
Neural network inference on FPGA

Application to gravitational wave detection

20th June 2025

A.Boudon / Q.David / G.Galbit / G.Joubert / S.Viret

IP2I Lyon

2 S. Viret

Introduction

From ML to VHDL

Example

→ AI and FPGAs: a long story:

→ But it comes to a price:

• Working on FPGA is rather more complex

• You can implement only simple architectures unless you have big (and expensive)
FPGAs. Certainly not a big issue for LHC L1 trigger applications, but possibly a limitation

for others

→ Indeed, when you have low latency and large bandwidth, FPGAs are far more adapted

than GPUs.

→ Back in the 80s, first neural network inference implementations were done on FPGAs

→ GPUs washed away all that, but FPGAs recently reclaimed some popularity, in particular

in HEP (eg HLS4ML).

https://fastmachinelearning.org/hls4ml/
https://fastmachinelearning.org/hls4ml/
https://fastmachinelearning.org/hls4ml/

3 S. Viret

→ Try to develop a simple approach to implement complex neural network architecture on small

FPGAs. Keep low latency and good efficiency, but also aim for less power consumption.

Introduction

From ML to VHDL

Example

→ Our approach:

Network

optimization
VHDL2MLProblem IP

Network

params

Ressources,

latency,…
Constraints

on efficiency

→ This work is done within the IN2P3 THINK2 R&T program (see https://think.in2p3.fr/

and https://gitlab.in2p3.fr/think2 for more info)

https://think.in2p3.fr/
https://think.in2p3.fr/
https://think.in2p3.fr/
https://think.in2p3.fr/
https://think.in2p3.fr/
https://think.in2p3.fr/
https://think.in2p3.fr/
https://think.in2p3.fr/
https://think.in2p3.fr/
https://think.in2p3.fr/
https://gitlab.in2p3.fr/think2
https://gitlab.in2p3.fr/think2
https://gitlab.in2p3.fr/think2
https://gitlab.in2p3.fr/think2
https://gitlab.in2p3.fr/think2
https://gitlab.in2p3.fr/think2
https://gitlab.in2p3.fr/think2
https://gitlab.in2p3.fr/think2
https://gitlab.in2p3.fr/think2
https://gitlab.in2p3.fr/think2
https://gitlab.in2p3.fr/think2

4 S. Viret

Network

optimization
Problem

Network

params

Constraints

on efficiency

Introduction

From ML to VHDL

Example

A.Boudon, G.Joubert, SV

5 S. Viret

→ Network optimization

→ A common mistake in machine learning is to start from a network far more

powerful than what you need.

Introduction

From ML to VHDL

Example

→ Choosing the good model is a crucial step, often overlooked

→ The key there is to properly define what you have in hand,

and what you are looking for.

→ From there you can define the most adapted architecture.

There is no magic for this, you need to learn a bit, but there

are some nice ressources (eg: https://d2l.ai/)

https://d2l.ai/
https://d2l.ai/
https://d2l.ai/
https://d2l.ai/
https://d2l.ai/
https://d2l.ai/
https://d2l.ai/

6 S. Viret

→ Network optimization

→ OK you have the right network, but now how do you to dimension it?

Introduction

From ML to VHDL

Example

→ No magic here too, and actually even less litterature. Heuristic approach is most

common strategy (the hammer, again…), you test 10’s of networks, and take the best one.

→ But when you start to play with complex neurons and/or

large structure, this approach is quickly becoming

cumbersome.

→ For simple architecture, a bit of thinking can help a lot

→ How you define best is also a good question. Are you just interested in efficiency, or

also on fake rate minimisation,… For FPGA number of parameters, operations per

inference, etc… are also important. How do you account for them?

7 S. Viret

→ Simplifying network optimisation with bayesian approach

→ Bayesian optimization can help you to converge towards an optimal network topology

Introduction

From ML to VHDL

Example

→ You end up with a network combining

good efficiency, but also optimized

inference complexity

→ Applying this method to any type of network provides you with the most FPGA-friendly

topology. It’s mandatory to have this done before going to the next stage.

