Nicola Ackermann on behalf of the CONUS+ collaboration

First observation of reactor antineutrinos by coherent scattering with CONUS+

Coherent elastic neutrino nucleus scattering

- First predicted by D.Z Freedman in 1974
- First measured by COHERENT in 2017: Csl detector at pion-decay-at-rest soruce
- Measurement at nuclear power plant (was) still pending!

Comparison to other channels

CEvNS cross section is large! (For neutrino standards)

> For Germanium: $N = 41 \rightarrow N^2 = 1681$

→ ~ 3 orders of magnitude bigger than for IBD!

→ Allows much smaller neutrino detectors

Artificial neutrino sources

The CONUS+ experiment

arXiv:2407.11912

N. Ackermann, H. Bonet, C. Buck, J. Hakenmüller, J. Hempfling, G. Heusser, M. Lindner, W. Maneschg, K. Ni, T. Rink, E. Sanchez Garcia, H. Strecker Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany K. Fülber, R. Wink PreussenElektra GmbH, Kernkraftwerk Brokdorf (KBR), Germany M. Rank, I. Stalder, J. Woenckhaus Kernkraftwerk Leibstadt AG (KKL), Switzerland

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

Our approach

High signal strength

- High neutrino flux (i.e. proximity to source)
- Optimal choice of target isotope

Very low threshold

- Signal is expected to be < 1 keV (at reactor site) due to quenching
- Optimise noise edge
- Optimise trigger efficiency

Very low background

- Combination of active and passive shielding
- Choose extremly radiopure materials

The CONUS+ location

- Nuclear power plant KKL in Leibstadt, Switzerland (3.6 GW, operational 11 months per year)
- 20.7 m distance from reactor core \rightarrow neutrino flux: 1.45 * 10¹³ $\overline{v_e}$ s⁻¹ cm⁻²
- Direct network connection to MPIK
- Overburden: 7 8 m w.e.
- Reactor building made from 1.2 m reinforced concrete and 3.8 cm steel containment structure
- 0.35 m thick ceiling in the room
- In reactor outage: drywell head placed above our room
 → additional overburden of 3.8 cm steel

CONUS+ shield

- 10 tons in total
- Onion-like shield w/ active and passive layers (increasing radiopurity towards the center)
- Two layers of muon veto: one inner and one outer
 → to account for higher muon flux compared to CONUS
- Several lead layers for gamma suppression
- Several PE (and borated PE) layers for neutron suppression
- Flushing of detector chamber with radon-free air

→ Total background reduction by 4 orders of magnitude

1.2 m

CONUS+ Ge detectors

- 4 point-contact high purity Ge detectors (C5, C2, C3 & C4, + C1 at MPIK)
- Crystal/active mass: 4.0 kg / 3.74 kg
- Low energy threshold: ~ 160 eV
- Electrically cryocooled (No liquid nitrogen allowed in power plant)
- Ultra radiopure materials
- Long cryostat arms
- Produced in cooperation with Mirion Lingolsheim

Upgrades after CONUS:

ASIC electronics & reduction of point contact size → significant improvement in resolution, trigger efficiency and threshold

Improved heat dissipation from electric cooler (fans \rightarrow water cooling) \rightarrow Less microphonics

Detector performance

Detector	Pulser resolution (FWHM)[eV _{ee}]	100% trigegr efficiency down to	Threshold [eV _{ee}]
C5	48 +- 1	~ 170 eV _{ee}	170
C2	47 +- 1	~ 160 eV _{ee}	180
C3	47 +- 1	~ 150 eV _{ee}	160
C4	47 +- 1	~ 150 eV _{ee}	-
Threshold Noise co (fitted wit 10% of expect	d definition: ontribution h Gaussian) <= ed CEvNS signal	$\begin{array}{c} 10^8 \\ 10^7 \\ 10^7 \\ 10^8 \\ 10^7 \\ 10^8 \\ 10^9 \\ 10$	CONUS-3 aussian noise fit Data • • of signal prediction • • • • • • • • • • • • •

Full decomposition of background achieved!

