
EOIALLEGRO Prospectives R&D détecteurs LAPP

31/3/2025

ALLEGRO: a noble liquid calorimeter and an FCC detector

Expression of Interest for a Noble Liquid Electromagnetic Calorimeter for the ALLEGRO Detector Concept

G. Aad,¹ M. Aleksa,² T. Andeen, O. Arnaez,⁴ I. Arnold,⁵ T. Barillari,⁶ M. Begel,⁷ G. Bernardi,⁸ G. Carini,⁷ H. Chen,⁷ E. Cheu,⁹ R. Chiche,¹⁰ A. Deiana,¹¹ C. De La Taille, ² M. Delmastro,⁴ G. Deptuch,⁷ K. Dewyspelaere,⁸ F. Djama,¹ J. Faltova^{*},¹³ D. Fournier,¹⁰ B. François,² A. Haas,¹⁴ M. Haviernik,¹³ M. Himmelsbach,³ J. Hobbs,⁵ Z. Huang,¹⁰ R. Hyneman,⁹ K. Johns,⁹ M. Kado,⁶ P. Karst,¹ A. Kiryunin,⁶ S. Kluth,⁶ M. Koppitz,^{2,15} A. Laffitte,¹² A. Li,⁷ T. Li,⁸ H. Ma,⁷ A. Maloizel,⁸ G. Marchiori,⁸ J. Maurer,¹⁶ S. Menke,⁶ O. Mezhenska,¹⁷ E. Monnier,¹ N. Morange^{*},¹⁰ N. Nikiforou,² J. Parsons,¹⁸ J. Pekkanen,² M.-A. Pleier,⁷ V. Radeka,⁷ S. Rajagopalan,⁷ C.Ø. Rasmussen,⁷ L. Raux,¹² S. Rescia,⁷ J. Roloff,¹⁹ J. Rutherfoord,⁹ P. Schacht,⁶ S. Singh,⁷ S. Snyder,⁷ F. Sopkova,¹³ A. Straessner,¹⁵ P. Strizenec,¹⁷ R. Stroynowski,¹¹ S. Tang,⁷ G. Tarna,¹⁶ V. Tudorache,¹⁶ E. Varnes,⁹ I. Velišček,⁷ C. Wang³ Z. Wu,⁴ H. Xu,⁷ B. Yu,⁷ F. Zarate,² M. Zhao,⁷

- ALLEGRO calorimeter R&D in WP2 of DRD6 (which LAPP is officially a member of)
- Activity already existing at LAPP since ~2 years
- EOI already signed by LAPP members and validated by LAPP Directions

