AI Tracking for ALERT hyperbolic drift chamber

Mathieu Ouillon (Mississippi State University)

6/18/25

Outline

- 1. ALERT Physics Program
- 2. ALERT Experimental setup
- 3. Track Reconstruction
- 4. Hits Clustering
- 5. Al-assisted Model Description
- 6. Al-assisted Model Evaluation On Simulation
- 7. Al-assisted Model Evaluation On Data
- 8. Summary and outlook

ALERT Physics Program

Comprehensive studies QCD in nuclei and associated medium modifications

DIS on ⁴He and ²H

Α

Coherent DVCS on ⁴He

Explore the partonic structure of ⁴He with Generalized Parton Distributions

Test the Final State Interactions and rescaling model Explore the 3-D structure of modified nucleons in light ions ²H,³H, and ³He $(^{1}H \text{ or neutron})$

Incoherent DVCS on ⁴He (²H)

CLAS12

ALERT

CLAS12

ALERT

ALERT Physics Program Comprehensive studies QCD in nuclei and associated medium modifications

Coherent Process on ⁴He

DIS on ⁴He and ²H: Tagged EMC effect Incoherent Process on ⁴He and ²H

 $\begin{array}{c} 1.1 \\ \begin{array}{c} 1.1 \\ 0.95$

Extract quark and gluon GPDs in a dense nucleus; in this case, GPD H is obtained for both quarks and gluons in ⁴He

Measure the F_2 structure function of a weakly bound nucleon in ⁴He and compare it to the ²H case. Control FSIs with tagged fragments Extract quarks GPDs for bound nucleons and thus understand the effect of FSIs

ALERT Experiment Setup

- The ALERT experiment will take place in Hall B at Jefferson Lab:
 - CLAS12: detect scattered electrons and forward-scattered hadrons
 - ALERT: detect recoil spectators or coherently scattered nuclei
- ALERT Goals:
 - Aim to identify light ions: p, ²H, ³H, ³He, and ⁴He
 - Detect the lowest momentum possible, down to 70 MeV/c for proton
 - Handle high CLAS12 rates and luminosities (10³⁵ cm²s⁻¹)

5

ALERT Experiment Setup

- ALERT have two sub-detectors:
 - A Hyperbolic Drift Chamber (AHDC) and A Time of Flight (ATOF)

- Time of flight: used for Particle IDentification
- Small barrel of segmented scintillators
- The TOF measurement is degenerate for ²H and ⁴He, but *dE/dx* can distinguish the two nuclei bands

AHDC

- Aluminum wire: 2 mm apart
- 20-degree stereo angle (hyperbolic shape)
- 5 superlayers, each composed of 2 layers
- 576 signal wires (6 ground wires of each signal)

AHDC Geometry

100

150

50

z [mm]

- The AHDC is composed of 576 wires
- The wires in the first layer in superlayer 2, 3, and 4 are shifted by half a cell

-100

-50

• The distance between wires is constant

6/18/25

Track Reconstruction

- Aim to reconstruct the momentum and trajectory of charged particles
- Two stages of track reconstruction:
 - Track finding: Identifying which hits came from the same charged particle
 - Track fitting: Fitting hits to a single track to extract track parameters (momentum and position)

Track Finding

- Track finding is a clustering problem:
 - Set of points (hits) ⇒ cluster in sets (tracks) originating from the same particle
 - Hits: particles deposit energy when interacting with the detector material
 - Tracks: reconstructed sequences of hits representing charged particle trajectories
- Different algorithms:
 - Distance between hits + fit
 - Hough transform
 - Combinatorial Kalman Filter
 - Artificial Intelligence models (MLP, GNN...)

