{\text{R}}$, a_j^{I} for all *j*, in certain I_b :

- Simplest interpretation: R-ratio rescaled in I_b
- However, constrains shape of R-ratio modification in limited way: physical deformation may be allowed

 \rightarrow If $N_j \ge N_b$, system (over-)constrained: solved here for one γ via weighted average and/or χ^2 minimization, while avoiding too strong assumptions about the knowledge of uncertainties and correlations

$$egin{aligned} a_j^{ ext{lat}} &= \sum\limits_{b \in A} \gamma \cdot a_{j,b}^{ ext{R}} + \sum\limits_{b \in B} a_{j,b}^{ ext{R}} & o \gamma = rac{a_j^{ ext{lat}} - \sum\limits_{b \in B} a_{j,b}^{ ext{R}}}{\sum\limits_{b \in A} a_{j,b}^{ ext{R}}} &\equiv ilde{\gamma}_j \,; \ \chi^2(\gamma) &= \sum\limits_{j,k} ig[\gamma - ilde{\gamma}_j ig] ig[ig(C_{ ext{lat}}^{ ilde{\gamma}} + C_{ ext{R}}^{ ilde{\gamma}} ig)^{-1} ig]_{jk} [\gamma - ilde{\gamma}_k] \ \chi^2(\gamma) &= \sum\limits_{j,k} ig[a_j^{ ext{lat}} - \sum\limits_{b \in A} \gamma \cdot a_{jb} - \sum\limits_{b \in B} a_{jb} ig] ig[C_{ ext{lat}}^{-1} ig]_{jk} igg[a_k^{ ext{lat}} - \sum\limits_{c \in A} \gamma \cdot a_{kc} - \sum\limits_{c \in B} a_{kc} ig] \ &+ \sum\limits_{(jb),(kc)} ig[a_{jb}^{ ext{R}} - a_{jb} ig] ig[C_{ ext{R}}^{-1} ig]_{(jb)(kc)} ig[a_{kc}^{ ext{R}} - a_{kc} ig] \end{aligned}$$

 \rightarrow Somewhat different interpretation, still compatible results

B. Malaescu (CNRS)

Sensitivity to the lattice statistical uncertainties on covariance matrix

 \rightarrow Employ 2nd order sampling (bootstraps on jackknife samples) to build distributions for the quantities of interest: re-run procedure with fluctuated lattice covariance matrix

 \rightarrow Quantiles of these distributions to quantitatively evaluate the impact

 \rightarrow Normalisation factor and its uncertainty from fit precisely determined

 \rightarrow Conclusions about χ^2 and *p*-values stable within lattice statistical uncertainties on covariance matrix

Testing R-ratio: results

 \rightarrow Lattice \rightarrow R-ratio: inverse Laplace transform (ill-posed problem)

 \rightarrow New in this study: Correlations among lattice HVP observables and uncertainties on these correlations

Consider $a_j = a_{\mu}^{\text{LO-HVP}}$, $a_{\mu,\text{win}}^{\text{LO-HVP}}$ (2 observables) with $a_j = \delta\left(\Delta \alpha_{\text{had}}^{(5)}\right)$ (3 observables)

 \rightarrow Differences could be explained by enhancing measured R-ratio around (/any larger interval including) ρ -peak

- \rightarrow Outcome of the studies stable within stat. and syst. uncertainties on lattice covariance matrices
- \rightarrow Rescalings beyond the uncertainties of Re⁺e⁻ \rightarrow No problems for EW fits in case of 3-observable
 - B. Malaescu (CNRS)

HDR Defence

Testing R-ratio: summary of results

Modifications to measured R-ratio that could explain lattice results are:

- \rightarrow Possible in ρ -peak interval [0.63, 0.92] GeV for 2 & 3 observables
 - Requires rescaling of observables in that interval by ~ $(5.0 \pm 1.5)\%$
- \rightarrow Disfavored in interval below ρ -peak, [$\sqrt{s_{th}}$, 0.63 GeV]

→ Possible in $[\sqrt{s_{th}}, \sqrt{s_{max}}]$ with $\sqrt{s_{max}}$: 0.96 → 3.0GeV that include ρ -peak, for 2 & 3 observables - Rescalings ~(4±1)% → (3±1)% for $\sqrt{s_{max}}$ /

- → Possible in $[\sqrt{s_{min}}, \infty]$ with $\sqrt{s_{min}} : 0.63 \rightarrow 1.8$ GeV, for 2 observables - Rescalings ~(3±1)% → (32±9)% for $\sqrt{s_{min}}$ /
- \rightarrow Disfavored in [3.0 GeV, ∞ [, for 2 & 3 observables

 \rightarrow Adding $\delta(\Delta \alpha_{had}^{(5)})$ constraint eliminates the possibility of rescalings in $[\sqrt{s_{min}}, \infty]$ with $\sqrt{s_{min}} : 0.96 \rightarrow 3.0$ GeV that do not include ρ -peak

HDR Defence

Results - Normalisation < 0.96 GeV; lattice covariance matrix "0"

2 input moment integrals

B. Malaescu (CNRS)
Results - Normalisation > 3 GeV; lattice covariance matrix "3"

2 input moment integrals

Testing R-ratio: results

Number of observables	I_1 [GeV]	Lat.cov	$\delta_1 \equiv (\gamma_1 - 1)$	$\chi^2/ndof$	p-value	$\delta_1 \times \Delta \alpha_{\rm had}^{(5)}(M_Z^2)[I_1] \times 10^4$
2	$[\sqrt{s_{\mathrm{th}}}, 0.63]$	0	$15.9(5.3)[^{+0.9}_{-0.8}]\%$	$10.0[^{+2.4}_{-1.9}]/1$	$0.16[^{+0.31}_{-0.13}]\%$	0.80
2	$[\sqrt{s_{\mathrm{th}}}, 0.63]$	3	$17.4(5.7)[^{+0.6}_{-0.5}]\%$	$17.4[^{+2.2}_{-1.9}]/1$	$0.003[^{+0.010}_{-0.004}]\%$	0.88
2	$[0.63,\infty[$	0	$3.1(0.9)[^{+0.05}_{-0.05}]\%$	$0.9[^{+0.1}_{-0.1}]/1$	$34.6[^{+3.2}_{-3.2}]\%$	8.49
2	$[0.63,\infty[$	3	$3.2(0.9) \begin{bmatrix} +0.02 \\ -0.02 \end{bmatrix} \%$	$1.3[^{+0.1}_{-0.1}]/1$	$25.2[^{+2.8}_{-2.2}]\%$	8.71
3	$[\sqrt{s_{\rm th}}, 0.63]$	0	$16.4(5.4)[^{+0.9}_{-0.7}]\%$	$10.6[^{+2.2}_{-1.7}]/2$	$0.49[^{+0.73}_{-0.36}]\%$	0.83
3	$[\sqrt{s_{\rm th}}, 0.63]$	3	$17.9(5.8)[^{+0.6}_{-0.5}]\%$	$17.8[^{+2.1}_{-1.9}]/2$	$0.013[^{+0.038}_{-0.016}]\%$	0.91
3	$[0.63, \infty]$	0	$2.5(0.7)[^{+0.08}_{-0.07}]\%$	$3.8[^{+0.6}_{-0.5}]/2$	$14.7[^{+4.2}_{-4.0}]\%$	6.68
3	$[0.63,\infty[$	3	$2.6(0.7)[^{+0.04}_{-0.04}]\%$	$5.3[^{+0.5}_{-0.4}]/2$	$7.0[^{+1.8}_{-1.6}]\%$	6.96
2	$[\sqrt{s_{\rm th}}, 0.96]$	0	$3.7(1.1)[^{+0.1}]\%$	$2.8[^{+0.5}]/1$	9.3[+2.8]%	1.32
2	$[\sqrt{s_{\rm th}}, 0.96]$	3	$3.9(1.1)[^{+0.06}]\%$	$4.4[^{+0.4}]/1$	$3.5[^{+1.4}]\%$	1.39
2	[0.96, ∞[0	9.4(2.6)[+0.04]%	$0.09[^{+0.01}_{-0.00}]/1$	$77.0[^{+1.2}]\%$	22.59
2	$[0.96, \infty]$	3	$9.5(2.5)[^{+0.02}]\%$	$0.12[^{+0.01}]/1$	$72.9[^{+1.5}]\%$	22.75
3	[1/81] 0.96]	0	$3.8(1.1)[^{+0.09}]\%$	$3.1[^{+0.4}]/2$	$21.7[^{+4.3}]\%$	1.36
3	$\left[\sqrt{\frac{9}{8}}, 0.96\right]$	3	$40(11)^{[-0.06]\%}$	45[+0.4]/2	10.7[+3.2]%	1 42
3	$[0.96 \ \infty]$	2	$3.5(1.3)^{[+0.2]}$ %	10.9[+2.2]/2	$0.43[^{+0.54}]\%$	8 35
3	$[0.96, \infty[$	3	$3.7(1.3)^{[-0.2]}$	$14.1[^{+1.5}]/2$	0.080[+0.083]%	8 91
	[0.00, ∞[0	0.1(1.0)[-0.1]/0	$2 \circ (\pm 0.41/1)$	10 4[+3,2]07	1.40
2	$[\sqrt{s_{\rm th}}, 1.1]$	0	3.3(1.0)[-0.1]%	2.2[-0.3]/1	13.4[-2.9]%	1.40
2	$[\sqrt{s_{\mathrm{th}}}, 1.1]$	3	3.4(1.0)[-0.04]%	3.5[-0.4]/1	0.3[-1.3]%	1.46
2	$[1.1,\infty[$	0	14.1(3.9)[-0.08]%	0.1[-0.02]/1	70.9[-1.6]%	33.01
2	[1.1,∞[3	14.3(3.8)[-0.04]%	0.2[-0.02]/1	65.8[-1.4]%	33.31
3	$\left[\sqrt{s_{\mathrm{th}}}, 1.1\right]$	0	$3.4(1.0)[^{+0.01}_{-0.07}]\%$	$2.4[^{+0.3}_{-0.3}]/2$	$30.3[^{+4.5}_{-4.4}]\%$	1.44
3	$[\sqrt{s_{\mathrm{th}}}, 1.1]$	3	$3.5(1.0)[^{+0.04}_{-0.04}]\%$	$3.5[^{+0.3}_{-0.3}]/2$	$17.8[^{+3.8}_{-2.8}]\%$	1.49
3	$[1.1,\infty[$	2	$3.5(1.4)[^{+0.2}_{-0.2}]\%$	$13.0[^{+2.9}_{-2.0}]/2$	$0.15[^{+0.27}_{-0.12}]\%$	8.14
3	$[1.1,\infty[$	3	$3.7(1.4)[^{+0.1}_{-0.1}]\%$	$17.1[^{+1.9}_{-1.6}]/2$	$0.019[^{+0.027}_{-0.014}]\%$	8.70
2	$[\sqrt{s_{\mathrm{th}}}, 1.8]$	0	$2.9(0.8)[^{+0.1}_{-0.1}]\%$	$1.7[^{+0.3}_{-0.2}]/1$	$19.8[^{+3.4}_{-3.2}]\%$	1.63
2	$\left[\sqrt{s_{\mathrm{th}}}, 1.8\right]$	3	$3.1(0.9)[^{+0.03}_{-0.03}]\%$	$2.5[^{+0.2}_{-0.3}]/1$	$11.3[^{+2.4}_{-1.8}]\%$	1.69
2	$[1.8,\infty[$	0	$31.8(9.1)[^{+0.6}_{-0.6}]\%$	$1.5[^{+0.2}_{-0.2}]/1$	$21.4[^{+3.4}_{-3.2}]\%$	70.17
2	$[1.8,\infty[$	3	$32.9(9.2)[^{+0.4}_{-0.3}]\%$	$2.3[^{+0.2}_{-0.2}]/1$	$12.8[^{+2.5}_{-1.8}]\%$	72.62
3	$\left[\sqrt{s_{\mathrm{th}}}, 1.8\right]$	0	$3.0(0.9)[^{+0.05}_{-0.05}]\%$	$1.7[^{+0.2}_{-0.2}]/2$	$43.7[^{+4.9}_{-5.2}]\%$	1.65
3	$[\sqrt{s_{\mathrm{th}}}, 1.8]$	3	$3.1(0.9)[^{+0.03}_{-0.03}]\%$	$2.5[^{+0.2}_{-0.3}]/2$	$28.6[^{+4.5}_{-3.5}]\%$	1.70
3	$[1.8,\infty[$	2	$3.5(1.7)[^{+0.2}_{-0.1}]\%$	$15.1[^{+3.6}_{-2.4}]/2$	$0.052[^{+0.130}_{-0.046}]\%$	7.79
3	$[1.8,\infty[$	3	$3.7(1.7)[^{+0.08}_{-0.08}]\%$	$20.3[^{+2.4}_{-2.0}]/2$	$0.0039[^{+0.0081}_{-0.0034}]\%$	8.18
2	$[\sqrt{s_{th}}, 3.0]$	0	$2.8(0.8)[^{+0.06}]\%$	$1.5[^{+0.2}]/1$	$22.0[^{+3.4}]\%$	2.03
2	$[\sqrt{s_{\rm th}}, 3.0]$	3	$2.9(0.8)[^{+0.03}]\%$	$2.3[^{+0.2}]/1$	$13.2[^{+2.5}]\%$	2.10
2	[3.0. ∞[0	$70.5(22.4)[^{+3.6}]\%$	$7.8[^{+1.7}]/1$	$0.51[^{+0.66}_{-0.65}]\%$	143.42
2	$[3.0, \infty]$	3	$76.9(23.9)[^{+2.4}]\%$	$13.4[^{+1.6}]/1$	$0.025[^{+0.052}]\%$	156.38
3	[1/84] 3 0]	0	$2.7(0.8)^{[+0.05]\%}$	$1.7[^{+0.3}]/2$	43 1[+5.8]%	1.97
3	$[\sqrt{s_{th}}, 3.0]$	3	$2.8(0.8)^{[+0.03]}$	$2.7[^{+0.3}]/2$	$26.3[^{+4.3}]\%$	2.04
3	$[30 \ \infty]$	2	$42(24)^{[+0.09]\%}$	$16 0[^{+3.9}]/2$	$0.033[^{+0.094}]\%$	8 59
3	$[3.0, \infty[$	3	$4.3(2.4)[^{+0.06}]\%$	$21.7[^{+2.7}]/2$	$0.0020[^{+0.0049}]\%$	8.80
0	[0.62,0.02]	0	4 9(1 4)[+0.1]07	1 7[+0.3] /1	10 6[+3.4107	1.49
2	[0.05, 0.92]	0	4.0(1.4)[-0.1]	1.7[-0.2]/1	19.0[-3.2]70 11.0[+2.4]07	1.42
2		0	4.9(1.4)[-0.05]70	2.0[-0.3]/1	$11.2[-1.8]^{70}$	1.47
2	$[\sqrt{s_{\rm th}}, 0.03] \cup [0.92, \infty]$	0	0.2(1.8)[-0.1]%	1.0[-0.2]/1	20.4[-3.2]%	15.33
2	$[\sqrt{s_{\rm th}}, 0.03] \cup [0.92, \infty]$	3	0.0(1.8)[-0.07]%	$\frac{2.4[-0.2]/1}{1.0[\pm 0.2]/2}$	11.9[-1.8]%	10.88
3	[0.63, 0.92]	0	4.9(1.4)[-0.08]%	1.8[-0.2]/2	40.2[-4.1]%	1.45
3	[0.03, 0.92]	3	0.0(1.4)[-0.05]%	2.0[-0.2]/2	27.9[-3.1]%	1.00
3	$[\sqrt{s_{\rm th}}, 0.63] \cup [0.92, \infty]$	0	3.4(1.1)[-0.1]%	9.0[-1.3]/2	1.1[-0.7]%	8.30
3	$[\sqrt{s_{\rm th}}, 0.63] \cup [0.92, \infty]$	3	3.6(1.1)[-0.08]%	12.4[-1.1]/2	0.21[-0.12]%	8.80

