Cosmology with the Rubin Void Size Function

Introduction

PhD supervised by Alice Pisani

Motivations

Early results

Future plan

Funded by the European Union

European Research Council Established by the European Commission

VERA C. RUBIN OBSERVATORY

PhD @ CPPM, CNRS

Theory

U.S. National Science Foundation

Office of Science

13/06/2025

Pierre Boccard

Voids@CPPM team:

Nico Schuster Postdoc

Giulia Degni Postdoc

Katayoon Ghaemiardakani PhD student 1st year

Pierre Boccard PhD student 1st year

Julien Zoubian Research Engineer

Pauline Vielzeuf Postdoc

Marie-Claude Cousinou Professor

Simone Sartori PhD student 3rd year

Stéphanie Escoffier Senior Researcher

amidex Aix Université

FRANCE 2030

Pierre Boccard

PhD @ CPPM, CNRS

Future plan

13/06/2025

Cosmic voids

Early results

Underdense regions spanning from tens to hundreds of Mpc

Reproduce the low-matter density condition produced by the $\Lambda\text{-led}$ accelerated expansion

Dark energy dominates voids earlier than any structure : sensitive to its effect

Existence of different theoretical models and void finders

Motivations

Theory

Introduction

- Surveys of large volumes covering large range of redshifts

Introduction

PhD @ CPPM, CNRS

Theory

Pierre Boccard

_

PhD @ CPPM, CNRS

- Surveys of large volumes covering large range of redshifts

Motivations

Theory

PhD @ CPPM, CNRS

Introduction

Pierre Boccard

Future full-sky LSST simulation DF sky ?

LSST DR1 - DR10

Theory

PhD @ CPPM, CNRS

13/06/2025

Early results

- Surveys of large volumes covering large range of redshifts
- Few studies on VSF in photo-z data

Introduction

- Cluster-VSF is not significantly affected by photo-z uncertainty

Theory

PhD @ CPPM, CNRS

13/06/2025

Pollina et al. 2018

Early results

- Surveys of large volumes covering large range of redshifts
- Few studies on VSF in photo-z data

Pierre Boccard

Introduction

- Cluster-VSF is not significantly affected by photo-z uncertainty

Contarini et al. 2022

- Surveys of large volumes covering large range of redshifts
- Few studies on VSF in photo-z data

Introduction

- Cluster-VSF is not significantly affected by photo-z uncertainty
- Complementary to other classical probes

Pierre Boccard

PhD @ CPPM, CNRS

Theory

Theory

PhD @ CPPM, CNRS

- Surveys of large volumes covering large range of redshifts
- Few studies on VSF in photo-z data

Introduction

- Cluster-VSF is not significantly affected by photo-z uncertainty
- Complementary to other classical probes

Pierre Boccard

- Powerful tool for physics beyond standard model : modified gravity and the sum of neutrinos masses

Kreisch et al. 2020

Early results

Motivations

Early results

Theory

PhD @ CPPM, CNRS

13/06/2025

Early results

Theory

PhD @ CPPM, CNRS

- VIDE voids are topological voids (Zobov, watershed)

Motivations

- VIDE voids are topological voids (Zobov, watershed)

Motivations

- Post-process to have a fixed value in the mean density contrast and compare to theory

PhD @ CPPM, CNRS

Theory

Introduction

Pierre Boccard

PhD @ CPPM, CNRS

- VIDE voids are topological voids (Zobov, watershed)

Motivations

- Post-process to have a fixed value in the mean density contrast and compare to theory

Early results

Pierre Boccard

- VIDE voids are topological voids (Zobov, watershed)

Motivations

Theory

PhD @ CPPM, CNRS

- Post-process to have a fixed value in the mean density contrast and compare to theory
- VSF is directly related to DM power spectrum :

Void abundance :
$$n_V(R)dR = \frac{d}{dR} [f_V(\delta_v, S)] \frac{dS}{dR}$$

Density field variance : $S(R) = \int_0^\infty \frac{dk}{k} \frac{k^3 P(k)}{2\pi^2} W^2(kR)$