Expression of Interest for the ALLEGRO
Full-Detector Concept for FCC-ee

M. Aleksa*,¹ N. Morange,² M.-A. Pleier,³ G. Aad,⁴ T.K. Aarrestad,⁵ R. Aleksan,⁶ M. Alviggi,^{7,8} T. Andeen,⁹ J. Andrea,¹⁰ F. Anulli,^{11,12} F. Aretio-Zárate,¹ O. Arnaez,¹³ 5 H. Arnold,¹⁴ N.A. Asbah,¹ M. Backhaus,⁵ M. Barbero,⁴ T. Barillari,¹⁵ J. Baudot,¹⁰ H.P. Beck,¹⁶ G. Bernardi,¹⁷ A. Besson,¹⁰ M. Biglietti,¹⁸ F. Blanc,¹⁹ M. Bomben,¹⁷ 7 M. Boscolo,²⁰ G. Boudoul,²¹ S. Bressler,²² G. Calderini,²³ L. Caminada,^{24,25} 8 F. Canelli,²⁴ G. Charles,² A. Chaudhuri,²⁶ H. Chen,³ R. Chiche,² D. Cieri,¹⁵ D. Contardo,²¹ M. Corradi,^{11,12} T. Dai,²⁷ M. Dam,²⁸ R. De Asmundis,⁸ A. Deiana,²⁹ ¹⁰ M. Della Pietra, ¹⁸ M. Delmastro,¹³ G. Deptuch,³ K. Dewyspelaere,¹⁷ C. Di Donato,⁸ B. Di Micco,¹⁸ R. Di Nardo,¹⁸ F. Djama,⁴ M. Donega,⁵ A. Durglishvili,³⁰ G. Eigen,³¹ ¹² Z. El Bitar.¹⁰ W. Erdmann.²⁵ F. Fallavollita.¹⁵ J. Faltova.³² L. Feligioni.⁴ L. Fiorini.³³ D. Fournier,² B. François,¹ J. Fried,³ N. Gallice,³ S. Gao,³ C. Gargiulo,¹ J. Ge,²⁷ 13 V. Gkoukousis,²⁴ T. Golling,³⁴ L. Guan,²⁷ Y. Guo,²⁷ G. Haefeli,¹⁹ M. Haviernik,³² 14 ¹⁵ C. Herwig,²⁷ M. Himmelsbach,⁹ Z. Huang,² G. lakovidis,³ P. lengo,^{7,8} A. Ilg,²⁴ ¹⁶ M. lodice,¹⁸ M. Kado,¹⁵ P. Karst,⁴ B. Kilminster,²⁴ A. Kiryunin,¹⁵ S. Kluth,¹⁵ 17 P. Kontaxakis,³⁴ M. Koppitz,^{1,35} O. Kortner,¹⁵ S. Kortner,¹⁵ B. Korzh,³⁴ A. Koulouris,¹ ¹⁸ H. Kroha,¹⁵ C. Lange,²⁵ S. Leontsinis,²⁴ T. Li,¹⁷ C. Li,²⁷ T. Loeliger,³⁶ C. Luci,^{11,12} A. Macchiolo,²⁴ A. Maloizel,¹⁷ R. Marchevski,¹⁹ G. Marchiori,¹⁷ J. Maurer,³⁷ S. Menke,¹⁵ M. Mentink,¹ O. Mezhenska,³⁸ M. Mlynarikova,¹ S. Mobius,¹⁶ S. Molina,¹ 20 E. Monnier,⁴ P. Mukim,³ K. Nelson,²⁷ N. Nikiforou,¹ R. Nisius,¹⁵ P. Onvisi,⁹ 21 ²² P. Owen.²⁴ F. Palla.^{39,1} T.H. Park.¹⁵ J. Parsons.⁴⁰ R. Pedro.⁴¹ J. Pekkanen.¹ E. Petit.⁴ ²³ F. Petrucci,¹⁸ I. Polak,⁴² G. Popeneciu,⁴³ G. Proto,¹⁵ J. Qian,²⁷ V. Radeka,³ B. Ravina,¹ S. Rescia,³ R. Richter,¹⁵ S. Rosati,¹² J. Rutherfoord,⁴⁴ E. Salzer,²⁷ P. Schacht,¹⁵ S. Schramm,³⁴ T. Schwarz,²⁷ P. Schwemling,⁶ G. Sekhniaidze,⁸ S. Senyukov,¹⁰ N. Serra,²⁴ A. Sfyrla,³⁴ L. Shchutska,¹⁹ R. Simoniello,¹ S. Snyder,³ 26 27 O. Solovyanov,⁴⁵ F. Sopkova,³² P. Strizenec,³⁸ G. Suliman,⁴⁶ C. Suslu,²⁷ G. Tarna,³⁷ ²⁸ A. Tricoli,³ V. Tudorache,³⁷ A. Upegui,⁴⁷ R. Vari,^{11,12} E. Varnes,⁴⁴ S. Veneziano,^{11,12} ²⁹ A. Verbyskyi,¹⁵ E. Voevodina,¹⁵ R. Wallny,⁵ C. Wang,⁹ C. Weaverdyck,²⁷ M. Weber,¹⁶ ³⁰ H. Wilkens, Z. Wu,¹³ B. Yu,³ C. Zhang,³ M. Zhao,³ B. Zhou²⁷ and J. Zhu²⁷