B. Malaescu (CNRS)

HDR Defence

Considering more observables in the data-driven approach

→ Enhancement of available information limited by the (anti-)correlations among the moment integrals

Moment integral								Cor	relatio	n coef	ficients	5						
$\Delta lpha_{ m had}^{(5)}(-10~{ m GeV}^2)$	1																	
$\Delta lpha_{ m had}^{(5)}(-9~{ m GeV^2})$	0.999	1																
$\Delta lpha_{ m had}^{(5)}(-8~{ m GeV}^2)$	0.999	0.999	1															
$\Delta lpha_{ m had}^{(5)}(-7~{ m GeV^2})$	0.996	0.998	0.999	1														
$\Delta lpha_{ m had}^{(5)}(-6~{ m GeV^2})$	0.993	0.995	0.998	0.999	1													
$\Delta lpha_{ m had}^{(5)}(-5~{ m GeV^2})$	0.986	0.990	0.994	0.997	0.999	1												
$\Delta lpha_{ m had}^{(5)}(-4~{ m GeV^2})$	0.976	0.981	0.986	0.991	0.995	0.999	1											
$\Delta lpha_{ m had}^{(5)}(-3~{ m GeV^2})$	0.960	0.966	0.973	0.980	0.986	0.993	0.998	1										
$\Delta lpha_{ m had}^{(5)}(-2~{ m GeV^2})$	0.931	0.939	0.948	0.957	0.967	0.977	0.987	0.996	1									
$\Delta lpha_{ m had}^{(5)}(-1~{ m GeV^2})$	0.874	0.885	0.896	0.909	0.923	0.938	0.955	0.973	0.990	1								
$a_{\mu,\mathrm{win}}^{\mathrm{LO-HVP}}$ $[0,0.1]~\mathrm{fm}$	0.806	0.791	0.774	0.753	0.728	0.698	0.660	0.611	0.543	0.442	1							
$a_{\mu,\text{win}}^{\text{LO-HVP}}$ [0.1, 0.4] fm	0.959	0.955	0.949	0.942	0.931	0.916	0.895	0.864	0.813	0.723	0.864	1						
$a_{\mu, \text{win}}^{\text{LO-HVP}}$ [0.4, 0.7] fm	0.876	0.887	0.899	0.912	0.926	0.940	0.954	0.966	0.972	0.958	0.428	0.786	1					
$a_{\mu,{ m win}}^{ m LO-HVP} [0.7,1]{ m fm}$	0.711	0.726	0.743	0.762	0.784	0.809	0.838	0.873	0.91	0.961	0.206	0.509	0.893	1				
$a_{\mu,{ m win}}^{ m LO-HVP}$ [1, 1.3] fm	0.604	0.619	0.636	0.656	0.678	0.705	0.738	0.778	0.831	0.901	0.123	0.365	0.775	0.973	1			
$a_{\mu,\text{win}}^{\text{LO-HVP}}$ [1.3, 1.6] fm	0.553	0.568	0.584	0.604	0.626	0.653	0.686	0.728	0.783	0.861	0.093	0.305	0.710	0.941	0.993	1		
$a_{\mu, \rm win}^{ m LO-HVP}$ [1.6, 2.6] fm	0.508	0.522	0.537	0.556	0.577	0.604	0.636	0.677	0.733	0.814	0.074	0.260	0.647	0.891	0.963	0.987	1	
$a_{\mu,\mathrm{win}}^{\mathrm{LO-HVP}}$ [2.6, 4] fm	0.419	0.431	0.445	0.461	0.479	0.502	0.530	0.567	0.617	0.694	0.052	0.197	0.523	0.753	0.840	0.885	0.944	1
$a_{\mu,{ m win}}^{ m LO-HVP}~[4,\infty[~{ m fm}]$	0.312	0.321	0.332	0.344	0.358	0.375	0.397	0.426	0.466	0.528	0.034	0.137	0.381	0.565	0.646	0.698	0.787	$0.942\ 1$

 \rightarrow Employing blinding approach in BMW - DHMZ collaboration: here sharing only uncertainties and correlations for dispersive result while pending lattice-based calculations of new moments

Considering more observables in the data-driven approach

 \rightarrow Quantify available information through the distribution of eigenvalues for covariance, correlation and normalized covariance matrices (complementary information): strong correlations yield small eigenvalues

Moment integral			Eigenv	values	
$a_{\mu,{ m win}}^{ m LO-HVP} \; [t_{ m min}, t_{ m max}]$	Total uncertainty	Covariance	Correlation	Normalized covariance \leftarrow	$ C_{\rm R} _{ij}/(a_i^{\rm R}\cdot a_j^{\rm R})$
[0, 0.1] fm	$8.18\cdot10^{-12}$	$3.12\cdot10^{-20}$	4.85	$2.04\cdot 10^{-4}$	
$[0.1, 0.4] \mathrm{fm}$	$3.86\cdot10^{-11}$	$3.52 \cdot 10^{-21}$	1.76	$8.39\cdot 10^{-5}$	
[0.4, 0.7] fm	$6.43\cdot10^{-11}$	$6.38\cdot10^{-22}$	$3.32\cdot 10^{-1}$	$1.45\cdot 10^{-5}$	
$[0.7, 1] \mathrm{fm}$	$8.00\cdot10^{-11}$	$1.53\cdot 10^{-22}$	$4.88\cdot 10^{-2}$	$2.06\cdot 10^{-6}$	
[1, 1.3] fm	$7.90\cdot10^{-11}$	$8.77\cdot 10^{-24}$	$4.27\cdot 10^{-3}$	$1.87\cdot 10^{-7}$	
[1.3, 1.6] fm	$6.32\cdot10^{-11}$	$4.64\cdot 10^{-25}$	$4.47\cdot 10^{-4}$	$1.88\cdot 10^{-8}$	
$[1.6,\infty[$ fm	$1.15\cdot 10^{-10}$	$7.89\cdot10^{-26}$	$1.51\cdot 10^{-5}$	$6.34\cdot 10^{-10}$	

