CHIBA UNIVERSITY

Examining the High-Energy Neutrino Cross Section with the IceCube Neutrino Observatory

Colton Hill for the IceCube Collaboration EW Moriond 2025

NSF-IceCube/Ilya Bodo

Why Do We Care About Cross Sections?

 The cross section describes the interaction probability \Rightarrow vital for our Monte Carlo simulations!

In the simplest case: $N = \phi \sigma n_T \epsilon$

• For deep-inelastic scattering cross section calculations, theoretical calculations rely on parton distribution functions \Rightarrow directly probe Standard

Model.

The IceCube Neutrino Experiment

The IceCube Neutrino Experiment

The IceCube Neutrino Experiment

Interaction probability within the Earth is non-zero! Expectation now also a function of zenith! $N = \Phi'(\sigma) \sigma n_T \epsilon$

11

- IceCube is sensitive to how changes in the cross section modify the observed flux!

PREM: <u>https://doi.org/10.1016/0031-9201(81)90046-7</u>

Observed neutrino flux reaching IceCube is a function of energy ($\phi_{Atm, Astro}(E) \& \sigma(E)$) & zenith ($\phi_{Atm}(\Theta, \rho(\Theta))$).

Colton Hill - Chiba University

doi.org/10.1103/PhysRevD.109.113001

- 0.8 Φ/Φ₀ [Ge - 0.6 <n m^2 Str - 0.4 Ś - 0.2

- 0.0

• Until recently, IceCube was the only experiment to measure the DIS cross section above several hundred GeV.

doi.org/10.1103/PhysRevD.109.113001

Colton Hill - Chiba University

https://doi.org/10.48550/arXiv.2403.12520

- section above several hundred GeV.
- the "Energy Gap".
- more precision & overlapping energy.

https://doi.org/10.48550/arXiv.2403.12520

A Combined Analysis

Cascades

- Calorimetric energy reconstruction.
- 360° reconstructed zenith.

Tracks

- High statistics.
- Lever-arm-based direction reconstruction.

A Combined Analysis

Cascades

- Calorimetric energy reconstruction.
- 360° reconstructed zenith.

 \bullet

Tracks

- High statistics.
- Lever-arm-based direction reconstruction.

Leverage highly-synergistic information in a simultaneous multi-dimensional fit.

Nuisance Parameters & Systematic Uncertainties

- Consider detector effects like DOM efficiency and ice properties.
- single power-law.

Introduce additional flexibility for astrophysical flux models beyond the traditional

Methodology

IceCube's Multi-Dimensional Fitting Tool icecube / NNMFit

 Construct a binned likelihood with the cross section as free parameters.

Methodology

IceCube's Multi-Dimensional Fitting Tool icecube / NNMFit

- Construct a binned likelihood with the cross section as free parameters.
- Fit the segmented normalisation assuming some cross section model shape and baseline.

- Leverage synergistic information in a simultaneous multi-dimensional fit.
- Projecting sensitivity in the TeV-range around 20%, around 50% in PeV-range.

Future Potential

- In recent years, the number of theoretical models describing the DIS neutrino cross section has also increased.
- While the differences between these models in the sensitive energy range is on the order of 10% or less, this measurement offers a potential opportunity to compare models to data.

Colton Hill - Chiba University

https://arxiv.org/abs/2408.05866

- IceCube has the ability to measure the DIS neutrino cross section across a wide energy-band.
- Using a combined sample of track and cascade type events, we can construct a synergistic event sample.
- The next-generation DIS cross section measurement with the IceCube detector is *nearly* ready to unblind.
- New results expected within just a few months!

Summary and Outlook

Backup

• At IceCube energies - strongly in the DIS regime!

Nominal PREM

Neutrino vs Anti-Neutrino

https://doi.org/10.48550/arXiv.2403.12520

https://arxiv.org/abs/2408.05866

