

Les détecteurs cibles de la R&T BiCMOS

AG du **GDR DI2I** IP2I Lyon, 2025

Didier Charrier (CNRS, SUBATECH)

Laboratoire de physique corpusculaire

Assemblée Générale du GDR DI2I, IP2I, Lyon

18 - 20 juin 2025

ubatech

Pourquoi la R&T BiCMOS

- La R&T BiCMOS est une réponse concrète à une recommandation émise par un GT précurseur de la Microélectronique des Deux Infinis MI2I
 - Rapport du Groupe de travail "Roadmap Microélectronique@IN2P3" de 2021sur Atrium
- Nécessité de maintenir une ou deux technologie ASIC CMOS / BiCMOS(SiGe) pour des besoins spécifiques en astroparticules et physique nucléaire
 - > Sans contrainte très forte sur la densité d'intégration (détecteur pixel LHC)
 - Sans contrainte forte sur la tenue aux radiations ~50 Mrad (LHC)
 - Et avec ces qualités :

	Dynamique	Coût fonderie	Design mixte	Accès fondeur	Pérennité	Bruit en 1/f faible	Gain- Bande élevé	Driver fort courants en BF et HF	Performanc e à T < 70K
SiGe L > 130 nm	✓	✓	✓	✓	√	√	√	√	✓
CMOS L > 130 nm	√	√	√	√	√	X	X	X	×

Axe 1 : BiCMOS \triangleright

- Trouver un fondeur ==> IHP130nm SG13S et SG13G2 (open source)
- Évaluer la technologie ==> Run 1 lancé en Juillet 2024, circuits livrés, actuellement réalisation carte de test
- Publier les résultats ==> Papier «Transactions on circuits and Systems, IEEE »
- Axe 2 CMOS : Comparaison de technologies CMOS/BiCMOS par :
 - > Simulation de facteurs de mérites
 - transconductance efficiency : gm/ld
 - > speed efficiency : $f_t (g_m/I_d)$
 - \succ intrinsic gain : $g_m r_o$
 - \succ total equivalent input noise density at W_{ref}, TBC
 - > Dynamic : V_{out}^{max} / Noise_{in}^{min} , TBC
 - > Production d'un document de référence confidentiel(NDA) pour comparaison des technologies : AMS 0.35, ST 130 SiGe, IHP 130, XFAB 180, TSMC 130, ON Semi 350
 - Trouver un fondeur ==> XFAB180nm XH et XT180 (SOI) : NDA globale
 - Evaluer la technologie ==> pas de run mais retour d'expérience du run LPC Caen

- - transition frequency : f_t
 - gain band product : ft.gm.ro
 - slew rate : f_t.l_d/g_m

Qui sommes nous?

- 11 Ingénieurs : Didier Charrier Subatech porteur, Damien Prêle APC co, Ludovic Alvado LPC Caen, Edouard Bechetoille IP2I, Si Chen APC, Manuel Gonzalez APC, Laurent Leterrier LPC Caen, Fatima Mehrez LPP⁽¹⁾, Jean Mesquida APC, Patrice Russo IP2I, Bao Ton APC
 (1) Laboratoire de Physique des Plasmas (CNPS Ingénierie)
 - (1) Laboratoire de Physique des Plasmas (CNRS Ingénierie)
- > 2 Chercheurs : Michel Piat APC, Dominique Thers Subatech
- Le projet de Recherche et Technologie BiCMOS est financé par le CNRS Nucléaire & Particules depuis 2022

Journées R&T BiCMOS, Nantes, 8&9 octobre 2024

Environnement de la R&T BiCMOS

source : « journées Samuel Manen, Lyon, 2024 » D. Prêle

- La R&T BiCMOS est en phase avec les 3 Axes de la MI2I pour un maximum d'efficacité : mutualisation, partage et communication avec les microélectroniciennes et micro électroniciens du CNRS Nucléaire & Particules
 - > Axe « Techno » : **R&T** nationale **transverse**, design et fonderie de **briques de base**, **techno alternative** (SiGe)
 - Axe « Outils » avec la mutualisation
 - Installation et maintenance de Cadence et des Design Kit sur le serveur d' OMMIC hébergé au CC et géré par E. Bechetoille
 - Demande de NDA globale fondeurs IHP et XFAB
 - > Axe « Synergie » : publication sur le **site web** de la MI2I, **communications** aux JME, DI2I ...