Ionization energy [eV]

Data - model [σ_{data}]

Result of likelihood fit

Detector	Threshold [eV_ee]	CEvNS counts in data	SM prediction
C5	170	117 +- 57	116 +- 20
C2	180	69 +- 47	96 +- 16
C3	160	186 +- 66	135 +- 23

Result of single detector fits

Number of CEvNS counts in combined fit = 395 +- 106 counts

Combined result includes systematics not included in single detector fits

arXiv:2501.05206

 \rightarrow Rejection of null hypothesis at 3.7 sigma C.L.

→ Consistent with SM prediction (345 +- 34 counts) within 0.5 sigma C.L.

First detection of CEvNS by reactor antineutrinos

Summary

- CONUS concluded in 2022 at KBR → successful move to KKL in Switzerland
- Start of physics data taking in Nov. 2023
 - **New location**: less overburden \rightarrow adaptations on shield and bkg. Model
 - **Detector upgrade**: improvement in energy resolution and trigger efficiency
 - Direct conenction to experiment possible \rightarrow remote control of data acquisition
- First detection of CEvNS at reactor site:
 - Total exposure: 327 kg d ON, 60 kg d OFF
 - Observed: 395 +- 106 neutrinos (SM: 347 +- 95)
 - Rejection of null hypothesis: 3.7 sigma

CONUS+ outlook - Detector upgrade and future analysis

- Exchange three 1 kg detectors with new 2.4 kg PPC Ge detectors: C9, C7 and C6 (installed 11/24, taking data) Crystal mass: 4 kg → 8.2 kg
- Better cryocooler stability with new coolant
- Slight background improvement in new detectors
- Thresholds at least as low as in previous detectors
 Data set expected to be doubled and significant improvement of result expected to be reached!

Upcoming analysis of current data set:

- PSD cut to be studied
- BSM analysis coming in the near future

CONUS+ technology established → Upscaling to 100 kg possible: 500,000 evts/5 y → precision measurement of CEvNS

BACKUP

Consequences of cross section

 $\sigma \sim N^2 E_{\nu}^2$ Maximize N BUT: Maximum recoil energy Maximize E_{ν} **BUT:** Coherency condition! $E_{rec}^{max} = \frac{2 \cdot E_{\nu}^2}{m_a \cdot A + 2 \cdot F_{\nu}} \approx \frac{2 \cdot E_{\nu}^2}{m_a \cdot A}$ $E_{\nu} \leq \frac{1}{2R_A} \approx \frac{197}{2.5\sqrt[3]{A}}$ [MeV] ≈ 20 MeV (Ge76) Higher recoil energy \rightarrow Higher energy signals \rightarrow Easier to measure \rightarrow Partially vs fully coherent experiment \rightarrow Complementary! \rightarrow Push-Pull situation when selecting target isotope

50,000 tons of water

Size of 1 km³

Typical neutrino experiments: Large target mass due to low cross sections

VS.

CONUS+: Size ~ $2 m^3$ Active volume ~ 4 kg

 \rightarrow Possible due to CEvNS channel! 19

The final CONUS result

Predecessor of CONUS+

Data collection from 2018 – 2022 at KBR power plant (Brokdorf, Germany)

Detector	Signal prediction	Likelihood fit constraint (90% CL)
C1	41 +- 8	< 47
C2	26 +- 5	< 67
C4	23 +- 5	< 79
All	91 +- 10	< 143

KBR was shut down permanently in 2021 → Search for a new location

→ Factor ~ 1.6 (90% C.L.) above SM prediction

Phys. Rev. Lett. **133**, 251802 (2024)

Quenching of CEvNS signal

CEvNS interaction in Germanium ightarrow recoil of Ge nuclei

BUT: The observable of the CEvNS process is only the part of the energy that turns into ionisation of atoms in the Ge crystal lattice (Other part goes into phonons/heat → not measurable by our detectors)

Energy dependent!

