**CERN-EP-2025-059** 

# Nik hef

# The Higgs boson's lifetime measurement via off-shell decays to W-bosons MoriondEW, 29-03-2025, La Thuile

#### Zef Wolffs, on behalf of the ATLAS collaboration Nikhef, University of Amsterdam









- The lifetime of the Higgs boson is  $\sim 10^{-22}s$ , but is closely related to its **decay rate**  $\Gamma = -$
- The decay rate is the width of the Breit-Wigner peak! Let's measure it





• The decay rate is the width of the Breit-Wigner peak! Let's measure it

Intrinsic Higgs width 4.1 MeV in standard model





- The lifetime of the Higgs boson is  $\sim 10^{-22}s$ , but is closely related to its **decay rate**  $\Gamma = -$



#### • The decay rate is the width of the Breit-Wigner peak! Let's measure it

Intrinsic Higgs width 4.1 MeV in standard model

Detector resolution ~1000 MeV in ATLAS detector



- The lifetime of the Higgs boson is  $\sim 10^{-22}s$ , but is closely related to its **decay rate**  $\Gamma = -$





#### • The decay rate is the width of the Breit-Wigner peak! Let's measure it What we see in the detector:

Intrinsic Higgs width 4.1 MeV in standard model

Detector resolution ~1000 MeV in ATLAS detector



## • The lifetime of the Higgs boson is $\sim 10^{-22}s$ , but is closely related to its **decay rate** $\Gamma = \frac{\hbar}{-}$



• The **decay ra** 

Intrinsic Higgs width 4.1 MeV in standard model

Detector resolution ~1000 MeV in ATLAS detector



• The lifetime of the Higgs boson is  $\sim 10^{-22}s$ , but is closely related to its **decay rate** 





Caola and Melnikov [<u>1307.4935</u>] propose another strategy to measure the Higgs width







• Caola and Melnikov [<u>1307.4935</u>] propose another strategy to measure the Higgs width



Degeneracy between couplings and the width in onshell regime!







Caola and Melnikov [<u>1307.4935</u>] propose another strategy to measure the Higgs width



Degeneracy resolved in offshell regime!







Caola and Melnikov [<u>1307.4935</u>] propose another strategy to measure the Higgs width



$$\Gamma_{H} \propto \frac{\sigma_{i \to H \to f}^{off-shell}}{\sigma_{i \to H \to f}^{on-shell}}$$

Assuming couplings (kappas) cancel out in on- and off-shell regimes







# Analysis strategy

focusing on EW, 1j mixed



- Two signal decay modes

Three DNN bins per analysis region

#### same flavour regions





# Analysis strategy

focusing on EW, 1j mixed



- Two signal decay modes

Three DNN bins per analysis region

#### same flavour regions





#### Results

#### $H \rightarrow WW$ Off-shell signal strength parameter

- $\mu_{\text{off-shell}} = 0.3^{+0.9}_{-0.3} \text{ obs} \cdot (1.0^{+2.3}_{-1.0} \text{ exp.})$
- $\mu_{\text{off-shell}} < 3.4 \text{ obs.}$  (4.4 exp.) @ 95% CL

#### The Higgs boson total width

- $\Gamma_H = 0.9^{+3.4}_{-0.9}$  MeV obs. (4.1<sup>+8.3</sup>\_{-3.8} MeV exp.)
- $\Gamma_H < 13.1$  MeV obs. (17.3 MeV exp.) @ 95% CL







### Conclusion

#### Presented the first ATLAS standalone $H \rightarrow WW$ width measurement!



### Conclusion

#### Presented the first ATLAS standalone $H \rightarrow WW$ width measurement!









#### **Breakdown of uncertainties**

Statistical un MC stat. une Theory unce - Theory - Theory Experimenta - Jets - Leptons - Others - Misiden Background

Table 1: Breakdown of the observed impact of sources of uncertainties on the value of  $\mu_{\text{off-shell}}$  at 68% confidence level where  $t_{\mu_{off-shell}} = 1$ . The values in the right column represent the relative difference in quadrature between the best-fit  $\mu_{\text{off-shell}}$  and the  $\mu_{\text{off-shell}}$  from a fit where a set of nuisance parameters ( $\theta_i$ ) are fixed to their best-fit values  $\hat{\theta}_i$ .