 \geq

Avantages d'un transistor bipolaire vs MOS

Appli. Cryogénisées (50K)

- > Efficacité de transconductance : $g_m/I_c = 1/U_T \approx 40 V^{-1}$ (@300K), >CMOS et indépendant de I_c
- _ Gain intrinsèque : $g_m.r_o = I_C/U_T.V_A/U_T = V_A/U_T ≈ 4000 > CMOS et indépendant de I_C$
 - Design à faible consommation possible
 - > Mise en œuvre possible à T = 4K $^{(2)}$
 - Gain-bande **très élevé** : g_m.r_o.f_t avec f_t ~ 250GHz ==> Ampli. <u>HF</u> ou BF à grande linéarité et rapide

Avantages d'un transistor bipolaire vs MOS

- > Grand R_{out} V_{EARLY} / I_c (α L/I_d en MOS) ==> Driver <u>fort courant</u> à basse et haute fréquences (charge 50 Ω)
- Faible densité de bruit en 1/f ==> Appli. avec faible Bruit dès 1Hz

Densité de bruit équivalent ramené à l'entrée du transistor

Densité de bruit équivalente en entrée

Avantage BJT car bruit relatif MOS / BJT varie en \sqrt{I} : $v_n^2_{BJT}(i_c) / v_n^2_{MOS}(i_d) \propto \sqrt{I}$

Didier Charrier (CNRS, SUBATECH)

Expériences et détecteurs cibles

<u>रन्ट्रे</u>>

Générateur de tension et |Zg| petit

Astro. X

<u>ATHENA</u> : **TES** (+SQUID) 0.1K, **Zg < 200** Ω, LNA à 300K

Cosmologie CMB en ondes millimétriques

 $\underline{\text{QUBIC}}: \textbf{TES} (+\text{SQUID}) \ 0.1\text{K}, \ \textbf{Zg} < \textbf{10} \ \Omega, \ \textbf{LNA} \ \textbf{a} \ \textbf{50K}$

<u>CMB-S4</u> : Antennes dual-pol. + **TES** (+SQUID) 0.3K, **Zg < 200** Ω, LNA à 300K

<u>ACT</u>: Antennes dual-pol. + **TES** (+SQUID) 0.1K, **Zg < 200 Ω**, LNA à 300K

Radio astronomie.

 \underline{SKA} (LFAA), antennes UWB LPDA, Zg < 200 Ω [50 - 350]MHz

==> Bolomètres(SQUID), Antennes large bande

Générateur de courant et |Y_g| grand

Nucléaire

<u>GRIT</u>, Yg = $j.C_{strip}.\omega$, **strip DSSD**, up to **40pF**, 2k voies

<u>REA</u> (GANIL), Yg = $j.C_{det}.\omega$, **pixel Si** ~ **600pF**, 400 voies

<u>NECTAR</u>, Yg = $j.C_{det}.\omega$, **cellules photovoltaïques**, Cdet = **150nF**

Astro. Xénon liquide ,matière noire

<u>R2D2</u>, TPC, Yg = $1/R_{fil}$, division par **fil résistif** avec $R_{fil} \sim 3 \text{ k}\Omega$

HEP particules, CERN

<u>Monolitic Pixel</u>, Yg = $j.C_{det}.\omega$, ω grand, Fast CSA,ps

==> Détecteurs silicium à pixel et strip , TPC à fils résistifs , cellules photovoltaïques

10

18 - 20 juin 2025

10

IN2P3

Les briques de base du 1^{er} run IHP SG13S

Didier Charrier (CNRS, SUBATECH)

Assemblée Générale du GDR DI2I, IP2I, Lyon

18 - 20 juin 2025

11

Détecteurs cibles : R2D2

- CPC : cylindrical proportional Counter
- TPC cylindrique à xénon liquide
 - Collection de charge par l'anode à 0V sur l'axe du cylindre
 - Division de charge maîtrisée car fil résistif et Préampli. aux deux bouts
 - > Cathode à un potentiel négatif HT

Modélisation du détecteur par 2 lignes de transmission

- L=2m, 0 < I < 2m, <u>Zc</u>=415Ω, c=3.10⁸m/s
- R = 1 à 2.5 k Ω /m, L = 1.38uH/m, C=8.05pF/m

Au premier ordre, avec détecteur réduit à la seule résistance totale du détecteur supposée homogène et un TIA parfait (<u>Zin</u>=0) on démontre que :

Limites du détecteur

L max car résonance propre à f0= c/2L = 75MHz

pour L=2m, ρ = -1 car CC

- R fil max car limitation de bande passante
 fc = 46/22/10 MHz @ 3/5/10 kΩ
- R fil min car bruit thermique du fil = 4kT/R

Detector bandwidth vs Rdet

12

Didier Charrier (CNRS, SUBATECH)

Principe général simplifié

- détecteur primaire à 100mK : bolomètre X ou antennes millimétriques
- énergie transférée à un Transient Edge Sensor (TES) ou un KID à 100mK
- > Multiplexage
 - lecture d'un SQUID à 300K par un LNA (différentiel)
 - \succ lecture de Δ_f pour les KID

Assemblée Générale du GDR DI2I, IP2I, Lyon

13

Didier Charrier (CNRS, SUBATECH)

OUBIC

- > Amplificateur optimisé à 77K pour applications génériques cryogénisées
 - > Retour d'expérience des mesures des NPN du premier run
 - ➢ DC-10M
 - > voir présentation de Bao Ton aux Journées des Métiers de l'Électronique 2025, Strasbourg
- Caractérisations de composants élémentaires à 87K(Argon liquide) en prévision du design d'un amplificateur de courant suivi d'un driver de diode laser pour le troisième module de la TPC de DUNE

