Fine-grained detectors for neutrino oscillations in the T2K and HK projects

GDR DI2I - IP2I Lyon

18/June/25

William Saenz

Outline

- Neutrino oscillation in long baseline experiments T2K & HK
- Fine grained detectors (FGD) of J-Parc near detector
- **FGD prototypes** for HK's near detector upgrade

Neutrino oscillation - T2K project

- $T2K \rightarrow Tokai$ to Kamiola
- A long baseline experiment
- Measurement of PMNS mixing parameters (including δ_{CP}) and mass differences
- Results could reveal first evidence of CP-violation in lepton sector

Neutrino oscillation - T2K project

- 50 ktons water Cherenkov tank
- Readout by 12k PMTs
- Sensible to beam and atmospheric \boldsymbol{v}

- Multi-detector (gas, scintillators)
- 0.2 T magnet for PID
- Characterises $\mathbf{v}_{_{II}}$ flux and cross-section

- 30 GeV protons on graphite target \rightarrow Kaons + pions
- \mathbf{v}_{μ} and $\mathbf{\bar{v}}_{\mu}$ beam

New generation and upgrade detectors - HK project

- Readout by 20k PMTS
- Under construction (expected to run in 2027)

hyperFGD : study of water-base liquid scintillator (WbLS) prototypes

Main purposes:

- v target mass
- Charged particle tracking

1st generation: FGD1 & FGD2

- Polystyrene scintillator bars: 9 x 9 x 1864 mm³
- 1.1 ton per FGD
- Composition:
 - FGD1: 5760 bars (30 layers)
 - FGD2: 2688 bars (7 layers) + 6 layers of H_2O

1st generation: FGD1 & FGD2

- Polystyrene scintillator bars: 9 x 9 x 1864 mm³
- 1.1 ton per FGD
- Composition:
 - FGD1: 5760 bars (30 layers)
 - FGD2: 2688 bars (7 layers) + 6 layers of H_2O
- Alternating direction layers for X-Y readout
- Wavelength shifting (WLS) fibers: $1 \text{ mm} \emptyset \text{ Y11}$ Kurarey
- Multi-pixel photon counters (MPPC)
 - 667 pixels
 - 1.3 x 1.3 mm²
 - \circ Gain ~ 10⁶
 - PDE (525 nm) ~ 30%

Original near detector limitations:

- Angular acceptance (X-Y plane readout)
- High proton reconstruction energy threshold

Near detector upgrade (2024)

• PØD replaced by **SuperFGD** + haTPC + TOF

2nd generation: SuperFGD

- 2 million 1 cm³ plastic scintillating cubes
- Highly segmented readout in X-Y-Z
 - Three orthogonal Y11 Kurarey WLS fibers per cube
 - Each fiber coupled to a MPPC

2nd generation: SuperFGD

- Sub ns time resolution
- Limited crosstalk (~3 %). Reflecting surface from etching process.
- Light yield ~ 58 PE per MIP per cube per fiber
- Good PID due to high granularity

Upgraded near detector limitations:

- Large uncertainty of $\sigma(\mathbf{v}_e)/\sigma(\overline{\mathbf{v}_e})$ reduces δ_{CP} exclusion power by HK
- Opposite to near detector, far detector is water base:
 - Cherenkov light yield < scintillation light
 - Water is inactive and cannot track protons

Near detector ultimate upgrade (2031)

- Former FGD + TPC replaced by active water-base tracker detectors
- Proposal: 5 ton of water-base liquid scintillator (WbLS) \rightarrow HyperFGD

Next generation: HyperFGD

- ANR project. LPNHE ETH collaboration
- Water-base Liquid Scintillator (WbLS) prototype
 Organic liquid scintillator (developed at BNL)
 - 90% water + 10% LAB + PPO/bis-MSB
- Voxels of 1 cm³ (same granularity as SFGD)
- Inner walls: Divinycell foam + 3M reflector
- X-Y-Z readout with Kuraray Y11 WLS fibers
- Hamamatsu MPPC: pitch 50 µm, PDE ~40%

Setup @ETH Zurich

Next generation: HyperFGD

- Dedicated new experimental room at LPNHE
- Goals:
 - Optimise water WbLS mix \rightarrow Light Yield maximization
 - Study different geometrical configurations for cells (cubes holes, fiber groves, fiber -MPPC coupling)

Work in progress!

Thank you

Want to join us?

Upcoming research engineer position at LPNHE (CDD)

- Mechanical design of the 10 tons upgrade
- Design and production of the water-tight prototype
- Optimisation of the optical coupling
- Study alternatives for internal hyperFGD walls

Hello world setup at LPNHE

• 1 SFGD cube + 2 WLS fibers to test electronics and printed structures

First 3D printed support

Light emission in LAB + PPO

Nu detection in SK

Super Kamiokande IV 1294.7 days : Monitoring

Reflector

- Need to assemble a grid of light materials
 - 1.2 mm width of foam (Divinycell) + 3M film to increase reflectivity