Moment integral			Eigenv	values
$a_{\mu,\mathrm{win}}^{\mathrm{LO-HVP}} \; [t_{\mathrm{min}}, t_{\mathrm{max}}]$	Total uncertainty	Covariance	$\operatorname{Correlation}$	Normalized covariance
$[0, 0.1] \mathrm{fm}$	$8.18\cdot10^{-12}$	$2.76 \cdot 10^{-20}$	6.07	$2.49\cdot 10^{-4}$
$[0.1, 0.4] \mathrm{fm}$	$3.86\cdot10^{-11}$	$3.17 \cdot 10^{-21}$	1.99	$9.28\cdot 10^{-5}$
$[0.4, 0.7] \mathrm{fm}$	$6.43\cdot10^{-11}$	$5.11 \cdot 10^{-22}$	$6.86\cdot 10^{-1}$	$2.72\cdot 10^{-5}$
[0.7, 1] fm	$8.00\cdot10^{-11}$	$1.33\cdot10^{-22}$	$2.29\cdot 10^{-1}$	$9.71\cdot 10^{-6}$
[1, 1.3] fm	$7.90\cdot10^{-11}$	$1.52\cdot 10^{-23}$	$2.12\cdot 10^{-2}$	$8.76\cdot 10^{-7}$
[1.3, 1.6] fm	$6.32\cdot10^{-11}$	$1.20\cdot 10^{-24}$	$2.36\cdot 10^{-3}$	$9.89\cdot 10^{-8}$
[1.6, 2.6] fm	$9.32\cdot10^{-11}$	$2.91\cdot 10^{-25}$	$3.90\cdot 10^{-4}$	$1.59\cdot 10^{-8}$
[2.6, 4] fm	$2.01\cdot 10^{-11}$	$2.15\cdot 10^{-26}$	$3.43\cdot 10^{-5}$	$1.41\cdot 10^{-9}$
$[4,\infty[$ fm	$2.64\cdot10^{-12}$	$1.78\cdot 10^{-27}$	$5.83\cdot 10^{-7}$	$2.50\cdot10^{-11}$

 \rightarrow 2 extra moment integrals add ~1 d.o.f.

Considering more observables in the data-driven approach

			Eigenva	lues	
Moment integral	Total uncertainty	Covariance	Correlation	Normalized covariance	$e \leftarrow C_{\mathbf{R}} _{ij} / (a_i^{\mathbf{R}} \cdot a_j^{\mathbf{R}})$
$\Delta lpha_{ m had}^{(5)}(-10~{ m GeV^2})$	$4.80\cdot 10^{-5}$	$1.48\cdot 10^{-8}$	14.74	$5.21\cdot 10^{-4}$	
$\Delta lpha_{ m had}^{(5)}(-9~{ m GeV^2})$	$4.64\cdot 10^{-5}$	$2.17\cdot 10^{-10}$	3.26	$1.34\cdot 10^{-4}$	
$\Delta lpha_{ m had}^{(5)}(-8~{ m GeV^2})$	$4.48\cdot 10^{-5}$	$4.09\cdot10^{-12}$	$7.36\cdot 10^{-1}$	$2.92\cdot 10^{-5}$	
$\Delta lpha_{ m had}^{(5)}(-7~{ m GeV^2})$	$4.29\cdot 10^{-5}$	$1.94\cdot 10^{-14}$	$2.40\cdot 10^{-1}$	$1.02\cdot 10^{-5}$	
$\Delta \alpha_{\rm had}^{(5)}(-6~{ m GeV^2})$	$4.09\cdot 10^{-5}$	$2.22\cdot 10^{-16}$	$2.16\cdot 10^{-2}$	$8.90\cdot 10^{-7}$	
$\Delta \alpha_{\rm had}^{(5)}(-5~{ m GeV^2})$	$3.85\cdot 10^{-5}$	$3.40\cdot10^{-18}$	$2.45\cdot 10^{-3}$	$1.02\cdot 10^{-7}$	
$\Delta \alpha_{\rm had}^{(5)}(-4~{ m GeV}^2)$	$3.57\cdot 10^{-5}$	$1.99\cdot10^{-20}$	$4.17\cdot 10^{-4}$	$1.68\cdot 10^{-8}$	
$\Delta lpha_{ m had}^{(5)}(-3~{ m GeV^2})$	$3.23\cdot 10^{-5}$	$9.27\cdot 10^{-23}$	$3.92\cdot 10^{-5}$	$1.59\cdot 10^{-9}$	\rightarrow 10 extra moment integrals but no additional
$\Delta lpha_{ m had}^{(5)}(-2~{ m GeV^2})$	$2.78\cdot 10^{-5}$	$1.40\cdot 10^{-23}$	$2.33\cdot 10^{-6}$	$8.94\cdot10^{-11}$	
$\Delta \alpha_{\rm had}^{(5)}$ (-1 GeV ²)	$2.07\cdot 10^{-5}$	$7.03\cdot10^{-25}$	$1.15\cdot 10^{-7}$	$4.78\cdot10^{-12}$	independent d.o.f.
$a_{\mu,\mathrm{win}}^{\mathrm{LO-HVP}} \left[0,0.1 ight] \mathrm{fm}$	$8.18\cdot10^{-12}$	$1.47\cdot 10^{-25}$	$3.46\cdot10^{-10}$	$1.22\cdot 10^{-14}$	
$a_{\mu, \text{win}}^{\text{LO-HVP}}$ [0.1, 0.4] fm	$3.86\cdot 10^{-11}$	$7.96 \cdot 10^{-28}$	$3.76\cdot10^{-13}$	$1.19\cdot 10^{-17}$	
$a_{\mu, { m win}}^{ m LO-HVP} [0.4, 0.7] \; { m fm}$	$6.43\cdot10^{-11}$	$1.66 \cdot 10^{-28}$	$2.28\cdot10^{-13}$	$7.40\cdot10^{-18}$	
$a_{\mu,{ m win}}^{ m LO-HVP} [0.7,1] { m fm}$	$8.00\cdot 10^{-11}$	$4.50\cdot10^{-30}$	$9.74 \cdot 10^{-14}$	$3.10\cdot10^{-18}$	
$a_{\mu,{ m win}}^{ m LO-HVP} [1,1.3] { m fm}$	$7.90\cdot10^{-11}$	$5.25\cdot10^{-31}$	$3.07\cdot 10^{-14}$	$9.72\cdot 10^{-19}$	
$a_{\mu,\text{win}}^{\text{LO-HVP}}$ [1.3, 1.6] fm	$6.32\cdot10^{-11}$	$8.57\cdot10^{-32}$	$1.40\cdot10^{-14}$	$4.38\cdot 10^{-19}$	
$a_{\mu,\text{win}}^{\text{LO-HVP}}$ [1.6, 2.6] fm	$9.32\cdot 10^{-11}$	$-4.56 \cdot 10^{-27}$	$-2.24 \cdot 10^{-14}$	$-7.06 \cdot 10^{-19}$	
$a_{\mu, { m win}}^{ m LO-HVP} \ [2.6, 4] \ { m fm}$	$2.01\cdot 10^{-11}$	$-2.01\cdot10^{-23}$	$-3.79 \cdot 10^{-14}$	$-1.19\cdot10^{-18}$	
$a_{\mu,\mathrm{win}}^{\mathrm{LO-HVP}}$ [4, ∞ [fm	$2.64\cdot 10^{-12}$	$-1.12\cdot10^{-22}$	$-1.22 \cdot 10^{-13}$	$-3.83 \cdot 10^{-18}$	

Detailed conclusions for lattice / dispersive comparisons

- \rightarrow Presented flexible method for comparing lattice QCD and data-driven HVP results
- \rightarrow Find that discrepancies/agreements between lattice and data-driven results for $a_{\mu}^{\text{LO-HVP}}, a_{\mu,\text{win}}^{\text{LO-HVP}}, \delta\left(\Delta\alpha_{\text{had}}^{(5)}\right)$

On lattice side, result from:

- a C(t) that is enhanced in $t \sim [0.4, 1.5]$ fm
- also probably for $t \gtrsim 1.5$ fm
- with possible suppression for $t \leq 0.4$ fm (mainly based on preliminary $\delta(\Delta \alpha_{had}^{(5)})$)

On data-driven side, could be explained by:

- enhancing measured R-ratio around ρ -peak
- or in any larger interval including ρ -peak

→ Lattice and measured R-ratio correlations of uncertainties critical for drawing such conclusions

Detailed conclusions for lattice / dispersive comparisons

 \rightarrow Important to check that uncertainties on uncertainties and correlations do not spoil picture, especially for inverse problem

- checked here for lattice stat and syst uncertainties
- must do so for measured R-ratio uncertainties

 \rightarrow Also important not to share results between 2 approaches before they are final (mutual blinding)

→ With more HVP observables, many generalizations possible, also including physics-driven constraints

 \rightarrow However, limit on independent HVP observables in data-driven and lattice approaches

 \rightarrow Same methods can be used to combine determinations of lattice and data-driven results for HVP observables, once differences are understood

 \rightarrow No problems with EW fits in case of 3-observable comparisons (not shown)

Some references to related work on HVP

 \rightarrow Windows proposed in RBC/UKQCD arXiv:1801.07224

→ Discussed in context of detailed comparison in Colangelo et al arXiv:2205.12963

→ Consequences of rescaling of measured R-ratio studied in Crivellin et al arXiv:2003.04886, Keshavarzi et al arXiv:2006.12666, de Rafael arXiv:2006.13880, Malaescu et al arXiv:2008.08107

 \rightarrow Consequences of lattice $\Delta a_{\mu}^{\text{LO-HVP}}$ on $\pi^{+}\pi^{-}$ contributions to R-ratio with physical constraints in Colangelo et al arXiv:2010.07943

 \rightarrow Use of Backus-Gilbert method for reconstruction of smeared R-ratio from lattice C(t) in Hansen et al arXiv:1903.06476, Alexandrou et al arXiv:2212.08467

 \rightarrow Proposal for comparing measured R-ratio and lattice C(t) via spectral-width sumrules in Boito et al arXiv:2210.13677

... (many other references for reconstructing spectral functions from lattice correlators)

Merging dispersive and lattice HVP calculations

 \rightarrow Currently most precise prediction, based on improved lattice QCD (BMW) + data-driven inputs (DMZ) at large-t (input data in good agreement at low energy)

Back

Merging dispersive and lattice HVP calculations

2407.10913

Comparisons of lattice HVP calculations

CERN Courier March-April '25

Impact of correlations between a_{μ} and α_{OED} on the EW fit

2008.08107(BM, Matthias Schott)

See also: Crivellin et al, 2003.04886; Keshavarzi et al., 2006.12666 ;de Rafael, 2006.13880; Colangelo et al, 2010.07943

HDR Defence

Approaches considered for treating the $a_{\mu} - \alpha_{OED}$ correlations

Studied approaches probing different hypotheses concerning the possible source(s) of the a_{μ} tension(s) :