Knowledge of quenching factor is crucial for the signal prediction!

- → Very important systematic, but previously very large uncertainties for E_{rec} < 10 keV
- ightarrow Dedicated quenching measurement by CONUS

Result consistent with Lindhard theory with k = 0.162 + 0.004

21

Eur. Phys. J. C 82, 815 (2022)

Installation of CONUS+

Full Background model (C5, [400 – 1000] eV_{ee})

Component	Contribution ON [counts/d/kg]	Contribution OFF [counts/d/kg]
Muons	15.2 +- 0.3	15.1 +- 0.3
Neutrons	21.6 +- 3.1	17.7 +- 2.5
Muon-induced neutrons in overburden	2.2 +- 0.1	1.8 +- 0.1
Cucosmogenics	0.1 +- 0.05	0.1-0.05
Pb210 in cryostat	< 0.1	< 0.1
Pb210 in shield	0.1 +- 0.02	0.1 +- 0.02
Ge cosmogenics	0.2 +- 0.02	0.2 +- 0.02
Metastable Ge states	0.1 +- 0.01	0.1 +- 0.01
Radon	1.9 +- 0.1	0.3 +- 0.1
Kr85	< 0.1	< 0.1
H3	1.3 +- 0.2	0.5 +- 0.2
Xe135	0.1 +- 0.01	< 0.1
Total	42.9 +- 3.1 (DATA = 43.5 +- 1.1)	35.8 +- 2.5 (DATA = 33.4 +- 1.8)

Background Model C2

Component	Contribution ON [counts/d/kg]	Contribution OFF [counts/d/kg]
Muons	16.5 +- 0.3	16.4 +- 0.3
Neutrons	21.6 +- 3.1	17.7 +- 2.5
Muon-induced neutrons in overburden	2.2 +- 0.1	1.8 +- 0.1
Cucosmogenics	4.4 +- 0.4	4.4 +- 0.4
Pb210 in cryostat	< 0.1	< 0.1
Pb210 in shield	0.1 +- 0.02	0.1 +- 0.02
Ge cosmogenics	0.2 +- 0.02	0.2 +- 0.02
Metastable Ge states	0.1 +- 0.01	0.1 +- 0.01
Radon	2.8 +- 0.1	0.7 +- 0.1
Kr85	< 0.1	< 0.1
H3	1.3 +- 0.2	0.5 +- 0.2
Xe135	0.1 +- 0.01	< 0.1
Leakage component	3.0 +- 0.5	3.0 +- 0.5
Total	52.3 +- 3.3 (DATA = 50.7 +- 1.2)	45.1 +- 2.7 (DATA = 45.3 +- 1.3)

Background Model C3

Component	Contribution ON [counts/d/kg]	Contribution OFF [counts/d/kg]
Muons	16.5 +- 0.3	16.4 +- 0.3
Neutrons	21.6 +- 3.1	17.7 +- 2.5
Muon-induced neutrons in overburden	2.2 +- 0.1	1.8 +- 0.1
Cucosmogenics	3.6 +- 0.4	3.6 +- 0.4
Pb210 in cryostat	< 0.1	< 0.1
Pb210 in shield	0.1 +- 0.02	0.1 +- 0.02
Ge cosmogenics	0.2 +- 0.02	0.2 +- 0.02
Metastable Ge states	0.1 +- 0.01	0.1 +- 0.01
Radon	2.6 +- 0.1	0.7 +- 0.1
Kr85	< 0.1	< 0.1
H3	1.3 +- 0.2	0.5 +- 0.2
Xe135	0.1 +- 0.01	< 0.1
Leakage component	0.8 +- 0.2	0.8 +- 3.1
Total	49.3 +- 3.1 (DATA = 48.8 +- 1.2)	42.2 +- 2.7 (DATA = 42.5 +- 2.0)

