Generation of the simulations

Results 0000000000 Conclusions 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cosmic shear simulations for the analysis of LSST data using HOS

Juan Mena-Fernández¹

On behalf of the HOS topical team of DESC

¹Laboratoire de Physique Subatomique et de Cosmologie (LPSC)

Thursday 12th June, 2025

Weak	lensing	and	HOS	
000	bo T			

Outline

1. Weak lensing and HOS

- 2. Generation of the simulations
- 3. Results
- 4. Conclusions

Results 0000000000

Weak gravitational lensing

Weak gravitational lensing **distorts the images of background objects** due to the presence of a foreground matter distribution.

Credits: NASA/ESA

Three lensing regimes:

- Cluster lensing. The foreground object is a cluster. Distortions of ${\sim}10\%.$
- Galaxy-galaxy lensing. The foreground object is a galaxy. Distortions of ~1%.
- Cosmic shear. Caused by large-scale structure (LSS). Distortions of ~0.1-1%.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cosmic shear is traditionally analyzed using two-point functions...

Generation of the simulations

Results

Conclusions

Why higher-order statistics?

Two-point functions do not give us information about non-Gaussian features.

Phase-shifted map

Different structures but same C_{ℓ} !

・ロト・日本・日本・日本・日本・日本

Generation of the simulations 0000

Results

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Why higher-order statistics?

2 Two-point functions + HOS = better constraints on cosmological parameters.

Credits: Euclid preparation XXVIII - A&A 675, A120 (2023)

Weak	lensing	and	HOS	
000	00 Ī			

Results 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation and context

- HOS are a powerful tool for cosmology.
- However, they usually lack theoretical predictions.
- Therefore, we rely on simulations, which are computationally expensive.
- When generating simulations, we need to **optimize their accuracy vs computing resources** (charged node hours + storage) as a function of
 - volume.
 - mass resolution (mass/particle).
 - number of redshift snapshots.

Goal: optimize the generation of upcoming lensing and clustering simulations needed for the analysis of LSST data with HOS.

DESC project: [282] Simulations for Higher-Order-Statistics https://portal.lsstdesc.org/DESCPub/app/PB/show_project?pid=282

Outline

1. Weak lensing and HOS

2. Generation of the simulations

3. Results

4. Conclusions

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨーのへぐ

Results 0000000000

HACC simulations

We construct our lightcones from *N*-body dark matter (DM) box simulations produced with the Hybrid Accelerated Cosmology Code (HACC).

- Boxes are evolved from redshift 200 to 0.
- A total of **101 snapshots are stored**, from redshift 4 to 0 (linear spacing in *a*).
- Simulations are produced in pairs to cancel out cosmic variance.

By default:

- Number of DM particles: $N_p = 2048^3$.
- Mass per particle: $2.6 \times 10^9 M_{\odot}$.
- Size of the box: $L_{\rm box} = 600 \text{ Mpc}/h.$

Credits: V. Springel - MPA-Garching Data Visualization

Generation of the simulations

Results

Conclusions

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

From HACC to lightcones

Credits: R. Booth (2024)

 \uparrow # snapshots \leftrightarrow \uparrow info about z evolution \checkmark \leftrightarrow \uparrow expensive and \uparrow storage \land

Generation of the simulations

Results 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusions

Pipeline flowchart

Code: Pollux (https://github.com/LSSTDESC/pollux.git)

¹We can measure HOS from these

Outline

- 1. Weak lensing and HOS
- 2. Generation of the simulations

3. Results

4. Conclusions

Tests

Steps:

- We produce lightcones for the two simulation seeds (five observers per simulation seed).
- **2** We measure the **angular power spectrum** (C_{ℓ}) from the κ maps.
- **(3)** We measure the second, **third and fourth**¹ moments of κ .
- **(9)** We average the C_{ℓ} and the κ moments over the two simulation seeds and the five observers.

We run the previous steps varying the

- number of snapshots: $N_{\text{snapshots}} = \{26, 34, 51, 101\}.$
- number of particles: $N_p = \{2048^3, 1024^3\}.$

¹The third and fourth moments contain non-Gaussian information. () () ()

Generation of the simulations

Results

Conclusions

Results: δ map ($N_{\text{snapshots}} = 26$)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 δ map of a lightcone shell for one of our simulations. For this particular shell, the redshift slice is given by $z \in (0.016, 0.050)$.

