Rubin LSST France@IJCLab 06/2025

Weak lensing mass-richness relation of redMaPPer clusters in the LSST DESC DC2 simulations

Constantin Payerne, Post-doc@CEA-Saclay

Galaxy clusters

Perseus Cluster redshift=0.01

Massive bound systems $M > 10^{14} M_{\odot}$ and detected in X-rays, mm, optical

C. Payerne CEA/DPhP/Irfu Rubin LSST France IJCLab Slide 2 /16

Cosmology with cluster counts

The abundance of galaxy clusters

 Connects proxy-cluster counts to cosmology via a scaling relation:

$$\frac{\partial^2 N_{\text{obs}}^{\text{clusters}}}{\partial \mathcal{O} \partial z} \propto \int dm \frac{\partial^2 N_{\text{th}}^{\text{halo}}(m, z)}{\partial m \partial z} P(\mathcal{O} \mid m, z)$$

- Privileged probes for structure formation and geometry in Λ CDM (i.e. Ω_m, S_8) + beyond
- Current constraining power: determined by uncertainties on the scaling relation (MoR)
- Stage IV (LSST, Euclid, SO) ~ 100,000 clusters (x10 current datasets)
- Requires robust modeling of observables, better control of systematics in deriving MoR

irfu

C. Payerne CEA/DPhP/Irfu Rubin LSST France IJCLab Slide 3 /16

CC Data: LSST DESC DC2 simulations

Cluster catalog: redMaPPer

- detect over densities of red-sequence galaxies
- For each redMaPPer selected clusters:
 - Assign richness $\lambda \sim \#$ of member galaxies
 - Cluster redshift

CZZ

- cosmoDC2: ~ 880,000 clusters with $\lambda < 300$ and z < 1.15

Summary statistics in this analysis

- 4x7 redshift-richness bins
- $20 < \lambda < 200 + 0.2 < z < 1$
- Log-spaced for richness
- => 3,600 clusters on 440 deg2
- Study the mass-redshift dependency of the MoR

irfu

C. Payerne CEA/DPhP/Irfu Rubin LSST France IJCLab Slide 4 /16

Weak lensing by galaxy clusters

Weak lensing by galaxy clusters

- Bending of light coming from distant galaxies by the gravitational potential of clusters
- Subtle deformation of galaxy shapes $\epsilon = \epsilon_{int} + \gamma$
- Local average $\langle e \rangle = \gamma$

irfu

 $C 2 \overline{Z}$

- Reveals the cluster mass density $\gamma = f(M_{\text{cluster}})$

C. Payerne CEA/DPhP/Irfu Rubin LSST France IJCLab Slide **5** /16

WL Data: cosmoDC2 + add-ons

0.2 < z < 0.3 0.4 < z < 0.5 0.5 < z < 0.6 0.3 < z < 0.4 ΔΣ [M_o/Mpc²] 10^{1} 1012 0.6 < z < 0.7 0.7 < z < 0.8 0.8 < z < 1.0 ΔΣ [M_o/Mpc²] 10₁₃ $20 < \lambda < 35$ 10¹ $35 < \lambda < 70$ $70 < \lambda < 100$ - $100 < \lambda < 200$ 1012 10⁰ 10¹ 10⁰ 10¹ 10⁰ 10¹ R [Mpc] R [Mpc] R [Mpc]

Source selection

- r < 28, adjust i < 24.25
- LSST-like density: 25 gal.arcmin-2
- Behind: $z_{\text{cosmoDC2}} > z_{\text{cl}} + 0.2$
- (PZ in the next slides)

irfu

- Baseline: $\epsilon_{\rm int}$ and $\gamma_{\rm cosmoDC2}$
- $\sigma_{\rm SN} = 0.25$ & $\sigma_{\rm meas} = 0$

Stacked cluster lensing profiles

- In richness-redshift bins
- 15 radial bins from 0.7 to 10 Mpc
- R > 1 Mpc (ray-tracing resolution, <u>Kovacs+21</u>)
- We focus on the 1-halo regime 1 < R[Mpc] < 3.5

