

search and innovation programme under grant agreement No. 871072

Measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)

Caractérisation du capteur **MIMOSIS** pour le détecteur de vertex de CBM

A. Altingun², Julio Andary¹, Benedict Arnoldi-Meadows¹, Ole Artz¹, Jérôme Baudot², Grégory Bertolone², Auguste Besson², Norbert Bialas¹, Roma Bugiel², Gilles Claus², Claude Colledani², Hasan Darwish^{1,2,3}, Michael Deveaux^{1,3,6}, Andrei Dorokhov², Guy Dozière², Ziad El Bitar², Ingo Fröhlich^{1,3}, Mathieu Goffe², Benedikt Gutsche¹, Fabian Hebermehl¹, Abdelkader Himmi², Christine Hu-Guo², Kimmo Jaaskelainen², Oliver Michael Keller⁶, Michal Koziel¹, Franz Matejcek¹, Jan Michel¹, Frédéric Morel², Christian Müntz¹, Hung Pham², Christian Joachim Schmidt³, Stefan Schreiber¹, Matthieu Specht², Dennis Spicker¹, Joachim Stroth^{1,3,4}, Isabelle Valin², Roland Weirich^{1,} Marc Winter⁵ and Yue Zhao² ¹Goethe-Universität Frankfurt, Germany ²Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France ³GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany ⁴Helmholtz Forschungsakademie Hessen für FAIR, Germany ⁵IJCLab, UMR9012 – CNRS / Université Paris-Saclay / Université de Paris, France

⁶Facility for Antiproton and Ion Research in Europe GmbH, Germany

CMOS pixel sensors for charged particle detection

- Main features •
 - ✓ Monolithic, p-type Si
 - Signal created in low doped thin epitaxial layer ~10-30 μ m ✓ Thermal diffusion of e-
 - - Limited depleted region (can be enhanced)
 - Charge collection: N-Well diodes
 - Charge sharing => resolution
 - Continuous charge collection \checkmark
 - No dead time
 - Main advantages

.

- ✓ Granularity
 - Pixel pitch down to 10 x 10 μ m² spatial resolution down to ~ few μ m)
- ✓ Material budget
 - whole sensor routinely thinned down to 50 μ m
- Signal processing integrated in the sensor Flexible running conditions
- From ~ 0°C up to 30-40°C if necessary
 Low power dissipation (~ 100 mW/cm²) => material budget
 Radiation tolerance: > MRad and O(10¹⁴ neq) f(T,pitch)
- Industrial mass production
 - Advantages on costs, yields, fast evolution of the technology,
 - Possible frequent submissions
- Evolving technology: new accessible processes:
 Smaller feature size, adapted epitaxial layer \checkmark

 - Open the door for new applications
- Main limitations
 - Industry adresses applications far from HEP experiments concerns
 Different optimisations on the parameters on the technologies

p-we

recombination

ionizing particle

passivation

oxide

p-epi

p++ substrate

The MVD @ CBM @ FAIR - GSI

A.Besson, G. Bertolone, Z. El Bitar

MVD Physics goals

CBM @ FAIR (GSI) ٠

✓ Fixed target experiment to study the QCD phase diagram in the high baryon density region

- Micro-Vertex Detector (MVD) •
 - ✓ High precision reconstruction of secondary vertices
 - e.g. charm mesons ~ 100 μ m flying distance
 - ✓ High rate, high irradiation, non homogenous in time and space

time [s]

Space inhomogeneity

A.Besson, G. Bertolone, Z. El Bitar

Time fluctuations

5

CBM experiment at FAIR

- 4 double-sided thin planar detector stations
- ~300 sensors needed
- 100 kHz Au+Au @ 11 AGeV and 10GHz p+Au @ 30 AGeV
- Non uniform hit density in time and space
- High radiation environment, operating in vacuum

MIMOSIS Sensor in 1 slide

MIMOSIS sensor for CBM-MVD @ FAIR

✓ Based on ALPIDE architecture

- Multiple data concentration steps
- Elastic output buffer
- 8 x 320 Mbps links (switchable)
- Triple redundant electronics

