

Range monitoring in proton and carbon therapy with the TIARA detector

<u>M. Pinson</u>¹, A. André¹, Y. Boursier², M. Dupont², M.-L. Gallin Martel¹, A. Garnier², J. Hérault³, C. Hoarau¹, J.-P. Hofverberg³, P. Kavrigin¹, D. Maneval³, C. Morel², J.-F. Muraz¹, M. Pullia⁴ and Sara Marcatili¹

¹ LPSC and Grenoble-Alpes University, Grenoble, France ² CPPM and Aix-Marseille University, Marseille, France ³ Centre Antoine Lacassagne, Nice, France ⁴ CNAO, Pavia, Italy

June 18th 2025, GdR DI2I, Lyon, France

Context – Hadron therapy

Advantages of hadron therapy

Characteristic depth-dose deposition profile (Bragg peak)

- → Less dose deposition in upstream healthy tissue compared to conventional X-ray therapy
- \rightarrow High ballistic precision

Current limitations

Uncertainties / anatomical changes in patient tissue composition

Knopf, A. C., & Lomax, A. (2013). In vivo proton range verification : A review. Physics in Medicine & Biology, 58 (15), 131-160

Mohamed, Nader & Lee, Anna & Lee, Nahyun. (2021). Proton beam radiation therapy treatment for head and neck cancer. Precision Radiation Oncology. 6. 10.1002/pro6.1135.

Context – Prompt Gamma (PG) rays

<u>Range monitoring of hadron therapy by</u> <u>secondary particle detection</u>

Prompt Gamma (PG) rays are good candidates

 \rightarrow Byproduct of nuclear reactions between the beam and the target nuclei

 \rightarrow Emitted within 1 ps

 \rightarrow Prompt Gamma emission probability strongly correlated to dose

J. Krimmer et al. Prompt-gamma monitoring in hadrontherapy: A review. Nucl. Instrum. Methods Phys. Res. A, 2018, 878, pp.58-73. 10.1016/j.nima.2017.07.063

Context – Time Imaging ARrAy (TIARA)

Context – Time Imaging ARrAy (TIARA)

Data acquisition system

Wavecatcher / SAMPIC TDCs developed by IJCLab Orsay, France

Work in progress : In house digital TDC on FPGA board at LPSC, Grenoble, France

GdR DI2I, June 2025

Detection of anatomical variations with the TIARA system for proton beams

March 2024 campaign at the Proteus One at CAL (Centre Antoine Lacassagne), Nice, France

First test of an 8 PG module prototype

Irradiation of a RANDO head phantom with 100 MeV protons at **Single Proton Regime (SPR, 10⁷ protons/s)**

→ Full sinus (ultrasound gel)

→ Empty sinus

Detection of anatomical variations with the TIARA system for proton beams

<u>March 2024 campaign at the Proteus One at</u> <u>CAL (Centre Antoine Lacassagne), Nice, France</u>

First test of an 8 PG module prototype

Irradiation of a RANDO head phantom with 100 MeV protons at **Single Proton Regime (SPR, 10⁷ protons/s)**

Maxime PINSON

GdR DI2I, June 2025

Detection of anatomical variations with the TIARA system for proton beams

<u>March 2024 campaign at the Proteus One at</u> <u>CAL (Centre Antoine Lacassagne), Nice, France</u>

First test of an 8 PG module prototype

Irradiation of a RANDO head phantom with 100 MeV protons at **Single Proton Regime (SPR, 10⁷ protons/s)**

Challenges linked to carbon ions

Fragmentation tail of secondary particles (mostly protons) → Source of background for the TIARA system

Higher LET than protons

→ Requires modifications of the beam monitor

Time structure of CNAO synchrotron → Data analysis not quite as simple

CNAO (National Center for Oncological Hadrontherapy) synchrotron in Pavia, Italy

Challenges linked to carbon ions

<u>Fragmentation tail of secondary particles (mostly protons)</u> → Source of background for the TIARA system

Higher LET than protons

→ Requires modifications of the beam monitor

Time structure of CNAO synchrotron → Data analysis not quite as simple

J. Krimmer et al. Prompt-gamma monitoring in hadrontherapy: A review. Nucl. Instrum. Methods Phys. Res. A, 2018, 878, pp.58-73. 10.1016/j.nima.2017.07.063

Challenges linked to carbon ions

Fragmentation tail of secondary particles (mostly protons) → Source of background for the TIARA system

