

TCAD Optimization of MAPS with Internal Low-Gain Amplification

Hasan SHAMAS, Andrei DOROKHOV, Jerome BAUDOT

20 June 2025, GDR DI2I, Lyon

Outline

1. Motivation & Objectives

- Overview of CPS projects
- Why internal amplification is needed

2. Methodology-Initial step

- CERN prototypes (Measurements & Simulations)
- 3. Simulated Structure & Electrical Characterization
- 4. Conclusion & Future Work

Motivation-CMOS Pixel Sensors (CPS) in Particle Detection

CPS are devices for charged particle or light detection where sensor and readout electronics are implemented in single chip

Main Advantages:

- Low material budget (<1 % X0/layer)
- High granularity, enabling excellent spatial resolution (<10 µm)
- Low fabrication cost
- Fast evolution of the CMOS technology provided by the industry

Widely used in:

Vertex and tracking detectors (ALICE ITS2, CBM, Belle II, etc..)

X-ray radiography and Industrial applications

Motivation-Overview of CPS Projects

Project	Year	Technology	Pitch	Spatial Res.	Time Res.	Power dissipation	Application
MIMOSIS	2025	TJ 180 nm	~28 um	~5 µm	~5 µs	<100 mW/cm ²	Vertex detector (CBM)
OBELIX	2027	TJ 180 nm	~30 um	~15 µm	~100 ns	<200 mW/cm ²	Tracking/counting (Belle II)
MOSAIX	2026	TPSCO 65 nm	~22 um	~4 um	~5 us	<40 mW/cm ²	ALICE ITS3
OCTOPUS	2028	TPSCO 65 nm	<20 um	~3 um	~5 ns	<50 mW/cm ²	FCCee collider
TRACKER	2028	TPSCO 65 nm	~25 um	~10 um	~100 ps	TBD	FCCee collider

Applications are becoming more demanding — driving the need for advanced CPS designs that require:

Smaller pixel pitch (higher spatial resolution) Improved timing performance

Lower power consumption

Motivation-Technological Constraints in Advanced CPS Design

Internal Amplification as the Solution

A Closer Look at Pixel Amplification Challenges

Additional noise / thermal noise

Issues with shrinking pixel size:

Border conditions Uniformity over matrix

Methodology & Initial step

- R&D Steps: Simulations, design/fabrication, tests
- Prototypes from CERN 2024 (CASSIA Project)
 - Larger pitch ~ 80 µm

Mean Pulse Amplitude vs (V - Vbr)

Laser test ==>

Matching TCAD Simulations with Measured Data

Comparison between TCAD simulations and CERN laser measurement data

Planning Our Own Prototype (APICS)

Design Considerations : Gain Layer Size

Structure 1 (Nwell + deep Pwell)

- Best performance found at **6 µm** (gain & uniformity)
- Not permitted by foundry design rules → submitted version uses 4 µm
- Current simulation results still correspond to 6 μm case

Structure 2 (Smaller Nwell + deep Pwell)

- Deep Pwell gain layer (3um) not allowed by design rules
- Extra Deep Pwell used instead (compatible)
- Contributed to measurements at CERN within the CASSIA project on structures using extra deep p-well
 → more confidence to simulate extra deep p-well configurations in Structure 2

Definition of Gain, Charge Sharing, and Pixel Signal

Gain Definition:

$$G = rac{Q_{ ext{collected (with gain)}}}{Q_{ ext{collected (no gain, single pixel)}}}$$

- **Q**_{collected (with gain)} : Charge collected by a pixel with gain
- **Q**_{collected (no gain)} :Charge that would be collected by the same pixel without gain
- **Q**_{generated}: Total primary charge generated by the incident particle
- C: Capacitance of the pixel node

Pixel Signal Voltage:

$$V_{ ext{signal}} = rac{G \cdot CS \cdot Q_{ ext{generated}}}{C}$$

A : Center B : Intermediate C: Corner

Charge Sharing:

Gain Variation with Hit Position

- Intermediate: 36321e- ; gain~25
- Corner: 34587e- ; gain~23
- Center: 33406e- ; gain~22

- Intermediate: 31736e- ; gain~22
- Corner: 34316e- ; gain~23
- Center: 20216e- ; gain~13