Results 0000000000

Conclusions

Results: convergence of the C_{ℓ} with $N_{\rm shells}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Generation of the simulations

Results

Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\chi^{2} = \sum_{ij} \sum_{mn} \sum_{\ell \ell'} \left(C_{\ell}^{(ij),A} - C_{\ell}^{(ij),B} \right) \left[\text{Cov}^{-1} \right]_{\ell \ell'}^{(ij),(mn)} \left(C_{\ell'}^{(mn),A} - C_{\ell'}^{(mn),B} \right).$$

N _{shells}	26	34	51	101
26		2.1 (1.2)	4.2 (2.5)	6.2 (2.9)
34			1.7 (1.0)	3.0 (1.9)
51				1.3 (0.74)
101				

Pairwise χ^2 for $N_p = 2048^3$ (1024³).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Moments of κ

The convergence maps are smoothed by a top-hat filter of smoothing length ϑ , $\kappa(\theta) \rightarrow \kappa_{\vartheta}(\theta)$.

• Second moment (or covariance):

$$\langle \kappa_{\vartheta}^2
angle^{jj} = \langle (\kappa_{\vartheta}^i(oldsymbol{ heta}) - \langle \kappa_{\vartheta}^j(oldsymbol{ heta})
angle) \cdot (\kappa_{\vartheta}^j(oldsymbol{ heta}) - \langle \kappa_{\vartheta}^j(oldsymbol{ heta})
angle)
angle.$$

• Third moment (or skewness):

 $\langle \kappa_{\vartheta}^{3} \rangle^{ijk} = \langle (\kappa_{\vartheta}^{i}(\boldsymbol{\theta}) - \langle \kappa_{\vartheta}^{i}(\boldsymbol{\theta}) \rangle) \cdot (\kappa_{\vartheta}^{j}(\boldsymbol{\theta}) - \langle \kappa_{\vartheta}^{j}(\boldsymbol{\theta}) \rangle) \cdot (\kappa_{\vartheta}^{k}(\boldsymbol{\theta}) - \langle \kappa_{\vartheta}^{k}(\boldsymbol{\theta}) \rangle) \rangle.$

• Fourth moment (or kurtosis):

$$\langle \kappa_{\vartheta}^{4} \rangle^{ijkl} = \langle (\kappa_{\vartheta}^{i}(\boldsymbol{\theta}) - \langle \kappa_{\vartheta}^{i}(\boldsymbol{\theta}) \rangle) \cdot (\kappa_{\vartheta}^{j}(\boldsymbol{\theta}) - \langle \kappa_{\vartheta}^{j}(\boldsymbol{\theta}) \rangle) \\ \cdot (\kappa_{\vartheta}^{k}(\boldsymbol{\theta}) - \langle \kappa_{\vartheta}^{k}(\boldsymbol{\theta}) \rangle) \cdot (\kappa_{\vartheta}^{l}(\boldsymbol{\theta}) - \langle \kappa_{\vartheta}^{l}(\boldsymbol{\theta}) \rangle) \rangle.$$

Results

Conclusions

Results: convergence of $\langle \kappa^2 \rangle$ with $N_{\rm shells}$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Results

Results: convergence of $\langle \kappa^3 \rangle$ with $N_{\rm shells}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Results

Results: convergence of $\langle \kappa^4 \rangle$ with $N_{\rm shells}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Generation of the simulations

Results

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Results: $\langle \kappa^4 \rangle$ vs. 101 ($N_p = 1024^3$)

			Conclusions
00000 -	0000	000000000	0000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outline

- 1. Weak lensing and HOS

- 4. Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusions

Goal: optimize the generation of upcoming lensing and clustering simulations needed for the analysis of LSST data with HOS.

- Optimization of the simulations:
 - **1** We need, at least, $N_{\text{shells}} = 51$.
 - 2 $N_p = 1024^3$: enough for two-point statistics but not for HOS. $N_p = 2048^3$ looks good for both.
 - We also tested other algorithms for building the lightcones: consistency between them
- Related ongoing projects/tasks:

- development of Pollux (C. Doux).
- 2 baryonification of the dark matter shells (A. Vera).
- intrinsic alignment studies (J. Harnois-Deraps).
- measure different HOS (J. Armijo).
- Next steps:

- Comparison with theory.
- 2 Run simulations at different cosmologies.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Other projects

• Dark Energy Spectroscopic Instrument (DESI): angular BAO from $w(\theta)$.

- No need to assume cosmology to transform $z \rightarrow d$.
- Comparison with the fiducial DESI results.

- Dark Energy Survey (DES): combination of DES BAO + DESI BAO.
 - New DES BAO likelihood removing the overlapping area with DESI.
 - Inference of cosmological parameters combining DES BAO + DES SN + DESI BAO + Planck CMB
 - Constraints on dynamical dark energy.

Generation of the simulations

Results

Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thank You!