- > Amplificateur de charge (CSA) pour détecteurs fortement capacitifs
 - silicium strip detector sur GRIT, C=40pF (LPC-Caen)
 - > projet prospectif du LPC-Caen : Rénovation de l'Électronique d'Acquisition au GANIL (REA)
 - Détecteur pixel silicium pour du contrôle de faisceau , C=600pF, 400 voies
 - cellules photovoltaïques de 150nF pour ions lourds sur NECTAR au GSI
 - ➢ 10 à 50nF/cm²
 - Voir poster de Jérôme Pibernat et al. : «R&D for heavy ion detection with photovoltaic celles »

Autres applications : lecture de Qubit

source : «R. C. Kwende, D. Rosenstock, C. Wang and J. C. Bardin, "A 6mW Cryogenic SiGe Receiver IC for High-Fidelity Qubit Readout," 2024 IEEE/MTT-S International Microwave Symposium - IMS 2024, Washington, DC, USA, 2024, pp. 874-877, doi: 10.1109/IMS40175.2024.10600326.»

- Principe
- un signal RF ~6GHz est injecté dans une matrice de résonateurs
- la phase et l'amplitude du signal réfléchi est analysée : fonction de l'état du qbit, +/- pi/2 en fonction de ω / ω₀
- Transposition de fréquence (mélangeur) par récepteur IQ
- obtention d'une enveloppe (I+Q)^{1/2} et phase=tan⁻¹(Q/I) dont le niveau est fonction de l'état du qubit
- Discrimination par comparateurs

Assemblée Générale du GDR DI2I, IP2I, Lyon

Table 1. Comparison to State-of-the-Art Cryogenic Receivers

N/1		533			
	This Work	[13]	[16]	[17]	[18]
Tech. Node	180 nm BiCMOS	40 nm CMOS	40 nm CMOS	28 nm CMOS	65 nm CMOS
Qubit Type	Transmon	Transmon	Spin	Transmon	Transmon
Freq. (GHz)	5–7	6.5–7.5	6–8	6.5-8.1	5.2–7.2
Gain (dB)	55-65	75	58	65-89	50-70
IRL (dB)	-8	-10	-	-3.7	-12
Measured with Qubit	Yes	No	Yes	No	Yes
Requires ext. LNA	No	Yes	Yes	Yes	Yes
Fidelity	$F_{ 0\rangle} = 99.6\%$	Ŧ	-	-	-
ridenty	$F_{ 1\rangle} = 97.1\%$	-		-	_
Power Diss. (mW)	6	6	66	9.8	17.1

Avantages de la SiGe

- pas besoin d'ampli HEMT externe
- intégration d'un grand nombre de voies possible
- haute fidélité >99%
- puissance dissipé très faible 6mW

Didier Charrier (CNRS, SUBATECH)

Autres applications : HEP CERN

The use of SiGe BiCMOS technologies in HEP

Upgrade of CMS RPCs and SiPm readout

PETIROC2 - 350nm SiGe BiCMO

32

Trigger on first photo-electror

Discriminator parameters				
Technology	Si-Ge BiCMOS 130 nm			
Voltage supply	1-2.5 Volt			
Minimum Threhsold	$0.3 \mu V$			
Minimum input pulse width for threshold linearity	0.5 ns			
BandWidth	10-100MHz			
Power consumption	10mW/ch			
Output Rise time $\delta(t)$ input	300 ps			
Input impedance	100 Ω			
Double pulse separation	1 ns			
Radiation hardness	$10 \text{ kGy}, 10^{13} n \text{ cm}^{-2}$			

INFN Roma Tor Vergata

Number of channels

Sensitivity

source : «SiGe BiCMOS electronics for ultrafast particle detection, Lorenzo Paolozzi, Université de Genève, ACES Workshop 2020»

- For fast CSA and low consomption
- For fast, low power timing measurement
- Upgrade of the ATLAS RPCs
- Upgrade of CMS RPCs and SiPm readout
- Timing pixel sensor for **FASER** upgrade

source : «Fast monolithic silicon pixel detectors in SiGe BiCMOS, The path to picosecond time resolution, LORENZO PAOLOZZI – DPNC SEMINAR»

Détecteur pixel monolithique 4D en IHP SG13G2

- SiGe **f**_t = **350 GHz**
- PicoAD : couche de gain en plus (avalanche)
- Très bonne résistance aux radiations de la SiGe
- objectif : résolution temporelle < **10ps**

20

Autres applications : WADAPT ?

Wireless Allowing Data and Power Transfer

- transmission de données sans fil (DRD 7.1.c)
 - bande disponible vers 60GHz
 - > université d'Heidelberg, transceiver en IBM 130 nm SiGe BiCMOS technology, 57-66GHz,
 - 4.5Gb/s sur 1m sur le silicon strip detector (SSD) d'ATLAS
 - > Atlas inner tracking pixel detector
 - transceiver CMOS CEA LETI : C. Dehos et al.
 - bande disponible vers 140GHz
 - ➤ 16 x 7Gb/s
- transmission d'alimentation sans fil

Merci pour votre attention