→ The optimization process tries to

maximise a cost (utility) function. You can put

the network efficiency there, but also sizing

info.

https://github.com/bayesian-optimization

https://indico.in2p3.fr/event/33209/contributions/141760/attachments/87293/131766/BO_think2.pdf
https://indico.in2p3.fr/event/33209/contributions/141760/attachments/87293/131766/BO_think2.pdf
https://github.com/bayesian-optimization
https://github.com/bayesian-optimization
https://github.com/bayesian-optimization
https://github.com/bayesian-optimization
https://github.com/bayesian-optimization
https://github.com/bayesian-optimization

8 S. Viret

VHDL2ML IP
Network

params

Ressources,

latency,…

Introduction

From ML to VHDL

Example

Q.David, G.Galbit

9 S. Viret

→ VHDL4ML implementation

Introduction

From ML to VHDL

Example

⇒Two steps:

1. A firmware/software interface creating RTL

based on optimized network graph and HDL lib.
2. A code to build the IP, accounting for the host

FPGA

FPGA

Performance

evaluation

Host

Architecture

Netlist

simulation

Synthesis &

Implementation

Rtl generation

HDL Lib

Network

params

FW

FW/SW

Interface &
otpimizer

→ The key elements here are the HDL library and the graph optimizer system.

VHDL2ML blocks

10 S. Viret

→ HDL library

Introduction

From ML to VHDL

Example

Example: Conv1D layer with 2 kernel of size 3
DATA OUT

→ The library contains all the basic processing units (PU) necessary to build an RTL version of neurons

Kernel1D

+

Bias

Kernel1D

Kernel1D

Kernel1D

+

Bias

Kernel1D

Kernel1D

Kernel 1D module = FIR filter

10

Low level PU

implementation

→ From the HDL lib one knows the latency/ressource budget of each PU

11 S. Viret

→ RTL generation

Introduction

From ML to VHDL

Example

→ For each neuron type (CNN, MLP, Activation,…), HDL lib provides a basic RTL model. From there it’s

easy to create two RTL codes for the network.

11

→ Unrolled version (PU are used only once).

You get the best latency, but this is clearly
suboptimal in terms of ressource usage.

→ Folded version (only one PU used for all

PU-related operations). Best ressource usage,
but poor latency.

→ One has to define an algorithm which, starting from one of those points and

based on our latency/ressources constraints, finds an optimal working point

Unrolled CNN

encoder

12 S. Viret

→ Optimizer principle

Introduction

From ML to VHDL

Example

12

Impossible

Possible

Impossible for

target FPGA

Targeted

FPGA limit

Folded Unrolled

Working

point

→ The optimization algorithm starts from one end.

→ The best working point depends on

latency/ressources constraints, and is found
during the process.

→ The algorithm uses the latency/ressource

parameters of each processing unit, there is
no RTL involved here

→ Folding/unfolding iteration consists in

respectively removing/adding processing
units to the design.

→ Increasing processing unit reusability (during folding) causes the insertion of memory buffers

and multiplexers.

13 S. Viret

→ From optimized network to IP:

Introduction

From ML to VHDL

Example

Optimized

network graph
IP

→ The best graph is synthetised and if FPGA constraints are fulfilled the network IP is created

→ The final scheduling (given by the optimizer) is handled by a control unit which is

independent of the final network IP

14 S. Viret

→ Use case of GW:
→ GW interferometers have a very good sensitivity but there

is still a lot of noise sources in the final data stream.Virgo

Sensitivity curve

→ A proper noise id/removal currently requires dedicated

and complex offline reprocessing. But our detectors are
triggerless, so latency is not much of a problem a priori.

→ Except for multimessenger (MM) astronomy, where online

detection is important

→ Current ‘online’ latency is ~O(20s).

Introduction

From ML to VHDL

Example

15 S. Viret

→ Why machine learning?

→ The current detection process is based on signal processing techniques: Fourier transforms, Q-

transforms, match filtering,…

→ Some steps are particularly ML-friendly. For example match filtering during which you compare

the stream to a template bank. One can easily replace that by a simple network where the bank
becomes the training sample. You can then replace the big comparison by a simple, much faster,
inference, and put the CPU intensive part offline.

Introduction

From ML to VHDL

Example

16 S. Viret

→ Network optimization

→ Started from a legacy network (1701.00008v3).