C. Payerne CEA/DPhP/Irfu Rubin LSST France IJCLab Slide 6 /16

Inference from CC+WL

Two alternatives for WL

- One-step: use stacked profiles directly

flexibility to incorporate several systematic effects (mis-centering, selection biases) *forward* modeling the raw observables.

 spitting the problem ! Simplifies integrals and computational times

$$\begin{aligned} \mathscr{L}_{\mathrm{WL}} &= \mathscr{L}(\widehat{\Delta\Sigma}(R) \,|\, \theta) \\ & \underbrace{Or} \\ \mathscr{L}_{\mathrm{WL}} &= \mathscr{L}(\widehat{M} \,|\, \theta) \end{aligned}$$

<u>cea</u> irfu

C. Payerne CEA/DPhP/Irfu Rubin LSST France IJCLab Slide **7** /15

Modeling for the mass-richness relation

Modeling choices

irtu

- « Forward » modeling $P(\ln \lambda \mid m, z)$, parametrization from Murata+18
- Easier to implement in CC analyses than « backward » $P(\ln M | \lambda, z)$
- Log-normal relation, 6 free params.
- $z_0 = 0.5$ and $\log_{10}(m_0/M_{\odot}) = 14.3$
- Possible redshift evolution μ_z and σ_z

C. Payerne CEA/DPhP/Irfu Rubin LSST France IJCLab Slide **8** /16

Baseline analysis

Separate Count and lensing

- Different correlations and error
- Compatible constraints at 1σ
- Compatible with « fiducial » relation:
 - 1. cluster-halo matched catalog
 - 2. => set of $\{M_i; \lambda_i; z_i\}$
 - 3. Inferred at the catalog level

Joint analysis

- Combination breaks degeneracy between params.
- Increase precision significantly
- Recovered fiducial at < 2σ
- Consistency between the 2-steps and 1-step approaches!

C. Payerne CEA/DPhP/Irfu Rubin LSST France IJCLab Slide **9** /16

Robustness of MoR in LSST DESC DC2

Impact of modeling choices

- c(M): consistent with free c, low impact due to R > 1 Mpc
- Density profile: perfect agreement
- Conclusion: 1 < R < 3.5, one-halo regime, MoR stable !

<u>cea</u> irfu

C. Payerne CEA/DPhP/Irfu Rubin LSST France IJCLab Slide 10/16

Photometric redshifts of source galaxies

PZ runs in cosmoDC2

- <u>FlexZBoost</u>: ML-based, will work with deep spectro.
 datasets => p(z | m)
- <u>BPZ</u>: SED template + galaxy type
- We use the first released version
 - Flex:« optimistic » trained with i < 25 galaxies
 - BPZ: « discreteness » in the color-redshift space of cosmoDC2 galaxies => pessimistic
 - No quality cuts applied ! Worst case scenario
- How does it impact WL meas. ?

 $\Rightarrow \quad \langle z_{gal} \rangle > z_{cl} + \text{offset} \\ P(z_{gal} > z_{cl}) > \text{offset}'$

2. WL lens-source weights

1. Source selection

irfu

$$w_{ls}^{1/2} \propto \int_{z_l}^{+\infty} dz_s \ p(z_s) \Sigma_{\text{crit}}(z_s, z_l)^{-1}$$

 $\propto \frac{D_{ls}}{D_s D_l}$

C. Payerne CEA/DPhP/Irfu Rubin LSST France IJCLab Slide 11/16

Results

- FlexZBoost: perfect agreement with true redshift case (baseline)
- BPZ: negative bias, 1σ in the normalization $\ln \lambda_0$ +mass dependence
- We can correct the model for possible systematic PZ bias 1+*b*
- And use CC+WL to calibrate this bias

$$\Delta \Sigma_{ij}^{\text{corr}} = (1+b) \Delta \Sigma_{ij}$$

Uncorrected PZ systematics

 $b_{\text{flex}} = 0.02 \pm 0.03$ $b_{\text{bpz}} = -0.02 \pm 0.03$

- Increase the error bar for both cases
- *b* compatible with 0 in both cases
- Increase compatibility with baseline for BPZ

