

Assemblée Générale du GDR DI2I

Optimisation du traitement du signal de lecture des détecteurs MKIDs

Mounir Abdkrimi - Doctorant

Université Grenoble Alpes – Laboratoire de Physique Subatomique et de Cosmologie – IN2P3 – CNRS

Grenoble, France.

19/06/2025

- Introduction
- Modélisation de l'électronique de lecture des MKIDs
- Conclusion

Introduction Astronomie millimétrique

- Observation de l'univers dans [30 GHz 330 GHz] :
 - Étude: CMB et de l'effet SZ.
- Instruments développés en collaboration au LPSC au cours des 10 dernières années :
 - Le plus récent : **CONCERTO**, installé au Chili (**APEX**).
- MKIDs : Microwave Kinetic Inductance Detectors.
- Principaux défis pour une détection efficace :
 - Minimiser le bruit électronique.
 - Capacité à multiplexer plusieurs milliers de pixels.

CONCERTO

www.eso.org

APEX antenna 3/20

Introduction Modèle MKID

- MKIDs utilisent un film supraconducteur comme dispositif de détection.
- Photon \rightarrow Déplacement de la fréquence de résonance.
- Méthode : mesure de la variation d'amplitude et de phase.
- Facteur de qualité élevé : $Q = 10^5 \rightarrow \Delta f = f/Q \approx 10-100 \text{ kHz}.$
- Réglage capacitif de la résonance → multiplexage en fréquence

Introduction Matrice de MKIDs dans CONCERTO

- Matrice de 2200 <u>pixels =</u> MKIDS.
- Répartis sur 6 lignes de transmission. Chaque ligne :
 - 400 MKIDs en série,
 - Bande de 1 GHz.
- 6 cartes électroniques de lecture.

Scan VNA d'une ligne de transmission

Instrumentation du détecteur Principe de lecture

1. Génération de peigne de fréquences (multiplexage en fréquence).

Ton = sinusoïde

- **2.** Décalage fréquentiel vers la bande de résonance.
- **3.** Propagation du signal à travers le cryostat et interaction avec la matrice.
- **4.** Translation de fréquence vers la bande de base.
- **5.** Traitement du signal :
- -Prétraitement embarqué avec Digital down conversion (DDC).
- -Traitement logiciel des variations de phase et d'amplitude

$$ext{Amplitude} = \sqrt{I^2 + Q} \ ext{Phase} = ext{arctan} \left(rac{I}{Q}
ight)$$

Électronique de lecture KID_READOUT

FPGA

FPGA: XCKU060FFVA1156-2. -2760 DSP Slices. -663360 Flip-Flops.

- DAC: AD9136.
- Dual output.
- Resolution: 16 bits.

ADC: ADC12D1x00. - 2 interleaved ADCs.

- Resolution: 12 bits.

IQ Modulator: ADL5375.

Mixer : AD8342.

2 GHz frequency sampling

Cadre de la thèse KID_READOUT

- Contexte :
 - Solution existante : KID_READOUT.
 - Capacité actuelle : lecture de 400 MKIDs.
 - Enjeu : Accroître la capacité.
- Défis:
 - Absence de modèle de KID_READOUT.
 - Architecture complexe (numérique + analogique).
- Contribution de la thèse :
 - Modélisation de KID_READOUT.
 - Identification des limitations et mise en œuvre d'optimisations.

Modélisation de la chaîne analogique Contraintes

- Composants du commerce :
 - \rightarrow Absence de modèle.
 - → Documentation incomplète.
- Non-optimisable :
 - → Composants sélectionnés parmi les meilleurs du marché.
 - → Circuit analogique figé.

Modélisation de la chaîne analogique Méthodologie

Analyseur de spectre

- 1- Mesures (par ex. **analyseur de spectre**)
- 2- Détection des imperfections dégradant le SNR.
- 3- Modélisation et comparaison avec les mesures.

Simulation du modèle 11/20

Modélisation de la chaîne numérique

- Optimisable :
 - \rightarrow Architecture modifiable (firmware).
 - 1- Compréhension et analyse du VHDL.
 - 2- Développement d'un modèle haut niveau en virgule flottante.
 - 3- Conversion en virgule fixe : modèle temporel au cycle près.
 - 4- Validation du modèle.

Testbench de l'entité VHDL

Modèle KID_READOUT

- Modélisation les imperfections de chaque composant analogique :
 - \rightarrow DAC : slew-rate
 - → Non-linéarités RF des modulateurs et démodulateurs,
 - → ADC : Jitter et architecture entrelacée.
- Modélisation VHDL (cycle/valeur) :
 - → CORDIC, DDC, modulateur numérique, sur-échantillonneur , filtre polyphase.

<u>→ Slew-rate du DAC</u> <u>→ CORDIC</u> <u>→ DDC</u>

Modélisation et exploitation du modèle Slew-rate

- **Slew-rate du DAC** : Capacité de vitesse de suivi de la tension (V/ μ s).

Input \longrightarrow DAC \longrightarrow Output $\bigwedge_{\Delta V}$

- Limite potentielle dans le cas multiplexage fréquentiel

A ou

- Pas documenté.
- Mesures en cas non idéaux. -
- Développement d'un modèle de slew rate.
- Figure de mérite : différence d'amplitude mesure vs. modèle.
 → <u>Slew rate</u> de l'AD9136 : 3325 V/μs.

Modélisation et exploitation du modèle Slew-rate

- Simulation de peignes de fréquences
- Démarrage avec phase aléatoire.

• Jusqu'à 600 tons simultanées.

Modélisation et exploitation du modèle CORDIC

- Algorithme itératif et efficace pour calculer les tons.
- **400 CORDIC** implémentés : 10 bits 10 itérations (=nombre d'étages).
- Simulations et analyse pour N bit N itérations.
- -3 itérations \rightarrow même SFDR.
- Effet de la résolution sur le cross-talk.
- CORDIC optimisé : 6 bits 3 itérations,
- Gain en ressources :
 - → LUTs : $215\ 228 \rightarrow 85\ 825$: 39%pt. → FFs : $346\ 539 \rightarrow 212\ 481$: 20%pt.

Modélisation et exploitation du modèle DDC

- Extraction des composantes I et Q du peigne de fréquences.
- Zéros du filtre : multiples de la résolution fréquentielle de génération.
- La résolution minimale pour extraire I et Q.
- 2 multiplieurs remplacés par 2 démodulateurs carrés.
- Pas de dégradation du qualité du signal.
- Suppression de 800 multiplieurs: → DSPs : 1 953 → 1 153 (29%pt)

Validation des optimisations

 Intégration des modifications optimisées dans le firmware VHDL existant.

 Mesures et comparaison entre les versions originale et optimisée.

- Résultats des optimisations :
 - \rightarrow Pas de perte en qualité de signal.
 - \rightarrow Même électronique, moins de ressources utilisées.
 - \rightarrow Capacité de lecture doublée : <u>800</u> MKIDs au lieu de 400.

Conclusion et perspective

- Modélisation complète de la chaîne de lecture, numérique et analogique.
- Grâce au modèle :
 - * Identification des limitations analogiques et de leur impact sur la lecture des MKIDs :

→ Slew rate, non-linéarités RF, jitter, bruit blanc, ADC entrelacés...

- * Optimisations matérielles du CORDIC et DDC :
 - → Réduction significative des ressources FPGA, sans dégradation des performances.
- Validation expérimentale sur l'instrument réel.
- Utilisation du modèle pour simplifier la chaîne d'excitation.

Merci pour votre attention