V(qq)H(bb) in the boosted Higgs channel

Duc Hoang (<u>dhoang@mit.edu</u>) for the CMS Collaboration Recontres de Moriond Electroweak 2025

Motivation

- VH has high cross section at high p_T
- Largest branching ratios for all VH channels, making it the *most sensitive channel* at high *p_T*.
- Possible access to new physics, including modified Higgs self-coupling.
- Test 2.7σ excess from SM recently observed in VBF channel [JHEP 12 (2024) 035].

CMS PAS BTV-22-001

$PN_{BBvsQQ}^{MD} =$	PN_{Xbb}^{MD}
	$\overline{PN_{Xbb}^{MD} + PN_{Xcc}^{MD} + PN_{Xqq}^{MD}}$

$$PN_{QCD}^{MD} = 1 - (PN_{Xbb}^{MD} + PN_{Xcc}^{MD} + PN_{Xqq}^{MD})$$
$$= 1 - PN_{2\text{-prong}}^{MD}$$

Higgs and Vector Boson Candidates are selected using ParticleNet-MD tagging scores

pick two leading p_T large-radius jets > 450 GeV

Binned in Vector Boson Jet Mass

Signal & Control Region Partitioned space into 6 regions = 3 V mass bins x 2 ParticleNet-MD Xbb pass/fail

Back up

Expected sensitivity from HIG-20-001 CMS AN-2019/229 - Figure 282

A rough combination
of uncertainty here is:
$$\sigma_{ZH}^{Vp_T > 400} = \sqrt{0.57^2 + 0.27^2} = 0.63$$
$$\sigma_{WH}^{Vp_T > 400} = \sqrt{0.59^2 + 0.42^2} = 0.72$$
$$\sigma_{tot} = \frac{1}{\frac{1}{(\sigma_{ZH}^{Vp_T > 400})^2} + \frac{1}{(\sigma_{WH}^{Vp_T > 400})^2}}$$
$$= 0.47$$

It could get slightly worse if the systematics are correlated

Moving from 400 to 450 GeV

