

Measurement of the Z boson mass with the LHCb detector

Emir Muhammad, on behalf of the LHCb Collaboration 29 March 2025 / Moriond YSF

European Research Council

Established by the European Commission Photo by Gilbert Sopakuwa, CC BY-NC-ND 2.0

Prospects of a *Z* **measurement**

- m_z is an important fundamental parameter in the Standard Model
- Predictions at higher precision require loop corrections
 - Depends on top mass, Higgs mass, etc..

Indirect $m_Z = 91204.7 \pm 8.8$ MeV

• *LHCb* has measured m_W , and $\sin^2 \theta_W$..., can we measure m_Z ?

Detector Response

Differences between data and simulation are of the form

$$p^{\pm} \rightarrow (1 + \alpha + \frac{\beta}{p^{\pm}} \mp \delta p^{\pm})(1 + \alpha \mathcal{R}_{1}\sigma_{1})(1 + b\mathcal{R}_{2}\sigma_{2}p^{\pm})p^{\pm}$$

$$\mathcal{R} \sim \mathcal{N}(0,1)$$

$$\xrightarrow{\mathbf{10^{6}}} \underbrace{\mathbf{10^{6}}}_{\mathbf{10^{6}}} \underbrace{\mathbf{10^{6}}}_{\mathbf{10^$$

Z mass Fit

- Binned Chi squared fit
- *m_z* varied by reweighting to generator level events
- From a version of POWHEG with QED predictions at NLO <u>Eur. Phys. J. C 73 (2013) 6</u>

Source	Size [MeV]
Momentum calibration	4.1
Signal QED corrections	0.8
Parton distribution functions	0.7
Detection Efficiency	0.1
Statistical uncertainty	8.5
Total	9.5

Result

Direct Measurements

Indirect Determinations

5

Summary

• m_z measurable at LHCb!

 $m_z = 91184.2 \pm 9.5 \; {\rm MeV}$

- Results consistent with SM and previous measurements
- First dedicated measurement at the LHC

Backup

