

Phys. Rev. X **15**, 021031 (2025)

Alexandre MAY, Emmanuel FLURIN

Quantronics group - CEA SPEC

EM field detection

EM field detection

MW field detection

MW photodetection

Energy detection (\widehat{N})

Y-F Chen et al., PRL (2011) K. Inomata et al., Nature (2016) S. Kono et al., Nature (2018) J-C. Besse et al., PRX (2018) G. Lee et al., Nature (2020) R. Lescanne et al., PRX (2020)

- E. Albertinale et al., Nature (2021)
- L. Balembois et al., PRApp (2023)

R. Albert et al, PRX (2024)

L. Pallegoix et al, PRApplied (2025) A. May et al, arXiv (2025)

Outline

- I. Photon Detection vs Field Detection
- II. Superconducting Qubit-based Single Microwave Photon Detector (SMPD)
- III. Counting Photon for Axion Dark Matter Search

 $a^{\dagger}a$ vs $a^{\dagger}a$

Outline

I. Photon Detection vs Field Detection

- II. Superconducting Qubit-based Single Microwave A Photon Detector (SMPD)
- III. Counting Photon for Axion Dark Matter Search

PHYSICAL REVIEW D 88, 035020 (2013)

Analysis of single-photon and linear amplifier detectors for microwave cavity dark matter axion searches

S. K. Lamoreaux*

Department of Physics, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120, USA

K. A. van Bibber

Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94720, USA

K. W. Lehnert

JILA and Department of Physics, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309, USA

G. Carosi

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA (Received 15 June 2013; published 23 August 2013)

weak & incoherent photon source

t

 $n_{
m th} =$ -

integration time:

temperature:

frequency

weak & incoherent photon source

weak & incoherent photon source $\Gamma_{\rm photon}$ emission rate: Δf emission bandwidth: integration time: t

temperature: $n_{\rm th} = rac{1}{e^{\hbar\omega/kT}+1}$

I. Photon Detection vs Field Detection

II. Superconducting Qubit-based Single Microwave / Photon Detector (SMPD)

III. Counting Photon for Axion Dark Matter Search

IV. Enhanced sensitivity with Multiqubit Photon Counter

 $a^{\dagger}a$ vs $a^{\dagger}a^{\dagger}$

Circuit QED for Quantum sensing

25 years of superconducting quantum circuits pioneered by the Quantronics/CEA, Yale, NEC...

Josephson junction dissipationless non-linear inductor

Capacitance

Nonlinear

Inductance

$$H = \frac{Q^2}{2C} + \frac{\Phi^2}{2L(\Phi)}$$

1 mm

— → 1 μm

GDR DI2I 2025

$$H = \frac{Q^2}{2C} + \frac{\Phi^2}{2L(\Phi)}$$

Capacitance

R. Lescanne & al., **PRX (2020)**

 $5 \times 10^{-21} W / \sqrt{Hz}^*$

R. Lescanne & al., **PRX (2020)**

 $5 \times 10^{-21} W / \sqrt{Hz}^*$

R. Lescanne & al., **PRX (2020)**

 $5 \times 10^{-21} W / \sqrt{Hz}^*$

R. Lescanne & al., **PRX (2020)**

 $5 \times 10^{-21} W / \sqrt{Hz}^*$

R. Lescanne & al., **PRX (2020)**

 $5 \times 10^{-21} W / \sqrt{Hz}^*$

R. Lescanne & al., **PRX (2020)**

 $5 \times 10^{-21} W / \sqrt{Hz}^*$

Single MW photon detector

R. Lescanne & al., **PRX (2020)**

$5 \times 10^{-21} W/\sqrt{Hz}^*$

E. Albertinale & al., Nature (2021)

 $2 \times 10^{-21} W/\sqrt{Hz}^*$

L. Balembois & al., **PR Applied (2023)**

 $9 \times 10^{-23} W/\sqrt{Hz}^*$

L. Pallegoix & al., under review PR Applied (2025) $3 imes 10^{-23} \ W/\sqrt{Hz}^{*}$

Single MW photon detector

Range of applications:

• Axion search

On going collaboration with QUAX consortium (INFN Padova)(in preparation)

C. Braggio & al., PRX (2025)

• Small ensemble of electronic spins E. Albertinale al., **Nature (2021)**

• Single electronic spin Z. Wang, L. Balembois & al., **Nature (2023)**

Single nuclear spin

O'Sullivan & al, Nature Physics (2025)

Travesedo & al, Science Advanced (2025)

Design & Packaging

Key ingredients

- Tantalum sputtered on sapphire
- SQUID for frequency tunability
- Purcell filters to protect the qubit from external environment

4WM as a detection mechanism

Average detection time: $10 \ \mu s$ Average cycle time: $12.5 \ \mu s$ Average cycle rate: $80 \ 000 \ /s$

Dark-count rate :

$$\alpha = 40 \text{ c/s}$$

Dark-count rate :

$$\alpha = 40 \text{ c/s}$$

Efficiency :

$$\eta = 75\%$$

$T_{\rm eff} \approx 40 \, {\rm mK}$ **Buffer** Qubit Waste

count

detected

0.0

L. Pallegoix et al, PRApplied (2025)

1.0

times(s)

0

2.0

40

80

Dark count rate vs Temperature

L. Pallegoix et al, PRApplied (2025)

Temperature	Pump state	$\kappa_d/2\pi$	One-second click sequence	Click rate
$10 \mathrm{~mK}$	Off	Not relevant		8/s
$10 \mathrm{~mK}$	Detuned	Not relevant		10/s
$10 \mathrm{mK}$	Tuned	$170 \mathrm{~kHz}$		31/s
$50 \mathrm{mK}$	Tuned	170 kHz		344/s
$60 \mathrm{mK}$	Tuned	170 kHz		621/s
$90 \mathrm{~mK}$	Tuned	170 kHz		3614/s
$10^{3} = \begin{bmatrix} & BE & fit, \alpha_{th} \\ & Background counts, \alpha_{th} \\ BE & fit & plus & background, \alpha_{th} \end{bmatrix}$				

GDR DI2I 2025

.

A frequency tunable, Narrow band, Spectrum analyzer

Thermal dark counts scales with bandwidth

 $\alpha_{\rm th} \propto n_{\rm th} \Delta f$

Sensitivity improvements, years after years

IV. Enhanced sensitivity with Multiqubit Photon Counter

III. Counting Photon for Axion Dark Matter Search

Outline

Photon Detection vs Field Detection

II. Superconducting Qubit-based Single Microwave 🦯 **Photon Detector (SMPD)**

QCD Axions could solve two problem at a time:

Annual Review of Nuclear and Particle Science Vol. 65:485-514 (2015)

- 85% of the mass is missing in the visible universe
- Absence of electric dipole moment for the Neutron

QCD: Quantum Chromodynamics EDM: Electric Dipole Moment CP: Charge/Parity symmetries

CP violating term in QCD

implies a non-zero EDM for neutrons

$$L_{eff} = L_{QCD} + \theta \, \frac{\alpha_S}{8 \, \pi} \, \varepsilon^{\mu \nu \rho \sigma} G^a_{\mu \nu} G^a_{\rho \sigma}$$

From lattice calculations: $d_n = -0.00152(71)\theta \ e. fm$

Experimental upper limit: $|d_n| \le 2.10^{-13} \ e.fm$

Peccei-Quinn theory to solve the strong CP problem

New pseudo-scalar field V with Higgs Mechanism

U(1) Symmetry breaking |V| > 0

$$V(x,t) = |V|e^{ia(x,t)}$$

After QCD transition

$$\mathcal{L}_{\rm CPV} = \frac{\theta g^2}{32\pi^2} G\tilde{G} - \frac{a}{f_{\rm a}} g^2 G\tilde{G}$$

QCD Axions could solve two problem at a time:

Annual Review of Nuclear and Particle Science Vol. 65:485-514 (2015)

• Absence of electric dipole moment for the Neutron

axion-2photon coupling

The axion has a two photons coupling, and g_{γ} is model dependent.