(0) Scaling factor applied to the HVP contribution from some energy range of the hadronic spectrum

 \rightarrow Approaches taking into account (*for the first time*) the full correlations between the uncertainties of the HVP contributions to a_{μ} and α_{QED} , based on input from DHMZ 19 (arXiv:1908.00921): correlations between points/bins of a measurement in a given channel, between different measurements in the same channel, between different channels; full treatment of the BABAR-KLOE tension in the $\pi^+\pi^-$ channel

Computation (Energy range)	$a_{\mu}^{\text{HVP, LO}} [10^{-10}]$	$\Delta \alpha_{\rm had} (M_Z^2) \ [10^{-4}]$	ρ
Phenomenology (Full HVP)	694.0 ± 4.0	275.3 ± 1.0	44%
Phenomenology $([Th.; 1.8 GeV])$	635.5 ± 3.9	55.4 ± 0.4	86%
Phenomenology $([Th.; 1 \text{ GeV}])$	539.8 ± 3.8	36.3 ± 0.3	99.5%
Lattice (Full HVP)BMW 20 (v1)	712.4 ± 4.5	-	-

(1) Cov. matrix of a_{μ} and α_{QED} (Pheno) described by a nuisance parameter (NP₁) impacting both quantities (used to shift a_{μ} to some "target" value - coherent shift applied to α_{QED}) and another one (NP₂) impacting only α_{QED} (used in the EW fit) Note: "target" values chosen in order to reach agreement with the BMW 20 prediction / Experimental a_{μ} (±1 σ)

Uncertainty components	$a_{\mu}^{ m HVP,\ LO}$	$\Delta lpha_{ m had}(M_Z^2)$
NP_1	$\sigma(a_{\mu}^{ m HVP, \ LO})$	$\sigma(\varDelta lpha_{ m had}(M_Z^2)) \cdot ho$
NP_2	0	$\sigma(\Delta \alpha_{\rm had}(M_Z^2)) \cdot \sqrt{1-\rho^2}$

(2) Include the HVP contribution to a_{μ} as extra parameter in the EW fit, constrained by the Pheno & BMW 20 values Note: Also accounted for the coherent impact of α_s on the HVP contribution and on the EW fit

Results: comparing the Phenomenology & BMW 20 values

$a_{\mu}^{\text{HVP, LO}}$ shift	Appro	pach 0		Approach 1	
(Energy range)	Scaling factor	$\Delta' \alpha_{\rm had}(M_Z^2)$	Shift NP_1	$\sigma'\left(\Delta\alpha_{\rm had}(M_Z^2)\right)$	$\Delta' \alpha_{\rm had}(M_Z^2)$
$a_{\mu({ m Lattice})}^{ m HVP,\ LO}-a_{\mu({ m Pheno})}^{ m HVP,\ LO}$	1.027	0.02826	4.6	$9.0 \cdot 10^{-5}$	0.02774
(Full HVP)					
$(a_{\mu({ m Lattice})}^{ m HVP, \ LO} - 1\sigma) - a_{\mu({ m Pheno})}^{ m HVP, \ LO}$	1.020	0.02808	3.5	$9.0 \cdot 10^{-5}$	0.02769
(Full HVP)					
$a_{\mu({ m Lattice})}^{ m HVP,\ LO}-a_{\mu({ m Pheno})}^{ m HVP,\ LO}$	1.029	0.02769	4.7	$9.5 \cdot 10^{-5}$	0.02768
([Th.; 1.8 GeV])					
$(a_{\mu(\text{Lattice})}^{\text{HVP, LO}} - 1\sigma) - a_{\mu(\text{Pheno})}^{\text{HVP, LO}}$	1.022	0.02765	3.5	$9.5 \cdot 10^{-5}$	0.02764
([Th.; 1.8 GeV])					
$a_{\mu({ m Lattice})}^{ m HVP,\ LO}-a_{\mu({ m Pheno})}^{ m HVP,\ LO}$	1.034	0.02765	-	-	-
([Th.; 1GeV])					
$(a_{\mu({ m Lattice})}^{ m HVP,\ LO}-1\sigma)-a_{\mu({ m Pheno})}^{ m HVP,\ LO}$	1.026	0.02762	-	-	-
([Th.; 1 GeV])					

\rightarrow Large scaling factors (w.r.t. exp. uncertainties) & significant shifts of NP₁

$a_{\mu}^{\mathrm{HVP, \ LO}}$ shift	Nominal		Approach 0		Approach	1	$Approach \ 2$		
(Energy range)	$\Delta' \alpha_{\rm had} (M_Z^2)$	χ^2/ndf	$\Delta' \alpha_{\rm had} (M_Z^2)$	χ^2/ndf	$\Delta' \alpha_{\rm had} (M_Z^2)$	χ^2/ndf	$\Delta' \alpha_{\rm had}(M)$	χ^2) χ^2/ndf	
	0.02753	18.6/16	-	-	-	-	0.02753	28.1/17	
		(p=0.29)						(p=0.04)	
$a_{\mu (\text{Lattice})}^{\text{HVP, LO}} - a_{\mu (\text{Pheno})}^{\text{HVP, LO}}$	-	-	0.02826	27.6/16	0.02774	20.3/16	-	χ^2 (BMW20-Pheno):	
(Full HVP)				(p=0.04)		(p=0.21)			
$a_{\mu \text{ (Lattice)}}^{\text{HVP, LO}} - a_{\mu \text{ (Pheno)}}^{\text{HVP, LO}}$	-	-	0.02769	19.9/16	0.02768	19.8/16	-	-	
([Th.; 1.8 GeV])				(p=0.22)		(p=0.23)			
$a_{\mu \text{ (Lattice)}}^{\text{HVP, LO}} - a_{\mu \text{ (Pheno)}}^{\text{HVP, LO}}$	-	-	0.02765	19.6/16	-	-	-	-	
$([\mathrm{Th.}; 1.0~\mathrm{GeV}])$				(p=0.24)					

\rightarrow Addressing the BMW 20 - Pheno difference for a_{μ} has little impact on the EW fit, except for the unrealistic scenario rescaling the full HVP contribution

Note: Similar conclusions for the comparison with the Experimental a₁₁ value (see next slides)

B. Malaescu (CNRS)

HDR Defence

Scaling factors and NP shifts

$a_{\mu}^{\text{HVP, LO}}$ shift	Appro	pach 0		Approach1	
(Energy range)	Scaling factor	$\Delta' \alpha_{\rm had}(M_Z^2)$	Shift NP_1	$\sigma'\left(\Delta\alpha_{\rm had}(M_Z^2)\right)$	$\Delta' \alpha_{\rm had}(M_Z^2)$
$a_{\mu (\mathrm{Lattice})}^{\mathrm{HVP, \ LO}} - a_{\mu (\mathrm{Pheno})}^{\mathrm{HVP, \ LO}}$	1.027	0.02826	4.6	$9.0 \cdot 10^{-5}$	0.02774
(Full HVP)					
$(a_{\mu({ m Lattice})}^{ m HVP,\ LO}-1\sigma)-a_{\mu({ m Pheno})}^{ m HVP,\ LO}$	1.020	0.02808	3.5	$9.0\cdot 10^{-5}$	0.02769
(Full HVP)					
$a_{\mu~({ m Lattice})}^{ m HVP,~LO} - a_{\mu~({ m Pheno})}^{ m HVP,~LO}$	1.029	0.02769	4.7	$9.5 \cdot 10^{-5}$	0.02768
([Th.; 1.8 GeV])					
$(a_{\mu({ m Lattice})}^{ m HVP,\ LO}-1\sigma)-a_{\mu({ m Pheno})}^{ m HVP,\ LO}$	1.022	0.02765	3.5	$9.5 \cdot 10^{-5}$	0.02764
([Th.; 1.8 GeV])					
$a_{\mu~({ m Lattice})}^{ m HVP,~LO} - a_{\mu~({ m Pheno})}^{ m HVP,~LO}$	1.034	0.02765	-	-	-
([Th.; 1 GeV])					
$\left(a_{\mu({ m Lattice})}^{ m HVP,\ LO}-1\sigma ight)-a_{\mu({ m Pheno})}^{ m HVP,\ LO}$	1.026	0.02762	-	-	-
([Th.; 1 GeV])					
$a_{\mu}^{ m Exp} - a_{\mu}^{ m SM~(Pheno)}$	1.037	0.02856	6.6	$9.0 \cdot 10^{-5}$	0.02782
(Full HVP)					
$(a_{\mu}^{ m Exp}-1\sigma)-a_{\mu}^{ m SM~(Pheno)}$	1.028	0.02831	5.0	$9.0 \cdot 10^{-5}$	0.02775
(Full HVP)					
$a_{\mu}^{ m Exp}-a_{\mu}^{ m SM~(Pheno)}$	1.041	0.02776	6.6	$9.5 \cdot 10^{-5}$	0.02774
([Th.; 1.8 GeV])					
$(a_{\mu}^{ m Exp}-1\sigma)-a_{\mu}^{ m SM~(Pheno)}$	1.031	0.02770	5.0	$9.5 \cdot 10^{-5}$	0.02769
([Th.; 1.8 GeV])					
$a_{\mu}^{ m Exp}-a_{\mu}^{ m SM~(Pheno)}$	1.048	0.02771	-	-	-
([Th.; 1 GeV])					
$(a_{\mu}^{\mathrm{Exp}}-1\sigma)-a_{\mu}^{\mathrm{SM}~(\mathrm{Pheno})}$	1.036	0.02766	-	-	-
([Th.; 1 GeV])					

 \rightarrow Large scaling factors (w.r.t. uncertainties) & significant shifts of NP₁

B. Malaescu (CNRS)

HDR Defence

EW fit inputs and χ^2 results

LEP/LHC/Teva	atron				
M_Z [GeV]	91.188 ± 0.002	R_c^0	0.1721 ± 0.003	M_H [GeV]	125.09 ± 0.15
$\sigma_{ m had}^0$ [nb]	41.54 ± 0.037	R_b^0	0.21629 ± 0.00066	M_W [GeV]	80.380 ± 0.013
$\Gamma_Z [{\rm GeV}]$	2.495 ± 0.002	A_c	0.67 ± 0.027	$m_t \; [\text{GeV}]$	172.9 ± 0.5
A_l (SLD)	0.1513 ± 0.00207	A_l (LEP)	0.1465 ± 0.0033	$\sin^2 heta_{ ext{eff}}^l$	0.2314 ± 0.00023
$A^l_{ m FB}$	0.0171 ± 0.001	$m_c [{ m GeV}]$	$1.27^{+0.07}_{-0.11} \text{ GeV}$	After HL-	LHC
$A^c_{ m FB}$	0.0707 ± 0.0035	$m_b [{ m GeV}]$	$4.20^{+0.17}_{-0.07} \text{ GeV}$	M_W [GeV]	80.380 ± 0.008
$A^b_{ m FB}$	0.0992 ± 0.0016	$\alpha_s(M_Z)$	0.1198 ± 0.003	$\sin^2 heta_{ ext{eff}}^l$	0.2314 ± 0.00012
R_l^0	20.767 ± 0.025	$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \ [10^{-5}]$	2760 ± 9	$m_t [{ m GeV}]$	172.9 ± 0.3