→ Very simple CNN encoder take 1s of the data strain
as input (2048 points), a provides 2 values at the

output:

• Compatibility of the data with signal
• Compatibility of the data with noise

Number of operations for 1 inference:
-> N additions : 1187600
-> N multiplications: 1209184

Introduction

From ML to VHDL

Example

Legacy network

structure

Number of parameters: 37094

→ There are much more elaborated architectures

today, but this one is simple, efficient, and
particularly attractive for FPGA implementation

https://arxiv.org/abs/1701.00008v3
https://arxiv.org/abs/1701.00008v3
https://arxiv.org/abs/1701.00008v3
https://arxiv.org/abs/1701.00008v3
https://arxiv.org/abs/1701.00008v3

17 S. Viret

→ Make the network FPGA friendly:

→ Remove some intensive steps: batchnorm (don’t needed because data is whitened upstream), use

relu activations, remove the last softmax activation step (signal cat over threshold is sufficient)

Introduction

From ML to VHDL

Example

→ Then try to adjust hyperparameters in order

to maximise of the surface below ROC curve
(AUROC), and minimise of the number of
operations and parameters (relatively easy

with a simple network).

→ Can be made less heuristic with

bayesian optimisers with those params
added to the cost function. We made some
first conclusive tests with this network.ROC curve for the

legacy network

18 S. Viret

Number of operations for 1 inference:
-> N additions : 154768 (1187600)
-> N multiplications: 154816 (1209184)

Network structure

→ The performance loss is relatively negligible w.r.t.

the massive network size reduction. This is a quick
first look, there is room to improvement here.

→ FPGA-friendly encoder, structure and perf:

Introduction

From ML to VHDL

Example

LEGACY

FPGA-friendly

Number of parameters: 1514 (37094)

ROCs comparison

→ Simple network, easy to get first interesting results:

→ On the FPGA side this is clearly not the same story

19 S. Viret

→ 10 seconds of simulated data, compare the software network output (Tensorflow), with RTL simulation:

→ Output comparison validate the HDL lib. This is

a first important step.

→ RTL implementation and simulation

Introduction

From ML to VHDL

Example

Input Network output

Tensorflow - RTL

→ Now start to test optimisation stage

→ The RTL network is built with HDL lib processing units

20 S. Viret

→ Developed a procedure to implement neural network inference in VHDL on FPGA platform

→ Conclusion

Conclusion

→ Once done, you can go to porting. For this part we started to develop a low level modular

HDL lib which contains an RTL model of each neuron flavor. First elements have been

developed and successfully tested.

→ Based on those bricks, a network graph is build and an optimizer finds an architecture

based on customer requirements in terms of latency and FPGA ressources. A first basic

version has been developed, still lot of improvements possible, work in progress

→ Take home message: a lot can/should be done to optimize the network upstream.

Bayesian optimization is an important ally there, but this will work only if you understand what

you’re doing (eg to choose the right network)

→ Optimizer and HDL lib are independent. You don’t need to modify the optimizer when

you upgrade the HDL lib with a new element.

20 S. Viret

→ Add more complex cells to the HDL lib: currently looking at RNN cells and attention

layers.

→ Next steps

Conclusion

→ Continue to develop and improve the graph optimizer

→ Start to port simple architectures (like the GW encoder) on low level FPGAs (eg CycloneV)

A1 S. Viret

→ STEP 1: optimizer working principle

Introduction

From ML to VHDL

Example

1. Construct the fully folded network graph: each node is a processing unit

Folded Unrolled

2. Estimate the total latency

A2 S. Viret

→ STEP 1: adding paralelization:

Introduction

From ML to VHDL

Example

3. At each iteration, add some blocks (ressources) to paralellize processing and reduce latency

4. Add memory blocks to handle data and network parameters

5. Add multiplexers to further simplify graph

A3 S. Viret

→ Context:

→ The next generation of GW ITFs will have 10x more sensitivity⇒ 1000 times more events

→ You will start to experience pileup … You will see many more BNS events with EM counterpart

(MM golden events). You will need a fast and efficient online detection, a kind of proto GW trigger.

ITF current

data stream

→ Data processing stream will have

to be revisited. Machine learning
could play a significant role.

Introduction

From ML to VHDL

Example

A4 S. Viret

→ A fully ML-based DAQ for the next generation of detectors could look like that:

Fast hardware data processor

→ Why going hardware?

→ Denoising step (hardware unfriendly) can be skip in first approach.

Introduction

From ML to VHDL

Example

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