• 85% of the mass is missing in the visible universe

The axion is a well motivated dark matter candidate Axion density relative to the critical density of the universe

$$\Omega_a \approx \left(\frac{6\,\mu eV}{m_a}\right)^{\frac{7}{6}} \approx \Omega_m = 0.23 \ (m_a \approx 20 \ \mu eV)$$

Entire dark matter density

Primakoff effect

https://github.com/cajohare/AxionLimits

axion – photon coupling

g_{γ} models

DFVZ: DineFischler-Srednicki-Zhitnitsky

Primakoff effect

GDR DI2I 2025

KSVZ: Kim-Shifman-Vainshtein-Zakharov DFVZ: DineFischler-Srednicki-Zhitnitsky

https://github.com/cajohare/AxionLimits

axion – photon coupling

The signal power we expect ...

... the sensitivity we have.

$$P_{\alpha\gamma\gamma} \sim 10^{-24} \mathrm{W}$$

W.D. Oliver

3T Magnet

Single Microwave Photon Detector

Collaboration with QUAX (Padova University, ITA)

C. Braggio & G. Carugno

How to align the counter with the haloscope at B=2T

How to align the counter with the haloscope at B=2T

How to align the counter with the haloscope at B=2T

Detector Frequency Tuning

Haloscope frequency tuning with sapphire rods

Realistic axion search POC landscape

PHYSICAL REVIEW LETTERS 126, 141302 (2021)

Featured in Physics

Searching for Dark Matter with a Superconducting Qubit

Akash V. Dixit[®],^{1,2,3,*} Srivatsan Chakram,^{1,2,4} Kevin He[®],^{1,2} Ankur Agrawal[®],^{1,2,3} Ravi K. Naik[®],⁵ David I. Schuster,^{1,2,6} and Aaron Chou⁷

Scan rate speed up over SQL

R~1300

... but not very realistic because

- No **B** field applied (the qubit would die due to Supra to Normal transition)
- Storage not frequency tunable

Conclusion

O1. Design of a practical SMPD with frequency / bandwidth tunability, and sensitivity 3×10^{-23} W/ $\sqrt{\text{Hz}}$ @7.3 GHz.

02. Axion search most realistic POC with such a device. Demonstrate a 20x scan rate improvement over ideal Quantum Limited Amplifiers.

$$R = \frac{t_{\rm SQL}}{t_{\rm PC}} = \eta^2 \frac{\Delta v_a}{\Gamma_{\rm dc}} \sim 20$$

Tunable haloscope with sapphire rods (~500 kHz)
 Magnetic field applied (2T)

Next. POC in real experimental conditions under 9T (collab. Padova University QUAX & FermiLab SQMS). Currently ongoing!

Outline

I. Photon Detection vs Field Detection

II. Superconducting Qubit-based Single Microwave Photon Detector (SMPD)

III. Counting Photon for Axion Dark Matter Search

IV. Enhanced sensitivity with Multiqubit Photon Counter

 $a^{\dagger}a$ vs $a^{\dagger}a^{\dagger}$

Cascaded Single MW photon detector

Where we were, are, and are headed

Input frequency [GHz]		7,3	8,8	11,7
	Efficiency	0,75	0,25	0 , 35 Better <i>T</i> ₁
	α_{th}	≈ <mark>20</mark> (BW~170 kHz)	≈ <mark>5</mark> (BW~230 kHz)	≈ 0 , 01 (BW~300 kHz)
e>	$\alpha_{ m q}$	≈ 10	≈ 0 , 1	≈ 0 , 1
	α _p	≈ 2	≈ 0 , 01	≈ 4
Sensitivity = $\hbar \omega \frac{\sqrt{\alpha}}{\eta} \left[\frac{W}{\sqrt{Hz}} \right]$		$\approx 3 \times 10^{-23}$	$\approx 5 \times 10^{-23}$	$\approx 4 \times 10^{-23}$

Aknowledgements

P. Bertet

Thermometry across several SMPD devices

92

93

Intrinsic Bandwidth tunability