C-V curve

Structure 1: Pixel-to-Pixel Gain Fluctuation with Varying Gain Layer Doping

Simulation indicates a low gain mode voltage window of approximately 5V

Conclusion & Future Work

- Standard CIS process can be used for LGAD fabrication
- TCAD simulations guided the design choices optimal gain layer width and electrode configuration identified
- Simulation indicates a low gain mode voltage window of approximately 5V
- Simulated behavior shows good alignment with CASSIA measurements, validating simulations models
- Submission of test chip in Tower 180 nm technology for fabrication

Next steps:

- Simulations to study radiation tolerance
- Preparation of tests at Strasbourg
- Test the structures which are fabricated within APICS and CASSIA project

Backup Slides

APD Gain & Noise Expressions

Empirical Gain Formula:

$$M\left(V\right) = \frac{1}{1 - \left(\frac{V}{VB}\right)^n}$$

- V_B: Breakdown voltage
- n : Parameter depending on the APD structure

Excess Noise Factor: $F = k \cdot M + (1 - k)(2 - 1/M)$ $k = \beta / \alpha$ (k-factor) β - ionization coefficient for holes α - ionization coefficient for electrons (see R.J. McIntyre, IEEE Tr. ED-13 (1972) 164)

Laser Setup

- Photons of ~ 1060 nm
- Central pixel biased
- P-well and sub set to 0V, only voltage applied through n-well to central pixel
- Cx amplifier (gain of 6.8 mV/fC), connected in series to central pixel only

3x3 matrix

Center pixel biased separately than rest of matrix

NMOS		IS A	NWELL COLLECTION ELECTRODE		
PWELL DEEP P	NWELL	L		PWELL NWELL	
LOW DOSE	N-TYPE IMPLAN	H	GAIN LAYER	>	
P ⁻ EPITAXIAL	LAYER				
P* SUBSTRA	TE				
		=	-		

15 μm Pixels: A Path to 3 μm Resolution

~3 um spatial resolution required by physics program (FCCee VTX requirments)

Represented by A.Besson at ECFA_Paris_2024 conference (https://indico.in2p3.fr/event/32629/overview)

Ref:arXiv:2309.14814

Structure 1: Exploring P-Gain Layer Parameters (Nwell + Extra deep P-well)

• For Structure 1, instead of using a Deep P-Well (DPW) gain layer, we explore different gain layer with varying depth and doping concentrations.

Doping Conc. (cm ⁻³) Depth (um)	1x10 ¹⁶	1x10 ¹⁷	1x10 ¹⁸	
1.5	Gain : 8 Voltage : 58.2 V Leakage : 1.9e-12 A	Gain : no gain Voltage :21.91 V Leakage : 2.8e-12 A	Gain : 2.7 Voltage : 21.99 V Leakage : 2.4e-11 A	Same s
2	Gain : 10 Voltage : 59.29 V Leakage : 2.6e-12 A	Gain : no gain Voltage : 31.8 V Leakage : 2.6e-14 A	Gain : no gain Voltage : 26.58 V Leakage : 2.4e-11 A	Pwell g gain lay
2.5	Gain : 10 Voltage : 59.88 V Leakage : 2.3e-12 A	Gain : (Geiger mode) Voltage : 44.18 V Leakage : 6e-14 A	Gain : (Geiger mode) Voltage : 39.75 V Leakage : 1e-14 A	
3	Gain : 5 Voltage : 60 V Leakage : 5e-13 A	Gain : 21 Voltage : 53.89 V Leakage : 3e-12 A	Gain : 20 Voltage : 52.57 V Leakage : 4.3e-12 A	
3.5	Gain : 3.5 Voltage : 60 V Leakage : 3e-12 A	Gain : 23 Voltage : 57.28 V Leakage : 3.8e-12 A	Gain : 26 Voltage : 56.93 V Leakage : 2.7e-12 A	

Same study could be done for structure 2 replacing the deep Pwell gain layer by another Pgain layer (small Nwell + Extra deep P-well)

Simulating APICS-LGAD Structures: 15 µm Pixel Pitch, 18 µm Silicon Thickness (Round electrode)