\checkmark A milestone for Higgs factories

- « 5 μm / 5 μs » + enhanced bandwidth
- Improve radiation hardness

Physics parameter	Requirements			
Spatial resolution	~ 5 um			
Time resolution	~ 5 us			
Material budget	0.05% X ₀	L		
Power consumption	$< 100 - 200 \text{ mW/cm}^2$			
Operation temperature	- 40 °C to 30 °C			
Temp gradient on sensor	< 5K	٦	4	~
Radiation tol* (non-ion)	~ 7 x 10 ¹³ n _{eq} /cm ²	┢		٨
Radiation tol* (ionizing)	~ 5 MRad	4	1	~
Data flow (peak hit rate)	@ 7 x 10 ⁵ / (mm ² s) > 2 Gbit/s	┢		Δ

Parameter	Value
Technology	TowerJazz 180 nm
Epi layer	\sim 25 μm
Epi layer resistivity	$> 1k\Omega cm$
Sensor thickness	60 µ m
Pixel size	26.88 µm × 30.24 µm
Matrix size	1024 × 504 (516096 pix)
Matrix area	\approx 4.2 cm ²
Matrix readout time	5µs (event driven)
Power consumption	$40-70 \mathrm{mW/cm^2}$

Requirements already achieved with MIMOSIS-1

Similar to ALPIDE

~ x10 ALPIDE ~ x2 ALPIDE

> Bent MIMOSIS-2 (R= 15mm) For e+ecollider VTX demonstrator

Design & variants

MIMOSIS and process options/modifications

Pic from: Munker, Vertex 2018, Status of silicon detector R&D at CLIC Carlos, TREDI 2019, Results of the Malta CMOS pixel detector prototype for the ATLAS Pixel ITK

Pic from: Munker, Vertex 2018, Status of silicon detector R&D at CLIC Carlos, TREDI 2019, Results of the Malta CMOS pixel detector prototype for the ATLAS Pixel ITK

- standard process (3 available wafers)
- continuous n-layer (blanket) (3 wafers)
- additional p-implant (3 wafers)
- gap in n-layer (3 wafers)

A.Besson, G. Bertolone, Z. El Bitar

Example: MIMOSIS (CBM-MVD) & Decision on options for sensing elements

W. Snoeys et al., NIM-A Vol.871 (2017) 90–96. Munker, Vertex 2018, Status of silicon detector R&D at CLIC

C 100

Variants

• Pixel structure:

- ✓ DC pixels (substrate bias applied up to 6V)
- \checkmark AC pixels (substrate + top bias up to 6V + 20V)
- Doping profile:

✓ Standard process (partially depleted)
 ✓ "p-stop" (fully depleted)

- Epitaxial layer thickness:
 - $\checkmark 25~\mu m$ thick
 - $\checkmark 50~\mu m$ thick
- 8 pixel variants in total

MIMOSIS read-out architecture

- 3-stage buffering → to cope with in-homogeneous hit density
- Region readout out @ 20 MHz \rightarrow 5 µs time of full matrix readout
- Elastic buffer → can store variable-size frames → required because of the data rate fluctuations
- Variable number of outputs → lower bandwidth but lower power consumption

E. AC / DC pixels

- DC Pixels (~ALPIDE) & AC pixels (top bias up to > 20V)
 - ✓ Amplifier / shaper / discriminator chain similar to ALPIDE in both scheme
 - ✓ Data driven readout
 - ✓ Pulse injection for calibration
 - ✓ Pixel masking options

Mimosis-1 Verification tools example

- Large and complex designs need
 - ✓ A hierarchy in the work flow to keep submission on schedule
 - Verification tools that can be run in a reasonable time
 - ✓ Knowledge of these tools is crucial
- Example Power-grid problem
 observed in MIMOSIS-1
 - ✓ Threshold shifts
 - Problem fixed quickly thanks to the verification tools