$a_{\mu}^{\mathrm{HVP, \ LO}}$ shift	Nomina	al	Approach	ı 0	Approach	1	Appro	ach 2
(Energy range)	$\Delta' \alpha_{\rm had} (M_Z^2)$	χ^2/ndf						
	0.02753	18.6/16	-	-	-	-	0.02753	28.1/17
		(p=0.29)						(p=0.04)
$a_{\mu \text{ (Lattice)}}^{\text{HVP, LO}} - a_{\mu \text{ (Pheno)}}^{\text{HVP, LO}}$	-	-	0.02826	27.6/16	0.02774	20.3/16	-	χ^2 (BMW20-Pheno): 9
(Full HVP)				(p=0.04)		(p=0.21)		
$a_{\mu \; ({ m Lattice})}^{ m HVP, \; { m LO}} - a_{\mu \; ({ m Pheno})}^{ m HVP, \; { m LO}}$	-	-	0.02769	19.9/16	0.02768	19.8/16	-	-
([Th.; 1.8 GeV])				(p=0.22)		(p=0.23)		
$a_{\mu \text{ (Lattice)}}^{\text{HVP, LO}} - a_{\mu \text{ (Pheno)}}^{\text{HVP, LO}}$	-	-	0.02765	19.6/16	-	-	-	-
([Th.; 1.0 GeV])				(p=0.24)				
$a_{\mu}^{\mathrm{Exp}} - a_{\mu}^{\mathrm{SM} (\mathrm{Pheno})}$	-	-	0.02856	33.6/16	0.02782	21.2/16	-	-
(Full HVP)				(p=0.01)		(p=0.17)		
$a_{\mu}^{\mathrm{Exp}} - a_{\mu}^{\mathrm{SM} (\mathrm{Pheno})}$	-	-	0.02776	20.6/16	0.02774	20.4/16	-	-
([Th.; 1.8 GeV])				(p=0.19)		(p=0.20)		
$a_{\mu}^{\mathrm{Exp}} - a_{\mu}^{\mathrm{SM} (\mathrm{Pheno})}$	-	-	0.02771	20.1/16	-	-	-	-
$([\mathrm{Th.}; 1.0~\mathrm{GeV}])$				(p=0.22)				

EW fit results: χ^2 scans

HDR Defence

EW fit results: parameter scans for varying $\Delta \alpha_{had} (M_Z^2)$

EW fit results: indirect determination of $\Delta \alpha_{had} (M_Z^2)$

Backup jet studies

Jet definitions

• <u>Main guidelines</u>: infrared and collinear safety

(guaranteed in data, but important for the theoretical interpretation at all orders)

- Most used algorithms:
- \rightarrow Sequential recombination, using distance between objects: anti-k_t, k_t, Cambridge/Aachen

$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{\Delta R_{ij}^2}{R^2}, \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$
$$d_{iB} = p_{ti}^{2p},$$

 \rightarrow Algorithms applicable coherently at the "truth" and reconstructed level

HDR Defence

Back

G. Salam

<u>0906.1833</u>

Jet definitions

 $p_{t}[GeV]$ anti-k, R=1 25 20 5 4 ϕ 3 2 f 4 ϕ 3 f 4 f

 \rightarrow anti-k_t jets have more circular shapes compared to k_t

ATLAS detector

Pile-up correction(s)

B. Malaescu (CNRS)

HDR Defence

Back

MC-based jet energy and mass scales

GSC & GNNC – variables & sensitivity

Calorimeter	$f_{\rm LAr,0-3}$	the $E_{\rm frac}$ measured in the 0th-3rd layer of the EM LAr calorimeter			
	$f_{\text{TILE0}-2}^*$	the E_{frac} measured in the 0th-2nd layer of the hadronic tile calorimeter			
	$f_{\rm HEC,0-3}$	the E_{frac} measured in the 0th-3rd layer of the hadronic end cap calorimeter			
	$f_{\rm FCAL, 0-2}$	the $E_{\rm frac}$ measured in the 0th-2nd layer of the forward calorimeter			
	$N_{90\%}$	The minimum number of clusters containing 90% of the jet energy.			
Jet kinematics	$p_{\rm T}^{\rm JES} *$	The jet $p_{\rm T}$ after the MCJES calibration			
	$\eta_{ m det}$	The detector η			
Tracking	w_{track}^*	the average $p_{\rm T}$ -weighted transverse distance in the η - ϕ plane			
		between the jet axis and all tracks of $p_T > 1$ GeV ghost-associated with the jet			
	$N_{\rm track}*$	the number of tracks with $p_{\rm T} > 1$ GeV ghost-associated with the jet			
	f_{charged}^*	the fraction of the jet $p_{\rm T}$ measured from ghost-associated tracks			
Muon segments	N _{segments} *	the number of muon track segments ghost-associated with the jet			
Pileup	μ	The average number of interactions per bunch crossing			
	N _{PV}	The number of reconstructed primary vertices			

Table 1: List of variables used as input to the GNNC. Variables with a * correspond to variables that are also used by the GSC.

→ Little / no dependence left for the response after having applied the corrections

GSC & GNNC – performance

 \rightarrow Improvement of the JER with the GSC and some further improvement using GNNC

- \rightarrow Work during Laura Boggia's QT, aiming to merge GNNC and the in-situ step
- \rightarrow Potential to eventually merge all the MC-based and in-situ steps

In-situ η – intercalibration calibration method

→ Central reference method / matrix method (using more combinations of central-forward bins, obtaining hence a better statistical precision) → Deriving calibration factors in bins of p_T , η

$$S(c_{1x}, \dots, c_{Nx}) = \sum_{j=2}^{N} \sum_{i=1}^{j-1} \left(\frac{1}{\Delta \langle \mathcal{R}_{ijx} \rangle} (c_{ix} \langle \mathcal{R}_{ijx} \rangle - c_{jx}) \right)^2 + X(c_{ix})$$
$$X(c_i) = \lambda \left(\frac{1}{N} \sum_{i=1}^{N} c_i - 1 \right)^2$$

$$\sum_{i=1}^{\alpha-1} \left(\left(\frac{-\langle \mathcal{R}_{i\alpha} \rangle}{\Delta^2 \langle \mathcal{R}_{i\alpha} \rangle} + \frac{\lambda}{N^2} \right) c_i \right) + \left(\sum_{i=1}^{\alpha-1} \frac{1}{\Delta^2 \langle \mathcal{R}_{i\alpha} \rangle} + \sum_{i=\alpha+1}^{N} \frac{\langle \mathcal{R}_{\alpha i} \rangle^2}{\Delta^2 \langle \mathcal{R}_{\alpha i} \rangle} + \frac{\lambda}{N^2} \right) c_\alpha + \sum_{i=\alpha+1}^{N} \left(\left(\frac{-\langle \mathcal{R}_{\alpha i} \rangle}{\Delta^2 \langle \mathcal{R}_{\alpha i} \rangle} + \frac{\lambda}{N^2} \right) c_i \right) - \frac{\lambda}{N} = 0$$

In-situ η – intercalibration calibration method

E/p method

→ Important improvement of the E/p method (Lata Panwar's PostDoc)

JER noise term

	EM	LCW	EM	LCW
	R = 0.4	R = 0.4	R = 0.6	R = 0.6
$\langle \sigma_{\rho} \rangle \ (Z \to \mu \mu, \text{data}) \ [\text{GeV}]$	1.81	3.25	1.81	3.25
$\langle \sigma_{\rho} \rangle \ (Z \to \mu \mu, \mathrm{MC}) \ [\mathrm{GeV}]$	2.09	3.72	2.09	3.72
$\langle \sigma_{\rho} \rangle \sqrt{A} \ (Z \to \mu \mu, \text{ data}) \ [\text{GeV}]$	1.28	2.30	1.92	3.46
Random cone, data [GeV]	1.52	2.61	2.42	4.19
Difference [%]	16	12	21	17
$\langle \sigma_{\rho} \rangle \sqrt{A} \ (Z \to \mu \mu, \mathrm{MC}) \ [\mathrm{GeV}]$	1.48	2.64	2.22	3.96
Random cone, MC [GeV]	1.60	2.73	2.61	4.49
Difference [%]	7.5	4.4	15	12

B. Malaescu (CNRS)

Back

Resolution measurement from dijet balance

Dijet balance

 \rightarrow MC-based subtraction of truth-level smearing \rightarrow Closure test in MC

V + jet: Evaluating the JER

 \rightarrow MC-based subtraction of truth-level smearing \rightarrow Closure test in MC

γ -jet + Z-jet + Dijets + Zero Bias JER fit ($\eta < 0.8$)

JER in-situ combination

γ -jet + Z-jet + Dijets + Zero Bias JER fit (EM JES, R=0.4, η <0.8)

- → Propagation of in-situ uncertainties with toys and $\pm 1\sigma$ shifts: good agreement between the two methods (except for two fits at large η poor constraint on S & non-Gaussian distribution)
- $\rightarrow \chi^2$ definition does not include uncertainty on N (only uncertainties on data points are included) Small (~1-2 units) changes in χ^2 value for N ± 0.632 GeV
- \rightarrow Uncertainty band not rescaled by global χ^2 /ndof (recall: local rescaling for JES)

```
In-situ uncertainties (N fixed) :

S = 0.713 \pm 0.067 \sqrt{GeV}

C = 0.030 \pm 0.003

Corr(S; C) = -0.25 (in-situ)

Zero-bias:

N = 3.325 \pm 0.632 GeV

N : 0.632; S: -0.038; C: 0.001

N : -0.632; S: 0.030; C:-0.001
```

 $\chi^{2}_{diag}/ndof = 8/35$ $\chi^{2}_{corr}/ndof = 71/35$ \rightarrow Some indication of higher order

contributions to JER function
Propagation of JER uncertainties and correlations

Dimitris Varouchas - PostDoc

• Nominal value

- Correct MC, if JERData > JERMC
- Systematic variation (for the uncertainty propagation only)
 - Smear Data, if JER_{Data} < JER_{MC}

Some challenging unfolding examples

 $\rightarrow p_T(W)$: large resolution effects for MET reconstruction & need relatively fine binning in order to discriminate among theoretical predictions

 \rightarrow Unfolding in a different context:

inverse Laplace transform to convert spacelike lattice QCD results into timelike quantities

An Iterative, Bayes-inspired Unfolding Method

$$P_{ij} = \frac{A_{ij}}{\sum_{k=1}^{n_d} A_{kj}}$$
$$\tilde{P}_{ij} = \frac{A_{ij}}{\sum_{k=1}^{n_u} A_{ik}}; u = \widetilde{P} \cdot d$$

 \rightarrow Note: \tilde{P}_{ij} depends on the shape of the truth distribution in MC

- 1^{st} unfolding, where the original transfer matrix is used
- Transfer matrix improvement (hence of the unfolding probability matrix) Reweight the truth MC distribution based on previous unfolding result.
 Improved unfolding
- 2)<u>Improved unfolding</u>
- \rightarrow Choice on number of iterations = regularization

 \rightarrow Other methods exist, like e.g. dynamical local regularization in IDS (treatment of fluctuations in each bin, at each step of the procedure)

B. Malaescu (CNRS)

HDR Defence

Data-driven closure test: motivation, procedure, example

 \rightarrow In-situ determination of the unfolding uncertainty related to the data/MC shape difference and to the regularization : - reweight true MC by smooth function: improved data/recoMC agreement

- unfold the reweighted reconstructed MC
- compare with reweighted true MC

 \rightarrow Applicable in cases without very different degenerated solutions (see eigenvalues of folding matrix, quality of the data/reweighted MC etc.). In other cases allows to learn about the ill-posedness of the problem

 \rightarrow Method introduced in arXiv:0907.3791, used in arXiv:1112.6297 etc. ... arXiv:2405.20041 (Omnifold 24-d) ...