Marco Delmastro

ALLEGRO: high granularity noble liquid calorimeter for FCC-ee

Baseline design

1536 straight inclined (50.4°) 1.8mm Pb absorber plates

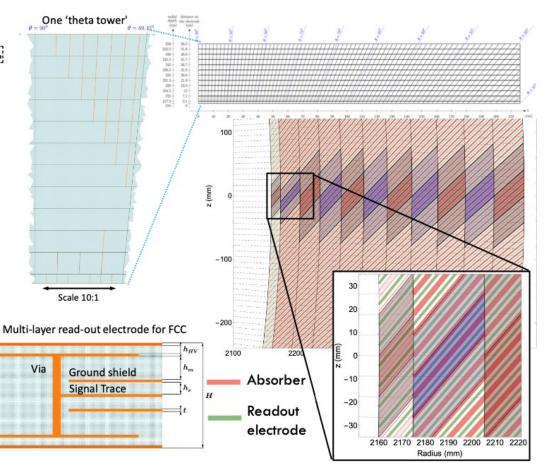
1.2 - 2.4 mm LAr gaps

40 cm deep (\approx 22 X₀)

Segmentation:

•
$$\Delta\theta = 10$$
 (2.5) mrad for regular (1st comp. strip) cells,

• $\Delta \phi = 8 \text{ mrad}$


```
· → cell size in strips: 5.4mm x 17.8mm x 30mm
```

```
12 layers
```

Implemented in FCC-SW Fullsim

Possible Options

- LKr or LAr, W or Pb absorbers,
- Absorbers with growing thickness
- Granularity optimization
- Al or carbon fiber cryostat
- Warm or cold electronics

HV

Signal Pad

ALLEGRO: a full detector concept for FCC-ee

Vertex Detector:

- MAPS or DMAPS possibly with timing layer (LGAD)
- Possibly ALICE 3 like?

Drift Chamber (±2.5m active)

Silicon Wrapper + ToF:

- MAPS or DMAPS possibly with timing layer (LGAD)

High Granularity ECAL:

- Noble liquid + Pb or W
- Particle Flow reconstruction

Solenoid B=2T, sharing cryostat with ECAL, outside ECAL

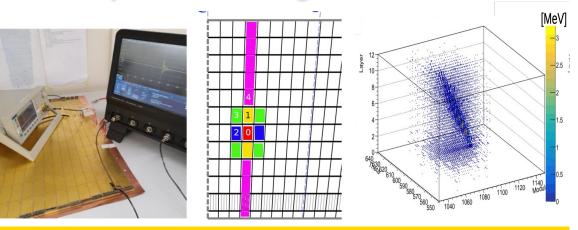
- Light solenoid coil \approx 0.76 X₀ (see back-up)
- Low-material cryostat < 0.1 X₀ (see back-up)

High Granularity HCAL / Iron Yoke:

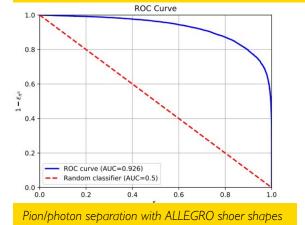
- Scintillator + Iron (particle flow reconstruction)
 - SiPMs directly on Scintillator or
 - TileCal: WS fibres, SiPMs outside

Muon Tagger:

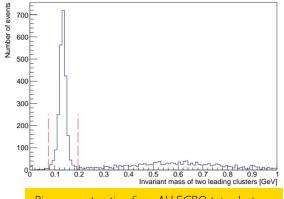
Drift chambers, RPC, MicroMegas


ALLEGRO calorimetry: already a (proto) collaboration

- Several IN2P3 institutes, a clear interest at French level
 - APC, IJCLAB, CPPM, Omega
- CERN
- Various "friendly" institutes we have already collaborated with (e.g. in ATLAS LAr)



ALLEGRO: what is LAPP already contributing to?


