

Traveling Collimated Beam Projector

Latest campaigns results

Enya Van den Abeele, Jérémy Neveu, Marie Aubert, Chloé Barjou-Delayre, Marc Betoule, Sebastien Bongard, Angelo Lamure-Fontanini, Laurent Le Guillou, Nicolas Regnault, Philippe Rosnet, Eduardo Sepulveda

LSST France - 13/06/2025

What is a CBP ? (and why)

- Cosmology with type Ia supernovae : need accurate fluxes and colors measurements
- Instrumental uncertainties : dominants for dark energy parameters estimation (1%)

What is a CBP ? (and why)

- Cosmology with type Ia supernovae : need accurate fluxes and colors measurements
- Instrumental uncertainties : dominants for dark energy parameters estimation (1%)

CBP (Collimated Beam Projector) \rightarrow instrument shooting monochromatic light with controlled flux and wavelength (per mil level)

What is a CBP ? (and why)

- Cosmology with type Ia supernovae : need accurate fluxes and colors measurements
- Instrumental uncertainties : dominants for dark energy parameters estimation (1%)

CBP (Collimated Beam Projector) \rightarrow instrument shooting monochromatic light with controlled flux and wavelength (per mil level)

 \rightarrow Can be used as an artificial star

 \rightarrow Powerful calibration tool to measure any telescope transmission (optical and filters)

 \rightarrow Goal : Low the instrumental uncertainties from 1% to 0.1%

Different setups

 Shoot light inside the instrument with a long distance monochromatic source (artificial star)

Different setups

 Shoot light inside the instrument with a long distance monochromatic source (artificial star) 2) Shoot a monochromatic parallel light beam inside the instrument to calibrate

MonoDICE @ OHP

MonoDICE observed by the StarDICE telescope

MonoDICE observed by the StarDICE telescope

Main settings :

- Observations 3-4 days after new moon
- Monochromator resolution 1nm FWHM
- 1mm output pinhole = 1 StarDICE pixel
- StarDICE: 4s exposure
- MonoDICE: 2s exposure within StarDICE exp, 115m away from StarDICE

Summary of 1 night with 7 scans

7 filter scans from 300 - 1100 nm with 2nm steps (~1h15)

- very good lamp stability
- very good monochromator repeatability
- low lamp flux around 950nm
- low spectro QE after 900nm

Monochromator set wavelength [nm]

StarDICE filters transmission measurement

0.2 - 0.4% transmission uncertainty with 1 scan from 400 to 900nm

StarDICE filters transmission measurement

0.2 - 0.4% transmission uncertainty with 1 scan from 400 to 900nm

TCBP @ ZTF

Installation and main settings

Settings :

- 200um pinhole = ~ 30 pixels spot on ZTF camera
- 1 nm FWHM spectra
- Around 5 to 10s exposures per spot
- Focus at infinity (best effort basis...)

First results (one spot strategy) : fine filter scan

• 3 filters scanned in one day with fine steps in CCD11

• subpermil statistical uncertainties

• normalisation issue needing investigations

Multispot strategy

Scan 8 CCDs for each wavelength during runs in 4 different positions on the mirror :

750

500

250

0

-250

-500

-750

750

500

250

-250

-500

-750

y (mm)

×

x (mm)

x (mm)

250 500 750

250 500 750

-750 -500 -250 0

-750 -500 -250 0

y (mm)

17.0

16.5

16.0

15.5

15.0

14.5

14.0

13.5

13.0

- 8.5

8.0

7.5

7.0

6.5

6.0

- 5.5

5.0

- positions 1,2,3 (top) : CCDs 09-16
- position 4 (bottom) : CCDs 01-08

11.5

11.0

10.5

10.0

9.5

9.0

8.5

13.0

12.5

- 12.0

- 11.5

- 11.0

10.5

10.0

750 -

500

250

-250

-500

-750

750

500

250

-250

-500

-750

(mm)

x (mm)

x (mm)

250 500 750

250 500 750

-750 -500 -250 0

-750 -500 -250 0

y (mm)

Multispot strategy

Scan 8 CCDs for each wavelength during runs in 4 different positions on the mirror :

- positions 1,2,3 (top) : CCDs 09-16
- position 4 (bottom) : CCDs 01-08
- double & single coating flavors in one scan
- allows the measurement of each CCD quantum efficiency
- at least positions 1, 2, 4 for each filters (+ empty) → the full focal plane is scanned at 3 (or 4) different incident angles on the mirror

Multispot results : r band

- 2 CCD families
- But still internal dispersion between them

 Fringing more pronounced for CCDs 13-16 (single coating)

Multispot results : i band

- 2 CCD families
- But still internal dispersion between them
- Fringing more pronounced for CCDs 13-16 (single coating)

Filter shifts preliminary results

CCD QEs

What's next?

Next steps

• MonoDICE @ OHP (~autumn 2025) : Second campaign on StarDICE

• MonoDICE @ CEA (~autumn 2025) : Calibration of CTA's NectarCAM

• MonoDICE @ Palomar (2026 ?) : Second campaign on ZTF with MonoDICE (located far away from the telescope)

• TCBP @ Cerro Pachón (2026 ?) : Measurement of AuxTel transmission

Thank you !

LDLS spectral radiance

Monochromator resolution (500nm)

Peak's maximal flux VS slit opening

Peak's FWHM VS slit opening

MonoDICE @ OHP : raw data

2.45 +/- 1.194e-05 nC with t1=0.964s, t2=2.972s (dt=2.008s)

Spectrograph measured flux

MonoDICE @ OHP : raw data

Aperture photometry (radius=5.60 pix)

Not forced (yet)

MonoDICE @ OHP : Comparison to CBP-laser measurements

4 radial measurements with the laser CBP combined via pupil stitching:

- normalized by its mean (naive tentative to normalize monodice measurements using monodice distance, pinhole and photodiode sizes...)
- no spectro measurements below
 340nm and after 920nm
- overall shape discrepancy can be due to Thorlabs photodiode QE given by vendor

MonoDICE @ OHP : Comparison to CBP-laser measurements

4 radial measurements with the laser CBP combined via pupil stitching:

- filter edges match better than 0.1nm in the red, maybe 0.3nm in the blue but filter edges are very sharp there (need to deconvolve by monodice 1nm wide spectrum?)
- filter foots not at zero

MonoDICE @ OHP : Focal plane and filter scans at 500nm

No filter

g filter

MonoDICE @ OHP : Repeatability

Comparison of two consecutive nights on EMPTY transmission:

- overall shape OK
- 1% discrepancy to investigate (background, aperture corrections)

0.96

300

400

500

700

Mono wavelength [nm]

800

900

1000

600

MonoDICE @ OHP : PSF characterization using StarDICE GRISM

TCBP @ ZTF data set summary

TCBP @ ZTF : CCD QEs

TCBP @ ZTF : Ghosts

1000

1760 1780

1800

1820

1840 1860

Wavelength [nm]

1720 1740 1760 1780 1800

x [pixels]

- One ghost in the first edge in the r-band
- One ghost in each edge of the g band
- In all the i band

TCBP @ ZTF : Ghosts

- **r band** : only CCD9,10,13,14. Ghost farther away from the spot for single coating.
- g band : lower intensity but at different locations as a function of the CCD.
- i band : ghost merging with the spot ?