B. Malaescu (CNRS)

HDR Defence

Choice of the phase-space

- Selection defining phase-space at "truth" level as close as possible to the reconstructed-level selection: *minimize extrapolation to reduce model dependence*
- Include over-/under-flow bins when migrations to the region of interest are relevant
 - \rightarrow These extra bins are generally not published

Iterative methods: choice of the number of iterations

- Number of iterations = regularization parameter: optimising variance / bias
- → Take into account: *systematic uncertainty related to the unfolding method (bias due to MC/data shape difference & regularization)*; impact on statistical uncertainties & correlations; constraints induced on binning choice
- Compare data and the modified reconstructed MC: see how much information is left to be propagated from the data shape to the truth MC shape

 \rightarrow bin-by-bin comparison or using a χ^2 (see e.g. arxiv:0907.3791, arXiv:2404.06204)

• Suggestion in IBU publication: compare results from consecutive steps (NIM A 362, 487 (1995)) \rightarrow risk of ~small changes between consecutive steps, while having a significant bias

Tests of the unfolding

- "Technical closure test" → same MC for the transfer matrix and input distribution (pseudo-data) expect perfect agreement between unfolding result and truth MC
- "Data-driven closure test" → allows to evaluate a systematic related to the unfolding method and the choice of regularization (see next slides)
- "Linearity test" → MC samples with various truth inputs; check linear dependence between unfolded and truth values of a quantity of interest
- "Pull test" → relevant only for unfolding methods providing an estimate of the statistical uncertainties (i.e. not from pseudo-experiments) tests their reliability

ML-based unfolding

- ML-based methods allow to enhance the dimensionality & obtain results event-by-event: enables computing secondary quantities <u>arXiv:2109.13243</u>
- IcINN: iteratively improve (reweight) MC simulation; publish unfolded distributions for each data event

arXiv:2212.08674

Comparison of Transfer Matrix- / ML-based unfolding

 \rightarrow Comparison typically performed for the full unfolded distributions

 \rightarrow New: even-by-event comparison <u>arXiv:2310.17037</u>

Comparison of Transfer Matrix- / ML-based unfolding

→ Bootstrap method implemented for IcINN, for small number of observables (GPU challenge for training):

Evaluate statistical uncertainties and correlations

arXiv:2212.08674

B. Malaescu (CNRS)

Trigger and pile-up

- Trigger prescales and pile-up treatment take into account variations in data-taking conditions
- Jet trigger efficiencies determined in-situ using unbiased samples
- Each trigger used in the region where it is fully efficient

Dijet 3D measurement - CMS

→ Contributions of various processes in different phase-space regions: sensitivity to PDFs

Inclusive jet cross sections: theory/data

→ Good data/theory agreement within uncertainties observed for most PDF sets: CT14, MMHT 2014, NNPDF 3.0, HERAPDF 2.0, ABMP16

Inclusive jet cross sections: theory/data

→ Good data/theory agreement within uncertainties observed for most PDF sets: CT14, MMHT 2014, NNPDF 3.0, HERAPDF 2.0, ABMP16

Inclusive jet cross sections: NLO/NNLO

 \rightarrow Better data/theory agreement for NNLO, when using the p_T^{jet} scale choice

Inclusive jet cross sections: NLO/NNLO

 \rightarrow Better data/theory agreement for NLO, when using the p_T^{max} scale choice

Dijet cross sections: theory/data

→ Good data/theory agreement within uncertainties observed for most PDF sets: CT14, MMHT 2014, NNPDF 3.0, HERAPDF 2.0, ABMP16

Dijet cross sections: theory/data

→ Good data/theory agreement within uncertainties observed for most PDF sets: CT14, MMHT 2014, NNPDF 3.0, HERAPDF 2.0, ABMP16

Inclusive jet cross sections at $\sqrt{s}=8$ TeV: Theory/Data

 \rightarrow Good data/theory agreement within uncertainties observed for most PDF sets

Inclusive jet cross sections at $\sqrt{s}=8$ TeV: Theory/Data

Inclusive jet cross sections at $\sqrt{s}=8$ TeV: Theory/Data

α_{s} determination in a given (p_{T} ; |y|) bin

 \rightarrow Theory prediction: $\sigma(\alpha_s)$ using NLOJET++(CT10) with NP corrections

 \rightarrow Computed for the α_s values that were used in the PDF fits: interpolation between these values and extrapolation outside the covered range

Covariance & correlation matrices - α_s - all |y| bins

 \rightarrow Using toys: both statistical and systematic uncertainties are fluctuated, taking into account correlations; $\alpha_s(\sigma_{toy})$ determined for each toy

Theoretical uncertainties & full result for α_s from inclusive jets

1) Scale uncertainty: tested (μ_r ; μ_f) \in {(1;1), (0.5;1), (2;1), (1;0.5), (1;2), (0.5;0.5), (2;2)}

2) PDF(CT10) uncertainties propagated using 26 (positive and negative) nuisance parameters

3) Uncertainty due to the PDF choice

 $\alpha_s = 0.1151 \pm 0.0001(\text{stat}) \pm 0.0047(\text{exp syst}) \pm 0.0060(\text{jet size}) \pm 0.0014(p_T \text{ range})$

- $+ 0.0044 0.0011 (scale) \pm 0.0010 (PDF e. v.) + 0.0022 0.0015 (PDF choice) \pm + 0.0009 0.0034 (NP corr.)$
- \rightarrow Good agreement with world average

 \rightarrow Largest systematic uncertainty from choice of the jet size (R)

→ Scale choice effectively different for jets with R=0.4 / R=0.6Is this well motivated for a given type of events for which we just consider various observables? (i.e. jet cross-sections with various jet sizes)

HDR Defence

1) Simple average - central |y| bin

→ In each toy make simple average (weight= $1/N_{bins}$) of the α_s values in 10 bins (45–600GeV) where the α_s scan in PDF fits "covers" well the distribution: discard few low precision bins at low and high p_T

 $\rightarrow \alpha_s = 0.1156 + 0.0067 - 0.0072$ (exp.)

2) Weighted average - central |y| bin

- \rightarrow In each toy make weighted average (weight= $1/\sigma_i^2$) of the α_s values in 10 bins (45–600GeV)
- $\rightarrow \alpha_{s} = 0.1155 + 0.0067 0.0069 \text{ (exp.)}$
- \rightarrow Small uncertainty reduction /simple average
- $\rightarrow \chi^2_{\text{diag}}/\text{dof} = 0.049 \text{ (9 dof)}$

Correlations important to evaluate fit quality

 \rightarrow Weights \in [0;1]

3) Average using χ^2 minimization - central |y| bin

 $\chi^2 = (\alpha_s - \alpha_s^{av})C^{-1}(\alpha_s - \alpha_s^{av})^T$

 \rightarrow Covariance and correlation matrices computed after symmetrization of α_s uncertainties (compensation of asymmetries in data uncertainties and non-linear effects in $\sigma(\alpha_s)$)

p_T [GeV]

3) Average using χ^2 minimization - central |y| bin

- → In each toy compute α_s average by minimizing $\chi^2 = (\alpha_s - \alpha_s^{av})C^{-1}(\alpha_s - \alpha_s^{av})^T$ → $\alpha_s = 0.1160 \pm 0.0051$ (exp.)
- $\rightarrow \chi^2_{\text{correl}}/\text{dof} = 0.39 \text{ (9 dof)}$

→ Problem in the weights: {0.019; 0.646; -0.785; 1.576; -1.262; -0.157; 0.576; 0.991; -0.116; -0.488} "Standard" problem of γ^2 in presence of strong correlations

- → Important reduction of the uncertainty/weighted av.
 χ² minimization ~ uncertainty minimization, but fully relies on the correlations of uncertainties for determining the nominal value and the final (smallest) uncertainty: ignores uncertainties on correlations ! (which do exist for any data set !)
- \rightarrow The weighted average uses correlations only in the uncertainty propagation

α_{s} from inclusive jets: weighted averages - all |y| bins

B. Malaescu (CNRS)

HDR Defence

α_s from inclusive jets: weighted average & running

 \rightarrow Weighted average (~1/ σ_i^2) for nominal result:

- avoid biases in the weights due to uncertainties on correlations
- full propagation of correlations for the evaluation of uncertainties
- → Reduction of the uncertainty for the average when including all |y| bins: small correlations of the systematic uncertainties between different |y| bins
- $\rightarrow \chi^2_{\text{ correl}}/\text{dof} = 0.54 \text{ (41 dof)}$
- \rightarrow Test of RGE for $p_T \in [45;600]GeV$
- → Shift of central value & error reduction minimizing χ^2_{correl} : (0.1165 ± 0.0033); negative weights present here too

B. Malaescu (CNRS)

HDR Defence

TEEC – α_{s} scale dependence / choice

$\langle Q \rangle ~({ m GeV})$	TEEC $\alpha_{\rm s}(Q^2)$ value (NNPDF 3.0)	
412	$0.0966 \pm 0.0014 \text{ (exp.)} \stackrel{+0.0054}{_{-0.0015}} \text{(scale)} \pm 0.0009 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$	')
437	0.0964 ± 0.0012 (exp.) $^{+0.0048}_{-0.0011}$ (scale) ± 0.0009 (PDF) ± 0.0002 (NP	")
472	0.0955 ± 0.0011 (exp.) $^{+0.0051}_{-0.0015}$ (scale) ± 0.0009 (PDF) ± 0.0001 (NP	')
522	0.0936 ± 0.0011 (exp.) $^{+0.0043}_{-0.0010}$ (scale) \pm 0.0010 (PDF) \pm 0.0001 (NP	')
604	0.0933 ± 0.0011 (exp.) $^{+0.0050}_{-0.0014}$ (scale) \pm 0.0011 (PDF) \pm 0.0003 (NP	')
810	0.0907 ± 0.0013 (exp.) $^{+0.0049}_{-0.0020}$ (scale) ± 0.0011 (PDF) ± 0.0002 (NP	')
$\langle p_{\mathrm{T3}} angle ~(\mathrm{GeV})$	$\alpha_{\rm s}(\langle p_{\rm T3} \rangle)$ value (TEEC, NNPDF 3.0)	
169	$0.1072 \pm 0.0017 \text{ (exp.)} ^{+0.0067}_{-0.0019} \text{ (scale)} \pm 0.0011 \text{ (PDF)} \pm 0.0001 \text{ (NP}$)