Background characterization of location

Done in preparation for move to Leibstadt

- Gamma measurement with HPGe detector (CONRAD)
- Neutron measurement with Bonner Sphere Array
- Environmental parameters (Radon, temperature ...)
- Cosmic muons with liquid scintillator
- Wipe tests to measure surface contamination
- Vibrations with piezoelectric sensors

arXiv:2412.13707

Background characterisation: Results

<u>Gammas</u>

 \rightarrow factor 1.9 reduction compared to outside

 \rightarrow 7.4 m w.e. overburden

Neutrons

Energy region	$\phi \ (cm^{-2} \ (GW \ h)^{-1})$
Thermal	172.1 +- 16.3
intermediate	91.6 +- 6.3
Fast + cascade	1.0 +- 0.8
Total	264.7 +- 13.2

Cosmic neutrons

- Typical cascade peak at 100 MeV
- Not very well distinguishable from reactor neutrons due to very low flux and degeneracy in response functions of Bonner spheres
- Had to be simulated with model of reactor building and neutron flux from literature
- Result: 0.9 +- 0.2 neutrons/d/cm² in [20, 1000] keV
 - → Small flux but not completely suppressed by overburden
 - → Important impact on CONUS+ background model

Data stability

Excellent data stability reached during the whole run!

Rate in radon line (C2)

Trigger efficiency parameters

Data processing

Overview of applied cuts

1. Rejection of time periods:

- High radon level (no flushing)
- High noise rate (due to grounding problems \rightarrow exclusion of C4)
- Instabilities in noise peak
- Periods with more microphonic events
- Period of reactor shutting off/turning on

Induced dead times

- Muon veto dead time = veto rate * time window
- TRP dead time = TRP rate * time window
 → cuts are correlated: overall dead time = 11%-13%
- DAQ dead time: lost events during saturation and trigger holdoff
 → dead time < 2%

2. Applied cuts to data

- Muon veto anticoincidence cut with time window of 450 µs
- TRP cut: remove events immediately after pre-amplifier reset (window: 500 – 2000 µs)
- Microphonic cut
- Anticoincidence cut between detectors

<u>Overall live tim</u>	ne during Run 1:
ON: 119 d	OFF: 19 d

Detector upgrades compared to CONUS

<u>Refurbished crystals after dismanteling in KBR:</u>

• ASIC based electronics

 \rightarrow Improve trigger efficiency at low energies

- Large reduction of point contact size and use of bonding techniques for contacting
 - \rightarrow Reduction of electronic noise
- → Substantial improvement of trigger efficiency curve as well as energy resolution and noise edge

Trigger efficiency

Gives the "probability" that a physics signal of a certain energy is recognized in the detectors

	C4 before refurbishment	C4 after refurbishment
100 % down to	~ 500 eV _{ee}	~ 150 eV _{ee}
50 % at	$\sim 300 \text{ eV}_{ee}$	~ 85 eV _{ee}
20 % at	~ 200 eV _{ee}	~65 eV _{ee}

Achieved with CAEN DAQ system

First look at data (0.4 – 15 keV)

Background model

• Full decomposition of background achieved

 \rightarrow Use of material screening, Monte Carlo simulations and measurements (fully consistent)

- Based on ~ 20 years of experience collected at MPIK
- **Components to investigate:** ۲

Reactor neutrons, surface contaminations, inert gases (Xe, Kr, H3)

Cosmogenic components - Muons

Data without muon veto: ca. 99% muons

 \rightarrow Use this to get "baseline" for muon simulations

Muon flux in room: (53 + -1) muons $s^{-1}cm^{-2}$

 \rightarrow consistent with expected overburden

To this we apply a factor accounting for the muon veto efficiency

Factor:

99% at higher energies, but energy dependence at very low E

Muon tagging inefficiency at very low E

Simulations show that at very low E (< 400 eV) 80% of muon-induced signals in the crystals come from muons that don't cross any muon veto plate!

This induces "inefficiency" in the muon veto system because not all of these events will be tagged by the veto!

