Probabilistic characterization of blending in Rubin/LSST: application to cluster lensing cosmology

LSST France, June 2025 Manon Ramel

Laboratoire de Physique Subatomique & Cosmologie Supervisors : Cyrille Doux, Marine Kuna

Cosmology with galaxy clusters

See Constantin's talk!

proxys

Counting per bins of mass and redshift

Cosmology with galaxy clusters

Counting per bins of mass and redshift

See Constantin's talk!

Weak Lensing

proxys

Superposition of galaxies due to:

- The depth of observation
- The **PSF size**

Superposition of galaxies due to:

- The depth of observation
- The **PSF size**

of galaxies due to:

- The depth of observation
- The

Roman Simulated image

of galaxies due to:

- The depth of observation
- The

Blend !

2022, Troxel et al.

Recognized/unrecognized blends

Recognized blends

Hubble/ACS

LSST deblender: **SCARLET****

Unrecognized blends Subaru/HSC

* 2016, Dawson et al. 2022, Troxel et al.

** 2018, Melchior et al.

Blending around galaxy clusters

Blending in cluster fields \leftrightarrow WL profiles \leftrightarrow galaxy cluster masses \leftrightarrow cosmology?

HST

Detection of unrecognized blends

Detection of unrecognized blends

Truth galaxy

Detected object

Simulated catalogs

Outer Rim 2019, Heitmann et al.

Reference for **galaxies** and dark matter haloes

DESC simulated image

Detected **objects** from realistic simulated images

Identification of blends through catalog matching

First attempt of matching

https://github.com/yymao/FoFCatalogMatching

Look at FoF groups

Need to account for position + shape + flux information

https://github.com/LSSTDESC/friendly/tree/FoF https://github.com/LSSTDESC/Cluster_Blending

Blending as a matching ambiguity

Manon Ramel

Object-Galaxy matching probability

 $p \propto \text{overlap}$ weighted by the difference in magnitudes colors

Blending entropy

$$S_b = -\sum_{i \in gal} p_i \log p_i$$

= score for each object

$$* S_{b} = 0$$
 for 1-1 s

systems

S_b as discriminant of blended systems

Blending entropy and magnitude

Fraction of high S_b blended objects increases with magnitude

Blending entropy and blendedness

Object vs. object metric

- $b = 0 \rightarrow isolated$ object
- $b = 1 \rightarrow \text{completely blended}$

Cannot differentiate 1-1 systems from unrecognized blends

Blending entropy properties

New efficient metric to characterize blended systems

- **Continuous** measure of blending severity
- Combination of position + shape + magnitude information
- Largely insensitive to the cosmoDC2 magnitude cut and the choice of the FoF linking length
- **Stable** with the DC2object magnitude cut
- Uses *truth* information: galaxy vs. object metric

Framework

Set-up

- Lensing around DC2 dark matter haloes
 - No detection of galaxy clusters
- Sampling fiducial $M \lambda$ relation

Goal

- Two observables per bins of richness and redshift
 - Haloes number and mean mass

See Constantin's talk!

Impact of blending on lensing profiles

Impact of blending on lensing profiles

Richness

Impact of blending on lensing masses

cosmoDC2

Impact of blending on lensing masses

DC2object with blends

Impact of blending on lensing masses

DC2object without blends

Impact on cosmological parameters

https://github.com/LSSTDESC/CLCosmo_Sim

- DC2object contours are shifted toward higher Ω_m and lower σ_8 values compared to cosmoDC2
- The $S_b < 0.2$ cut partially correct the bias

And with a cut on the blendedness?

- The HSC blendedness cut is insufficient
- $S_b < 0.1$, $S_b < 0.2$, $S_b < 0.3$ give similar constraints

Metric	Cut	Suppressed WL sources
Blending entropy	< 0.2	23 %
Blending entropy	< 0.1	29 %
Blending entropy	< 0.3	17 %
Blendedness	$< 10^{-0.375}$	5 %

Conclusions

Development of a new matching method to identify blends 1.

- Relative probabilities of matching
- Blending entropy to separate highly vs. well-matched systems

Impact of blending on cluster lensing profiles 2.

- Profiles biased low due to blending
- Masses partially recovered by removing bad blends
- Impact of blending on cosmological parameters

Application to data 3.

- Mitigation strategy, calibrated on overlapping sky areas with LSST (including deep fields/space data)
- Ongoing work combining LSST ComCam and HST data
- Application to 3x2pt

Draft of the paper was sent to collaborators and will be soon in IR!