- ALLEGRO calorimeter simulation
 - Cross-talk and noise simulation in ALLEGRO ECAL
 - ALLEGRO electrode geometry optimization for optimal reconstruction of electromagnetic showers and particle identification
 - Talk @ ICHEP 2024: Z. Wu, "R&D studies of the noble liquid calorimeter for ALLEGRO FCC-ee detector concept"
 - ✓ Pion-photon separation for tau reconstruction (e.g. Z→tautau polarization studies)

From cross-talk measurment on electrode prototype at CERN to cross-talk emulation in simulation (LAPP)

EOI ALLEGRO @ LAPP

Pion reconstruction from ALLEGRO topoclusters

Zhibo

ALLEGRO ECAL R&D: electrodes

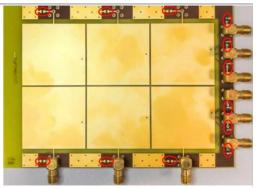
Continue lab tests with small-scale electrode PCB and first largescale prototype

- Measurements of x-talk and other cell properties
 - Promising to reach <1% x-talk target</p>
 - $\,$ Minimize noise aiming for photons down to 300 MeV and S/N>5 for MIPs
- Comparing lab results with Finite Element simulations

Develop endcap design

- Depends on geometry
- Optimize granularity

Finalize barrel design and produce prototype


 \bullet Readout signals at the back ightarrow chose connectors

Happening now: excellent opportunity to contribute!

Manufacture test-module electrodes by 2027

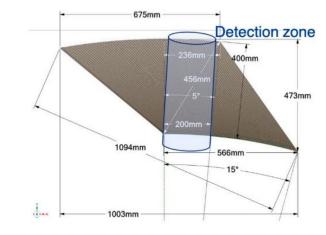
 Potentially foresee half of module read-out by cold electronics, other half send signals outside of cryostat with coax
Testbeam opportunity of small-scale

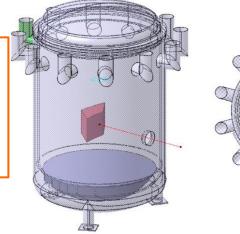
prototype in a O(3) years!

Small-scale PCB prototype at IJCLAB

ALLEGRO ECAL R&D: test module

Mechanical design of testbeam module (64 absorbers) has started


Finite element calculations including


- Rings and G10 bars
- Absorbers and electrodes as shell (2D) elements using layers
- Distance pins
- Six M5 beams join electrodes and absorbers in each side (inner-outer)

Plan to place module into cryostat available at CERN

But looking into thin carbon-fiber cryostats

Assembly and first tests at warm \sim 2027, cold tests and testbeam in 2028

ALLEGRO ECAL R&D @ LAPP | Electrode geometry

- Decrease electrode capacitance (i.e. noise and crosstalk) by geometrical optimization
 - hatched shielding ground planes
 - ✓ hatched pickup electrode
 - \checkmark decrease pickup electrode size with respect to electrode size
- Try other materials to decrease relative permittivity (polyimide ?) \rightarrow reduce cross talk
- Must perform simulations to check if useful or not
 - \checkmark Ansys licences available \rightarrow do we want to gain expertise ?

Already in contact with IJCLAB colleagues to mutualize/ learn simulation expertise

Renaud

ALLEGRO ECAL R&D @ LAPP | Resistive coating?

- Resistive coating may be used to distribute HV on electrodes.
- DLC sputtering allows a wider range and more controlled resistivity, a more robust coating and more controlled thicknesses than historical resistive ink serigraphy.
- Some values commercially available, CERN workshop is able to produce etchable sheets compatible with PCB process.

Renauc

ALLEGRO ECAL R&D @ LAPP | Push electronic limits?

• Technological interest in putting electronic inside the PCB (like a CB)

✓ at least shapers?

Iower constraints on crosstalk and on cryostat feedthrough: worth prototyping !

Use LAPP expertise in Finish as 2 layer module flexible printed circuit to design end-of-electrode flex circuit adapter Sequential 4,6,8,... layer build up ECP[®] Core Multiple Core build ups 2.5D

Renaud