105	$(1012 \pm 0.0011 (exp.))_{-0.0019}$ (scale) $\pm 0.0011 (1D1) \pm 0.0001 (111)$
174	$0.1074 \pm 0.0014 \text{ (exp.)} ^{+0.0060}_{-0.0014} \text{ (scale)} \pm 0.0012 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$
179	$0.1068 \pm 0.0014 \text{ (exp.)} ^{+0.0064}_{-0.0019} \text{ (scale)} \pm 0.0012 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$
186	$0.1052 \pm 0.0014 \text{ (exp.)} ^{+0.0054}_{-0.0013} \text{ (scale)} \pm 0.0013 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$
197	$0.1060 \pm 0.0014 \text{ (exp.)} \stackrel{+0.0065}{_{-0.0018}} \text{(scale)} \pm 0.0014 \text{ (PDF)} \pm 0.0004 \text{ (NP)}$
215	0.1052 ± 0.0018 (exp.) $^{+0.0066}_{-0.0027}$ (scale) ± 0.0015 (PDF) ± 0.0003 (NP)

 \rightarrow For observables like $R_{3/2}$, $N_{3/2}$, $R_{\Delta\Phi}$ and (A)TEEC, sensitivity to α_s originates from probability of emission of extra radiation (3rd jet etc.)

 \rightarrow Effect acknowledged by evolving α_s to $< p_{T3} >$ (significantly lower than $< H_{T2} >$)

Back

Thoughts on RGE tests through jet measurements

→ Can one really claim tests of RGE at scales from event-level observables ??? e.g. $p_T^{\text{lead. jet}}(R_{3/2})$, $p_T^{(\text{all jets})}(N_{3/2})$, $(p_{T,1}+p_{T,2})/2$, $H_T/2$, $M_{J1,J2,J3}/2$ (large even for low $p_{T,1-3}$) → "Traditional criteria" of minimizing uncertainties/k-factors is not relevant here

 \rightarrow Relevant scale for RGE test using $R_{3/2}$, $N_{3/2}$, $R_{\Delta\Phi}$ and (A)TEEC related to $p_{T,3}$ (low) Need consistency between scale for theory calculation and RGE test claim; MiNLO procedure may provide a way forward.

B. Malaescu (CNRS)

Thoughts on PDF sensitivity in α_s evaluations from jet Xsec ratios

- → *PDF uncertainties non-negligible* (typically between total experimental and NLO scale uncertainty) *for cross-section ratio measurements & (A)TEEC:*
 - probability of extra radiation (which makes these observables non-trivial) sensitive to the type of partons in the initial state
 - both α_s & PDF sensitivities of the observables are reduced when taking ratios and they are both relevant for the α_s evaluation

Result quantitative comparisons for "all" PDFs

- Individual |y| bins, wide p_T ranges: p-values generally > 4% (~1% or lower for R=0.6, 0.5 < |y| < 1 at 8 TeV, 1.5 < |y| < 2 at 13 TeV), decreasing when considering wider phase-space regions

- Full |y| range, wide p_T ranges: p-values $<< 10^{-3}$
- $(p_T > 100 \text{ GeV}) \chi^2/\text{ndf}: \sim 313-385/159 (8 \text{ TeV}); 384-475/177 (13 \text{ TeV})$
- Data/theory tension also seen initially by CMS in arXiv:1410.6765 when using the original data, uncertainties and correlations from arXiv:1212.6660
- CMS noticed that "Changing the correlation in the JES uncertainty from 0% to 100% produces a steep rise in χ^2 /ndf" and modified the correlation model
- Good data/theory agreement on full phase-space for ATLAS dijets (13 TeV)
- Full |y| range, narrow p_T ranges: good data/theory agreement for $70 < p_T < 100$ GeV; p-values are often below 10^{-3} for the other narrow p_T ranges
- Pairs of |y| bins(consecutive / central-forward), narrow p_T ranges at >100 GeV:
 Good data/theory agreement → source of low p-values not in a single |y| bin, nor due to some possible central/forward tension
- Little sensitivity to choice of non-perturbative correction and to scale choice

Role of uncertainty correlations

- \rightarrow Correlations of uncertainties between various phase-space regions have a key role in χ^2 evaluation (e.g. ignoring correlations yields a very small χ^2/ndf)
- → Experimental uncertainties (examples for ATLAS measurements):
 - JES in-situ statistical uncertainties: correlations well known (e.g. > 240 components for calibration using dijet balance reduce χ^2 by more than 200 units)
 - JES Flavour Response, JES MJB Fragmentation, JES Pile-up Rho Topology:
 - "2-point systematics" from comparison of various MC generators unknown correlations
- \rightarrow Theoretical uncertainties:
- α_s , PDFs: correlations (generally) well known
- Scale variations, alternative scale choice, non-perturbative corrections:
 - "2-point systematics" unknown correlations

 \rightarrow Good understanding of the sources of systematic uncertainties required in order to evaluate uncertainties on correlations: performed detailed tests using realistic alternative correlation scenarios

Testing realistic alternative correlation assumptions

\rightarrow 18 options for splitting the systematics with unknown correlations in 2 or 3 sub-components with smooth p_T and/or |y| dependence

Splitting option	Sub-component(s) definition(s), completed by complementary
1	$L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5))$ · uncertainty
2	$L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5)) \cdot 0.5 \cdot \text{uncertainty}$
3	$L(p_{\rm T}[{\rm TeV}], 0.1, 2.5)$ · uncertainty
4	$L(p_{\rm T}[{\rm TeV}], 0.1, 2.5) \cdot 0.5 \cdot$ uncertainty
5	$L((\ln(p_{\rm T}[{\rm TeV}]))^2, (\ln(0.1))^2, (\ln(2.5))^2)$ uncertainty
6	$L((\ln(p_{\rm T}[{\rm TeV}]))^2, (\ln(0.1))^2, (\ln(2.5))^2) \cdot 0.5 \cdot \text{uncertainty})$
7	L(y , 0, 3) uncertainty
8	$L(y , 0, 3) \cdot 0.5 \cdot$ uncertainty
9	$L(\ln(p_{\mathrm{T}}[\mathrm{TeV}]), \ln(0.1), \ln(2.5)) \cdot L(y , 0, 3)$ uncertainty
10	$L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 3)^2}$ uncertainty
11	$L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5)) \cdot L(y , 0, 3) \cdot 0.5 \cdot \text{uncertainty}$
12	$L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 3)^2} \cdot 0.5 \cdot \text{uncertainty}$
13	$L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 1.5)^2}$ uncertainty
	$L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5)) \cdot L(y , 1.5, 3)$ uncertainty
14	$L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 1)^2}$ uncertainty
	$L(\ln(p_{\mathrm{T}}[\mathrm{TeV}]), \ln(0.1), \ln(2.5)) \cdot L(y , 1, 3)$ uncertainty
15	$L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5)) \cdot \sqrt{1 - L(y , 0, 2)^2}$ uncertainty
	$L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5)) \cdot L(y , 2, 3)$ uncertainty
16	$\sqrt{1 - L(\ln(p_T[\text{TeV}]), \ln(0.1), \ln(2.5))^2} \cdot \sqrt{1 - L(y , 0, 1.5)^2}$ uncertainty
	$\sqrt{1 - L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5))^2} \cdot L(y , 1.5, 3)$ uncertainty
17	$\sqrt{1 - L(\ln(p_{\rm T}[{\rm TeV}]), \ln(0.1), \ln(2.5))^2} \cdot \sqrt{1 - L(y , 0, 1)^2}$ uncertainty
	$\sqrt{1 - L(\ln(p_{T}[\text{TeV}]), \ln(0.1), \ln(2.5))^{2}} \cdot L(y , 1, 3)$ uncertainty
18	$\sqrt{1 - L(\ln(p_T[\text{TeV}]), \ln(0.1), \ln(2.5))^2} \cdot \sqrt{1 - L(y , 0.2)^2} \cdot \text{uncertainty}}$
	$\sqrt{1 - L(\ln(p_T[\text{TeV}]), \ln(0.1), \ln(2.5))^2} \cdot L(y , 2.3)$ uncertainty

→ Tested for *experimental and theoretical systematic uncertainties*

Changed theorists' view on how to interpret our measurements

 \rightarrow One component added to the ones listed for each option in the table, to keep total uncertainty unchanged

L(x, min, max) = (x-min)/(max-min)

Testing realistic alternative correlation assumptions

→ Splitting the *theory systematic uncertainties* with unknown correlations in 6 sub-components with smooth p_T and |y| dependence

$$\begin{split} f_1(p_{\rm T}, y) &= C(p_{\rm T}, y) \cdot c_1 / \log \left(M(y) / p_{\rm T} \right), \\ f_2(p_{\rm T}, y) &= C(p_{\rm T}, y) \cdot c_2 \cdot y^2 / \log \left(M(y) / p_{\rm T} \right), \\ f_3(p_{\rm T}, y) &= C(p_{\rm T}, y) \cdot c_3, \\ f_4(p_{\rm T}, y) &= C(p_{\rm T}, y) \cdot c_4 \cdot y^2, \\ f_5(p_{\rm T}, y) &= C(p_{\rm T}, y) \cdot c_5 \cdot \log \left(15 p_{\rm T} / M(y) \right), \\ f_6(p_{\rm T}, y) &= C(p_{\rm T}, y) \cdot c_6 \cdot y^2 \cdot \log \left(15 p_{\rm T} / M(y) \right) \\ M(y) &= \sqrt{s} \cdot exp(-y) \end{split}$$

 \rightarrow 3 options for various values of the coefficients (c₁-c₆)

Based on: Phys. Rev. D81 (2010) 035018 arXiv:0907.5052 [hep-ph]
Quantitative comparison between data and NLO theory prediction

8 TeV – ATLAS inclusive jets (arXiv:1706.03192)

			$P_{\rm obs}$	
Rapidity ranges	CT14	MMHT2014	NNPDF3.0	HERAPDF2.0
Anti- k_t jets $R = 0.4$				
y < 0.5	44%	28%	25%	16%
$0.5 \le y < 1.0$	43%	29%	18%	18%
$1.0 \le y < 1.5$	44%	47%	46%	69%
$1.5 \le y < 2.0$	3.7%	4.6%	7.7%	7.0%
$2.0 \le y < 2.5$	92%	89%	89%	35%
$2.5 \le y < 3.0$	4.5%	6.2%	16%	9.6%
Anti- k_t jets $R = 0.6$				
y < 0.5	6.7%	4.9%	4.6%	1.1%
$0.5 \le y < 1.0$	1.3%	0.7%	0.4%	0.2%
$1.0 \le y < 1.5$	30%	33%	47%	67%
$1.5 \le y < 2.0$	12%	16%	15%	3.1%
$2.0 \le y < 2.5$	94%	94%	91%	38%
$2.5 \le y < 3.0$	13%	15%	20%	8.6%