C. Payerne CEA/DPhP/Irfu Rubin LSST France IJCLab Slide **12**/16

Shear-richness covariance in CL analyses

Shear-richness covariance

- Correlation between lensing obs. and richness
 - arises from halo formation+baryonic physics (<0)
 - selection bias/projection effects (>0)
- Impact unexplored in the literature (when uncorrelated scatters are subdominant)
- Important for low-richness CL analyses with LSST (post-DES CL Y1 analysis)
- Corrected $\Delta\Sigma$ depending on $\beta_1 \text{Cov}(\Delta\Sigma, \ln\lambda)/\mu_m$)

In cosmoDC2

- cosmoDC2: 0.1% 0.01% of standard profile
- Expected: HOD model for cosmoDC2 halos, idealistic run for redMaPPer (true ugrizy magnitudes)
- Shifts comparable to FleXZBoost-only fits

C. Payerne CEA/DPhP/Irfu Rubin LSST France IJCLab Slide **13**/16

Recap

Impact on MoR

- Modeling choices:

irfu

- Consistency between the one- and two-step approach (<1 $\sigma_{\rm stat.}$)!
- up to $1\sigma_{\rm stat.}$ shift due to cM relation
- Stable wrt. halo model

- Observational systematics:

- Shear-richness cov. alone < $1\sigma_{\text{stat.}}$, as expected
- Stronger impact from PZ (BPZ \sim 1 $\sigma_{\rm stat.})$ => we can mitigate this effect
- Shear-richness cov. alone: Small impact < 1 $\sigma_{\rm stat.}$, as expected
- Combined Mean parameters errors: increase from 30% to 90%!

C. Payerne CEA/DPhP/Irfu Rubin LSST France IJCLab Slide 14/16

Long-term project

A bit of history

- Associated to: DESC Project 380
- First talk about this project at Rubin LSST France meeting in nov. 2020!
- 2 DESC internal notes, many contributors!
- Paper accepted for publication in A&A (arXiv:2502.08444) !

Weak lensing mass-richness relation of redMaPPer clusters in the LSST DESC DC2 simulations

Constantin Payerne,^{1,2,*} Zhuowen Zhang,³ Michel Aguena,^{4,5} Céline Combet,² Thibault Guillemin,⁶ Marina Ricci,⁴ Nathan Amouroux,⁶ Camille Avestruz,^{7,8} Eduardo J. Barroso,⁶ Arya Farahi,^{9,10} Eve Kovacs,¹¹ Calum Murray,^{4,12} Markus M. Rau,^{13,14} Eli S. Rykoff,^{15,16} Samuel J. Schmidt,¹⁷ and the LSST Dark Energy Science Collaboration

C. Payerne CEA/DPhP/Irfu Rubin LSST France IJCLab Slide 15/16

Summary

Context

- Clusters are important cosmological probes of the Universe formation history
- Well-calibrated MoR are crucial for cluster-based analyses
- WL probes the mass distribution around clusters, asset to constrain MoR

This work

- <u>CLCosmo_Sim</u>: « Early » CL pipeline with DESC tools (<u>CLMM</u>, <u>CCL</u>, <u>CIEvaR</u>)
- <u>CLCosmo_Sim_database</u>: cosmoDC2+add-ons data vectors (only DESC members)
- Analysis of the redMaPPer MoR
 - CC+WL MoR, improve the precision when combining probes
 - Account for redMaPPer selection function
 - Robustness tests (non exhaustive list) wrt to modeling choices
 - Wrt to observational systematics: PZ, shear-richness covariance
 - Compatible with the baseline choices and fiducial constraints

More talks

- 1. Independent DESC analysis, to be compared with the official pipeline (<u>Firecrown</u>, TXPipe, under construction) see E. Barroso's talk
- 2. Other cluster finders competing for LSST science see T. Vinh Phat's talk!
- 3. LSST: Precision $\times \sqrt{\Omega_{\text{LSST}}/\Omega_{\text{DC2}}} = 6.4$, but huge work is needed to estimate the budget of shape measurement error see M. Ramel's talk!