<u>Higher LET than protons</u> → Requires modifications of the beam monitor

Time structure of CNAO synchrotron → Data analysis not quite as simple

- Reduced amplifier gain
- Reduced thickness of plastic scintillator (1 mm → 0.5 mm)

Challenges linked to carbon ions

Fragmentation tail of secondary particles (mostly protons) → Source of background for the TIARA system

Higher LET than protons → Requires modifications of the beam monitor

Time structure of CNAO synchrotron \rightarrow Data analysis not guite as simple

Carbon ion measurements

Thick PMMA target (~ 30 cm)

Energies used :

189.66 MeV/u 195.18 MeV/u 200.61 MeV/u 205.95 MeV/u 211.19 MeV/u

~ 3.5 mm shifts in PMMA in between energies

Carbon ion measurements

- → TOF histogram analysis + background
- \rightarrow Small energy shifts to quantify sensitivity
- → Bootstrap technique

Maxime PINSON

Carbon ion measurements

- → TOF histogram analysis + background
- → Small energy shifts to quantify sensitivity
- → Bootstrap technique

200.61 MeV/u ~ *2 10⁶ carbons*/s

Carbon ion measurements

- → TOF histogram analysis + background
- → Small energy shifts to quantify sensitivity

1

2

3

→ Bootstrap technique

Thick PMMA target 29 cm

GdR DI2I, June 2025

200.61 MeV/u ~ *2 10⁶ carbons*/s

Carbon ion measurements

- → TOF histogram analysis + background
- \rightarrow Small energy shifts to quantify sensitivity

1

2

3

→ Bootstrap technique

Thick PMMA target

29 cm

GdR DI2I, June 2025

200.61 MeV/u ~ *2 10⁶ carbons*/s

18

Maxime PINSON

Carbon ion measurements

- → TOF histogram analysis + background
- → Small energy shifts to quantify sensitivity

1

2

3

→ Bootstrap technique

Thick PMMA

target 29 cm

GdR DI2I, June 2025

Carbon ion measurements

→ TOF histogram analysis + background

1

2

3

- → Small energy shifts to quantify sensitivity
- → Bootstrap technique

Thick PMMA

target 29 cm

Conclusion and outlook

Extensive tests of the TIARA system in proton environment

Adpatation of TIARA to a carbon (and synchrotron) environment

Ongoing investigation of sensitivity measurements in carbon setup

Upcoming 30 PG module version

Acknowledgments and credits

The TIARA Collaboration

- **LPSC:** <u>S. Marcatili</u>, A. André, ML. Gallin-Martel, L Gallin-Martel, C. Hoarau, P. Kavrigin, J-F Muraz, M. Pinson
- CPPM: Y. Boursier, M. Dupont, A. Garnier, C. Morel
- CAL: D. Maneval, J. Hérault, J-P Hofverberg

Funded projects

IRS – Initiative de Recherche Stratégiques (project ANR-15-IDEX-02)

INSERT PCSI TIARA (Convention n°20CP118-00)

UNIVERSITÉ Grenoble

Alpes

ERC Starting Grant (project 101040381)

This work was partially supported by the **European Union (ERC project PGTI, grant number 101040381)**. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

Special thanks to:

- CAL/IN2P3 COMEX for the allocated beam time
- HITRIplus project for beam time at CNAO and related travel expenses
- Marco Pullia (CNAO) and his team for the nice reception
- Labex PRIMES for funding beam time at CAL and two M2 internships

Proton calibration @ 100 MeV ~ 2-4 10⁶ protons/s

Background contamination from direct protons impacting the PG modules, have different signal signatures than PG rays

Proton calibration @ 100 MeV ~ 2-4 10⁶ protons/s (CNAO)

Background contamination from direct protons impacting the PG modules, have different signal signatures than PG rays

Backup

Beam monitor calibration, proton beam

Coincidence read out of both plastic monitors, assuming identical time resolution for both

A. André et al., "A Fast Plastic Scintillator for Low-Intensity Proton Beam Monitoring," in IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 9, no. 3, pp. 382-387, March 2025, doi: 10.1109/TRPMS.2024.3498959.

Backup

PG module calibration

- Coincidence read out of two PG modules in between a Cobalt 60 source
- Laser calibration

GdR DI2I, June 2025

• Tempeature dependance

Maxime PINSON