Clustering and Track Candidates

10

- First step, find all track candidates:
 - Clustering ⇒ merging hits close in the x-y plane to reduce the combinatorial background
 - Merge hits on the same layer that are one wire apart into intra-cluster
 - Merge intra-clusters in the same superlayer that are less than 8mm apart into inter-cluster
 - Generate all track candidates with 5 inter-clusters (one on each superlayer)
- Generate around 40/100k track candidates per event with interclusters/raw hits

Al-assisted model: Description and training

- Model: MultiLayer Perceptron, 10 inputs, 1/3/5 hidden layer (15/20/100 neurons), 1 output
- Inputs: x and y values of the five inter-clusters
- For the training ⇒ Need good and bad tracks:
 - Good tracks: GEANT4 simulation (particle with $p \in [0.07, 1.5]$ GeV/c, $\varphi \in [0, 360]^\circ$, $\theta \in [30, 150]^\circ$ and $\forall z \in [-15, 15]$ cm)
 - False tracks: Interchanging randomly up to two inter-clusters with another event
 - Generate 5M events composed of all light nuclei (flat distribution for all variables)
 - Output: Number between 0 and 1, with 0/1 means bad/good track

Evaluation on simulation: Efficiency and Purity vs. Threshold

- Threshold: if output above/lower than the threshold \Rightarrow good/bad tracks
- To evaluate the model:
 - Efficiency: Number of good tracks classified as good normalized by the number of events.
 - Purity: Number of good tracks classified as good normalized by the number of tracks (good or bad) classified as good.
- Events need to have at least one track candidate.
- Set the threshold to 0.2 to have a higher efficiency
- Blue: model with 20 neurons in 3 hidden layers
- Violet: model with 100 neurons in 3 hidden layers
- Red: model with 20 neurons in 5 hidden layers
- Gray: model with 15 neurons in 1 hidden layer

Mathieu Ouillon

Evaluation on simulation: Efficiency and Purity vs. Current

- Efficiency is always higher than 90% and the purity is between 55% and 95%
- More current means more background

- in 3 hidden layers
- Red: model with 20 neurons in 5 hidden layers
- Gray: model with 15 neurons in 1 hidden layer

Evaluation on simulation: Efficiency and Purity vs. Momentum

- Background is generated with current I = 487.5 nA
- Constant efficiency and purity across the momentum range

- Blue: model with 20 neurons in 3 hidden layers
- Violet: model with 100 neurons in 3 hidden layers
- Red: model with 20 neurons in 5 hidden layers
- Gray: model with 15 neurons in 1 hidden layer

5

Evaluation On Data: elastic scattering

- To evaluate the performance of the AI, use elastic scattering
- For the AHDC, want the low momentum proton \Rightarrow use electron at low θ Compute $\Delta \phi$ using electron and AHDC hits \Rightarrow shift in $\Delta \phi$ approx. 20°

Test on real data: Al efficiency and purity

- Efficiency and purity as a function of the threshold:
- Threshold: if output above/lower than the threshold ⇒ good/bad tracks
- Efficiency: Number of good tracks classified as good normalized by the number of events.
- Purity: Number of good tracks classified as good normalized by the number of tracks (good or bad) classified as good.
- We have an efficiency of 96%, and a purity of 90% at 0.2

Test on real data: Al efficiency and purity

- Efficiency and purity as a function of the proton momentum:
- Momentum is computed with $\theta_{\rm e}$
- Both the efficiency and purity decrease when the momentum decrease

Summary and Outlook

• ALERT physics program:

- Tagged processes will provide insight into the origin of the EMC effect
- Tagged DIS measurements will help differentiate between models
- Tagged DVCS will bridge the gap between partonic and nucleonic interpretations of the EMC ratio
- We have developed an AI-assisted MLP for track finding:
 - Evaluated efficiency and purity on simulation as a function of momentum, threshold, and current
 - Evaluated efficiency and purity on elastic data as a function of momentum, threshold
 - Efficiency is always higher than 90%
- Future work:
 - Check the efficiency and purity of ⁴He using elastic scattering
 - Improve the model with other information as input (energy deposited and angle between hits)
 - Match hit in the ATOF with track in the AHDC using AI

Thanks

This work is supported in part by the U.S. DOE award #: DE-FG02-07ER41528