Verza et al. 2024

Early results

Pierre Boccard

- VIDE voids are topological voids (Zobov, watershed)

Motivations

Theory

PhD @ CPPM, CNRS

- Post-process to have a fixed value in the mean density contrast and compare to theory
- VSF is directly related to DM power spectrum :

Void abundance :
$$n_V(R)dR = \frac{d}{dR} \left[f_V(\delta_v, S) \right] \frac{dS}{dR}$$

Density field variance :
$$S(R) = \int_0^\infty \frac{dk}{k} \frac{k^3 P(k)}{2\pi^2} W^2(kR)$$

Infer cosmological parameters

Early results

- Expected redshift uncertainty in LSST : $\sigma_z/(1+z) \simeq 0.02$

Motivations

Introduction

PhD @ CPPM, CNRS

Theory

13/06/2025

Future steps

Early results

Introduction

Theory

Early results

Future steps

- Expected redshift uncertainty in LSST : $\sigma_z/(1 + z) \simeq 0.02$

Motivations -

LOS slice of the SkySim light cone at z = 1

Pierre Boccard

PhD @ CPPM, CNRS

- Expected redshift uncertainty in LSST : $\sigma_z/(1+z) \simeq 0.02$

Motivations -

N

- Makes void identification with VIDE very complicated

Early results

Pierre Boccard

PhD @ CPPM, CNRS

- Expected redshift uncertainty in LSST : $\sigma_z/(1+z) \simeq 0.02$

Motivations -

N

- Makes void identification with VIDE very complicated
- Need to use 2D void finders

LOS slice of the SkySim light cone at $\rm z$ = 1

Pierre Boccard

Early results

Introduction

13/06/2025

Sanchez et al. 2017

Motivations

Pierre Boccard

2D void finder

Early results

- Slice the sample in redshift bins of 100 Mpc/h.
- Compute the density field by counting galaxies per pixel and applying Gaussian smoothing
- Identify the most underdense pixel and grow a void until the mean density is reached
- Record the void, remove it from the map, and repeat the process

Introduction

Pierre Boccard

PhD @ CPPM, CNRS

Future steps of the project

PhD @ CPPM, CNRS

Introduction

Motivations

Future steps

Early results

New Slack Channel !

Theory

desc-voids

Feel free to join us

Motivations

Introduction

Pierre Boccard

- Add gaussian error $\sim 0.02(1+z)$ to SkySim redshifts
- Impact of photo-z uncertainties on VSF and cosmological inferences
- Use more robust methodologies to select SkySim galaxies that are more consistent with LSST Data Releases

Theory

Early resu

Future steps

13/06/2025

- Simulate DR1-DR10 with mocks to measure the evolution of the cosmological constraints

Motivations

Introduction

Pierre Boccard

- Add gaussian error $\sim 0.02(1+z)$ to SkySim redshifts
- Impact of photo-z uncertainties on VSF and cosmological inferences
- Use more robust methodologies to select SkySim galaxies that are more consistent with LSST Data Releases
- Simulate DR1-DR10 with mocks to measure the evolution of the cosmological constraints

Thank you !

PhD @ CPPM, CNRS

Theory

Early result

Future steps

$$f(S) \simeq \frac{e^{-B_S^2/2S}}{\sqrt{2\pi S}} \left[\sqrt{\frac{\Gamma_{\delta\delta}}{2\pi S}} \exp\left(-\frac{S}{2\Gamma_{\delta\delta}} \left(\frac{B_S}{2S} - B_S'\right)^2\right) + \frac{1}{2} \left(\frac{B_S}{2S} - B_S'\right) \left\{ \exp\left(-\frac{S}{2\Gamma_{\delta\delta}} \left(\frac{B_S}{2S} - B_S'\right)\right) + 1 \right\} \right]$$

$$B(S) = \alpha \left[1 + (\beta/S)^{\gamma} \right]$$

Pierre Boccard

Appendix

Pierre Boccard

PhD @ CPPM, CNRS