→ Efficiency at low E modeled with polynomial (i.e. 97% < 400 eV)

Cosmogenic components – Neutrons

Initial cosmic neutron spectrum with 0.014 neutrons/s/ cm^2

→ Cosmic neutrons in room: 0.9 +- 0.2 neutrons/d/cm²

→ 21.6 +- 3.1 counts/d/kg in [0.4 – 1 keV_{ee}] (50.3 +- 7.2 % of C5 background)

Radon in detector chamber

<u>Stability plots show:</u> Radon greatly reduced by flushing, but lines still visible

→ High impact in [100,400] keV
 → Small impact in ROI

Experimental differences in ON vs OFF times

2 key differences:

- 1. Placement of drywell lid above room in OFF
- ightarrow 19% reduction in cosmic neutron flux in room
- ightarrow 3% reduction of muon flux
- 2. Better radon flushing in OFF
- → ca. factor 7 reduction of radon contribution in OFF
- → also reduction of inert gases in detector chamber

Reactor correlated backgrounds:

Neutrons:

Impact < 1% of background in all energy regions

No evidence of ${}^{16}N$, small impact of inert gases from reactor

All effects considered in the Bkg model

Comparison to other CEvNS results

Experiment	Target	Source	Neutrino energy	Flux [cm ⁻² s ⁻¹]	Data [counts]	Data/ SM prediction	Significance of null hypothesis rejection
COHERENT	Cs	Accelerator	10 – 50 MeV	5 * 10 ⁷	306^{+20}_{-20}	$0.90^{+0.14}_{-0.14}$	11.6 <i>σ</i>
COHERENT	Ar	Accelerator	10 – 50 MeV	5 * 10 ⁷	140_{-40}^{+40}	$1.22^{+0.49}_{-0.49}$	3.5σ
COHERENT	Ge	Accelerator	10 – 50 MeV	5 * 10 ⁷	21^{+7}_{-6}	$0.59^{+0.26}_{-0.24}$	3.9 <i>σ</i>
XENONnT	Xe	Sun (⁸ B)	< 15 MeV	5 * 10 ⁶	11^{+4}_{-2}	$0.90\substack{+0.65 \\ -0.67}$	2.73 σ
PandaX-4T	Xe	Sun (⁸ B)	< 15 MeV	5 * 10 ⁶	4^{+1}_{-1}	$1.25^{+0.69}_{-0.69}$	2.64σ
CONUS+	Ge	Reactor	< 10 MeV	$1.5 * 10^{13}$	395^{+106}_{-106}	1.14_{-036}^{+036}	3.7 <i>σ</i>

→ CONUS+ has detected the lowest energy neutrinos via the CEvNS channel (down to 4 MeV)
 → CONUS+ has accumulated the highest number of CEvNS counts in one single isotope (low threshold + high flux)

Likelihood analysis

- Fit both reactor ON and OFF spectrum
- Inputs: Data (including live time and dead times), background model, predicted signal spectrum, measured trigger efficiency values, measured detector resolution, active volumes, neutrino flux at CONUS+ location

Parameter	Number of parameters per detector	Pull terms?
Signal strength s	1	No
Neutrino flux	1	Yes
Background scaling b	1	Yes
Trigger efficiency	2	Yes
Quenching uncertainty	4	Yes
Energy calibration uncertainty	1	Yes

Signal prediction

Data driven spectrum based on method proposed by the Daya Bay collaboration, including neutrino energies below threshold

Due to very low detector thresholds → increased impact of smaller neutrino energies

Signal prediction

Many attempts to measure CEvNS worldwide! Only COHERENT experiment successful up to now (w/ accelerator source)

Neutrino interactions in the Standard Model

Coherent Elastic Neutrino Nucleus Scattering

Non-linearity in energy calibration

More stability plots

25.3.25

Comparison with other result – CONUS

- Constraints from CONNIE, TEXONO, vGen
- Colaresi et al, PRL 129, 211802 (2022)
 - "...very strong preference... for the presence of ... CEvNS ..."
 - Signal prefers low energy excess of quenching factor as compared to Lindhard quenching to be consistent with SM

Comparison with other results – CONUS+