F. Morel DRD7 kick-off meeting

Performances

Mimosis-1/2

Lab tests for all different versions (pixels, process) ~15 beam test campaigns over 4 years (DESY, CERN, CYRCE, etc.) Single Event Effect studies (not covered here) Irradiations campaigns Large FTE effort

In beam performances of the MIMOSIS-2.1 CMOS Monolithic Active Pixel Sensor (PIXEL 2024)

20th Anniversary Trento Workshop on Advanced Silicon Radiation Detectors February 2025, Trento, Italy

MIMOSIS-1

Figure 5: Detection efficiency (blue) and fake hit rate (red) as function of threshold for DC-pixels (left) and AC-pixels (right). The three different pixel types (standard, "n-gap" and "p-stop") are shown in different line styles.

MIMOSIS-1

(a) Detection efficiency and fake hit rate as function of the threshold of AC-pixels for combinedirradiated chips.

(b) Detection efficiency and fake hit rate as function of the applied HV of AC-pixels for combinedirradiated chips at 200 e^- threshold and -1V BB.

Figure 8: Detection efficiency and fake hit rate for the 3 pixel options after a combined-irradiated dose (~5 MRad TID and ~ $10^{14} n_{eq}/cm^2$ NIEL fluences).

MIMOSIS-2.1

MIMOSIS1 and MIMOSIS-2.1

Figure 4: Detection efficiency of the pixels of MIMOSIS-2.1 as compared to the p-stop pixel of MIMOSIS-1. Lines to guide the eye. The (statistical) uncertainties are not shown for clarity and remain below 0.02%. Note the color/symbol code:

standard pixel	p-stop pixel
■▲ 25 µm epi	□∆ 50 µm epi
△▲ MiSIS-1	□■ MiSIS-2.1

Fake rate below 10⁻⁷ hit/pixel/read-out

MIMOSIS-2.1: Cluster mulitiplicity with MIPS

Spatial resolution and cluster multiplicity (MIPS)

standard pixel	p-stop pixel
■▲ 25 µm epi	□∆ 50 µm epi
△▲ MiSIS-1	□■ MiSIS-2.1

Summary

- MIMOSIS CMOS sensor is a versatile sensor for many subatomic applications
 - \checkmark 5 µs / ~5 µm time/spatial resolution.
 - ✓ 80 MHz/cm² peak rate
 - ✓ Radiation hardness
 - \checkmark High efficiency, low fake rate
- Final version (MIMOSIS-3) to be submitted in 2025

Back up

CBM detector subsystem

- Tracking acceptance: 2.5° < θ_{Lab} < 25°
- Peak R_{int} is 10 MHz for Au+Au (300 kHz for MVD)
- Fast & radiation hard detectors
- Free-streaming DAQ
- 4D tracking (space, time)
- Online event reconstruction and selection
- Data rate: 1 TB/sec

GSI GreenITCube High performance computing farm for data processing

Latch-up studies (MIMOSIS-2 with ~4 AMeV Au-ions)

Requirement for MVD:

 Must withstand 1kHz/cm² ions with LET< 35 MeV cm²/mg. (H. Darwish, PhD under preparation)

Preliminary test results (Bit flips):

- Frequent single bit errors seen.
- Correction in status registers works...

... but may be overwhelmed by simultaneous to 2-bit flips (at unrealistically high ion fluxes).

• Data registers not protected.

Preliminary test results (Latch-up):

- No LU for LET \lesssim 50 MeV cm²/mg.
- Some LU seen above.

Preliminary conclusion: Sensor matches requirements – no LU protection system needed.

T.b.d: Bit flip tolerance of data chain.

25

Sensor performance: MIMOSIS-1 vs. MIMOSIS 2.1

Observations:

- MIMOSIS-2.1 reaches lower threshold than MIMOSIS-1.
- MIMOSIS-2.1 reaches even(!) higher efficiency than MiSIS-1.
- Best performance: Novel 50µm epitaxial layer with p-stop.
- Dark occupancy marginal for all sensors (noisy pixels NOT masked).

26