\rightarrow Generally good agreement for individual |y| bins

Splitting options for $R = 0.4$	CT14	NNPDF3.0
JES Flavour Response Opt 7		
JES MJB Fragmentation Opt 17		
JES Pile-up Rho topology Opt 18		
Scale variations Opt 17		
Alternative scale choice Opt 7		
Non-perturbative corrections Opt 7	268/159	257/159
JES Flavour Response Opt 7		
JES MJB Fragmentation Opt 17		
JES Pile-up Rho topology Opt 18		
Scale variations Opt 20		
Alternative scale choice Opt 17		
Non-perturbative corrections Opt 7	261/159	260/159

χ^2/ndf	$p_{\mathrm{T}}^{\mathrm jet,max}$		$p_{\mathrm{T}}^{\mathrm jet}$	
	R = 0.4	R = 0.6	R = 0.4	R = 0.6
$p_{\rm T} > 70 { m ~GeV}$				
CT14	349/171	398/171	340/171	392/171
HERAPDF2.0	415/171	424/171	405/171	418/171
NNPDF3.0	351/171	393/171	350/171	393/171
MMHT2014	356/171	400/171	354/171	399/171
$p_{\rm T} > 100 { m ~GeV}$				
CT14	321/159	360/159	313/159	356/159
HERAPDF2.0	385/159	374/159	377/159	370/159
NNPDF3.0	333/159	356/159	331/159	356/159
MMHT2014	335/159	364/159	333/159	362/159
$100 < p_{\rm T} < 900 {\rm GeV}$				
CT14	272/134	306/134	262/134	301/134
HERAPDF2.0	350/134	331/134	340/134	326/134
NNPDF3.0	289/134	300/134	285/134	299/134
MMHT2014	292/134	311/134	284/134	308/134
$100 < p_{\rm T} < 400 {\rm GeV}$				
CT14	128/72	149/72	118/72	145/72
HERAPDF2.0	148/72	175/72	141/72	170/72
NNPDF3.0	119/72	141/72	115/72	139/72
MMHT2014	132/72	143/72	122/72	140/72

B. Malaescu (CNRS)

Quantitative comparison between data and NLO theory prediction

13 TeV – ATLAS inclusive jets and dijets (arXiv:1711.02692)

			$P_{\rm obs}$		
Rapidity range	es CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0) ABMP16
$p_{\mathrm{T}}^{\mathrm{max}}$					
y < 0.5	67%	65%	62%	31%	50%
$0.5 \le y < 1.0$	5.8%	6.3%	6.0%	3.0%	5 2.0%
$1.0 \le y < 1.5$	5 65%	61%	67%	50%	55%
$1.5 \le y < 2.0$	0.7%	0.8%	0.8%	0.1%	5 0.4%
$2.0 \le y < 2.3$	5 2.3%	2.3%	2.8%	0.7%	5 1.5%
$2.5 \le y < 3.0$	0 62%	71%	69%	25%	55%
$p_{\mathrm{T}}^{\mathrm{jet}}$					
y < 0.5	69%	67%	66%	30%	6 46%
$0.5 \le y < 1.0$	0 7.4%	8.9%	8.6%	3.4%	5 2.0%
$1.0 \le y < 1.3$	5 69%	62%	68%	45%	5555
$1.5 \le y < 2.0$	1.3%	1.6%	1.4%	0.1%	0.5%
$2.0 \le y < 2.3$	5 8.7%	6.6%	7.4%	1.0%	3.6%
$2.5 \le y < 3.0$	0 65%	72%	72%	28%	559%
χ^2/dof					
all $ u $ bins	CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16
nmax	419/177	431/177	404/177	432/177	475/177
jet	$\frac{110}{117}$	405/177	284/177	428/177	455/177
p_{T}	399/117	405/177	364/177	420/177	400/111
			P_{obs}		
y^* ranges	CT14	$\rm MMHT\ 2014$	NNPDF 3.0	HERAPDF 2.0	ABMP16
$y^* < 0.5$	79%	59%	50%	71%	71%
$0.5 \le y^* < 1.0$) 27%	23%	19%	32%	31%
$1.0 \le y^* < 1.5$	66%	55%	48%	66%	69%
$1.5 \le y^* < 2.0$	$1.5 \le y^* < 2.0$ 26%		28%	9.9%	25%
$2.0 \le y^* < 2.5$	$2.0 \le y^* < 2.5$ 41%		29%	3.6%	20%
$2.5 \le y^* < 3.0$) 45%	46%	40%	25%	38%
all y^* bins	9.4%	6.5%	11%	0.1%	5.1%

\rightarrow Generally good agreement for inclusive jets for individual |y| bins

\rightarrow Tension when including all |y| bins for inclusive jets

\rightarrow Good data/theory agreement for dijets

PDF comparisons for dijets at 7 TeV

- \rightarrow Sensitivity to PDFs: level of agreement strongly depends on the PDF set and phase-space region
- → Valuable experimental inputs to constrain proton PDFs: Published information on cross-sections & uncertainties, with their correlations and asymmetries

PDF comparisons for inclusive jets at 7 TeV

y ranges	P_{obs} (ATLAS Preliminary)					
	NLO PDF set:	CT10	MSTW2008	NNPDF2.1	HERAPDF1.5	ABM11
y < 0.5		84%	61%	72%	56%	< 0.1%
$0.5 \le y < 1.0$		91%	93%	89%	49%	< 0.1%
$1.0 \le y < 1.5$		89%	88%	85%	93%	2.7%
$1.5 \le y < 2.0$		93%	88%	91%	75%	55%
$2.0 \le y < 2.5$		86%	82%	85%	26%	57%
$2.5 \le y < 3.0$		95%	94%	97%	82%	85%

 \rightarrow P_{obs} strongly depends on the PDF set and phase-space region

B. Malaescu (CNRS)

Quantitative data/theory comparison & limit setting

 \rightarrow Define global test statistic (over a set of bins), at the unfolded level, using full information on correlations and uncertainty distributions

-Likelihood: can accommodate non-Gaussian distributions

 $-\chi^2$ (with correlations) standard definitions require symmetrization of uncertainties but can be generalized

 \rightarrow Perform scan of parameters of theory model (ex: Λ for CI) and apply test statistic to compare with unfolded data: Obtain "observed" $\chi^2(\Lambda)$

- → Generate toys with full set of uncertainties (transposed to SM+NP theory): comparison between nominal / fluctuated SM+NP : allows to reconstruct the distribution of the test statistic (important when using a χ^2 with error symmetrization).
- \rightarrow p-value to test data/QCD agreement
- \rightarrow CLs = $p_{s+b}/(1-p_b)$ for setting limits on New Physics

Resonance and angular searches

- → Sensitive to narrow resonances (QBH, q* etc.)
- → Smooth QCD background described by smooth (fitted) function
- Tests of the folding-based approach:
- \rightarrow Detailed comparisons of transfer matrices for various signal models
- \rightarrow Studied statistical uncertainties and correlations induced by transfer matrix negligible impact
- \rightarrow Studied possibility to use geometrical matching when building "A"

 $\chi = e^{2|y^*|} \sim \frac{1 + \cos \theta^*}{1 - \cos \theta^*}$ Angular search

- → Sensitive to resonant and non-resonant signals (CI, QBH etc.)
- \rightarrow ~Flat QCD background described by MC, normalized to data

B. Malaescu (CNRS)

HDR Defence

Back

Comparison of LHC / FCCee "environments"

Pile-up

@ FCCee:

→ Short distance interaction of virtual bosons with quarks

 \rightarrow No PDFs

- \rightarrow No underlying event & MPI
- \rightarrow No pile-up

B. Malaescu (CNRS)

α_{s} evaluation from (ISR) jet production

 \rightarrow Sensitivity to α_s e.g. from 3/2 jet ratios (OR jet rates w.r.t. total hadronic Xsec)

- \rightarrow High luminosity allows to select large samples of events with collinear / large angle ISR photons: allows to scan \sqrt{s} with the same detector and collider conditions – important for RGE test
- → Need to study jet and photon energy calibration and resolution, acceptance and reconstruction efficiency etc. in view of *optimizing the detector design* Should be able to target $\delta \alpha_s / \alpha_s < 1\%$
- B. Malaescu (CNRS)

Opportunities for jet substructure studies

 \rightarrow Numerous algorithms/methods developed for studying into detail the jet substructure in the LHC environment: Important for understanding QCD effects inside jets, jet tagging (e.g. q/g, boosted top, H \rightarrow bb), New Physics searches

 \rightarrow The Lund Jet Plane allows for an effective way to distinguish (non)perturbative effects

 \rightarrow Huge potential for doing precision studies of jet substructure in the clean FCC-ee environment \rightarrow Need to *perform detector optimization* in terms of granularity, energy resolution, (tracking/calorimeter) acceptance

α_{s} evaluation from *hadronic* τ *decays*

 $\rightarrow \tau$ hadronic spectral functions (SFs) from ALEPH, unfolded of detector effects \rightarrow Broadly used for (g-2)_u predictions and other QCD studies

B. Malaescu (CNRS)

α_{s} evaluation from *hadronic* τ *decays*

 $\rightarrow \tau$ hadronic spectral functions ($\pi\pi^0$ channel) from various experiments

→ Normalisation: branching fractions best determined by ALEPH (large boost, high granularity)

- \rightarrow Shape best determined by Belle (high statistics); improvements @ Belle II
- \rightarrow What precision can one achieve at FCCee? Need to study acceptance, reconstruction efficiency, resolution etc. in view of *optimizing the detector design* for SFs measurements
- B. Malaescu (CNRS)

α_{s} evaluation from *hadronic* τ *decays*

→ Theoretical prediction available at N³LO: need for even higher precision at the time of FCC-ee to reduce dominant uncertainty from perturbative series (CIPT/FOPT), to benefit from the statistical precision ($\delta \alpha_{s} / \alpha_{s} \ll 1\%$)

→ More precise SFs will allow to better pin down non-perturbative corrections and probe the structure of the QCD vacuum (condensates)

B. Malaescu (CNRS)

α_{s} evaluation from *hadronic Z decays*

- \rightarrow Theoretical prediction available at N³LO
- \rightarrow Better convergence of the perturbative series and less non-perturbative corrections compared to precise determinations at lower scales (e.g. from τ decays)

 \rightarrow Need to study acceptance and reconstruction efficiency etc. in view of *optimizing detector design*

B. Malaescu (CNRS)

Ultimate goal: test RGE & unification of couplings

- → A deviation from the SM prediction for the RGE can be an indication of New Physics
- \rightarrow Are the coupling constants unified at the Plank scale?
- \rightarrow Need to evaluate the strong coupling at multiple scales, with high precision