| ncertainty      | 52%  |
|-----------------|------|
| certainty       | 15%  |
| ertainty        | 39%  |
| background      | 22%  |
| signal          | 34%  |
| al uncertainty  | 25%  |
|                 | 19%  |
| S               | 5.3% |
|                 | 6.8% |
| ntified leptons | 3.1% |
| normalisation   | 7.6% |



# Why measure the Higgs width?

The Higgs decaying faster, or with larger width, might indicate decay to undiscovered particles [2107.08343]



Measuring off-shell Higgs boson production is by itself important • As shown before:  $\sigma_{onshell} \propto g^4$  /  $\Gamma_H \rightarrow$  degeneracy between

- couplings and width!
  - This can be resolved in the offshell regime!  $\sigma_{offshell} \propto g^4$











# Higgs width at the FCC-ee

#### One of the more realistic future colliders is the FCC, future circular collider



There are multiple options, but the FCC-ee would collide electrons, which generally comes with lower collision energy than hadronic colliders, but with the ability to more precisely tune the energy





# Higgs width at the FCC-ee

With a lepton collider we can tune the beam energy to exactly  $m_{Z} + m_{H}$  and produce the Higgsstrahlung process with a very high rate

Doing this we can target the Higgs width with minimal assumptions as follows

The cross section of the Higgsstrahlung process  $\frac{\sigma(e^+e^- \to ZH)}{\mathrm{BR}(H \to ZZ^*)} = \frac{\sigma(e^+e^- \to ZH)}{\Gamma(H \to ZZ^*)/\Gamma_H} \simeq \left[\frac{\sigma(e^+e^-)}{\Gamma(H \to ZZ^*)/\Gamma_H}\right]$ The branching ratio of  $H \rightarrow ZZ$ 

Left with an explicit dependence on the width

$$\frac{\overline{\phantom{x}} \to ZH)}{\to ZZ^*)} \bigg]_{\rm SM} \times \Gamma_H$$

Assume that new physics effects cancel in this ratio  $\rightarrow$  SM!



recoils off a Z boson



# Higgs width at future (?) colliders





Circular electron-positron

(experiments in 2030?)



collider



The future circular collider (ee)



2.7

1.3

FCC-ee<sub>240</sub>

FCC-ee<sub>365</sub>



Zef Wolffs

## A refresher: What is the width of a particle?

- The width,  $\Gamma$ , is defined as the decay rate  $\Gamma = -\frac{1}{2}$
- Take a wave function, add an exponentially decaying term

• Fourier transform to energy domain

$$\Psi(E) = \Psi_0 \frac{i}{(E - E_0) + \frac{i}{2}\Gamma}$$

Now ask, what is the probability to measure the particle with energy E?

$$\Psi(E)^* \Psi(E) = \Psi_0^* \Psi_0 \frac{1}{(E - E_0)^2 + \frac{1}{4}\Gamma}$$

#### Width of the peak is intrinsically connected to the decay rate







- The decay probability of the WW decay is significantly
  - larger than that of ZZ







The decay probability of the Expect more WW decays in WW decay is significantly —>>> LHC, so this channel should larger than that of ZZ be more sensitive





Zef Wolffs



The decay probability of the Expect more WW decays in WW decay is significantly —>>> LHC, so this channel should larger than that of ZZ be more sensitive

> However, in practice WW is **less sensitive** than the ZZ measurement? Run 1:  $ZZ: \Gamma_{H} \lessapprox 2\Gamma_{H}^{SM} @ 95\% CI$  $WW: \Gamma_{H} \lessapprox 6\Gamma_{H}^{SM} @ 95\% CI$





Zef Wolffs



The decay probability of the Expect more WW decays in WW decay is significantly —>>> LHC, so this channel should larger than that of ZZ be more sensitive

> However, in practice WW is **less sensitive** than the ZZ measurement? Run 1:  $ZZ: \Gamma_{H} \lessapprox 2\Gamma_{H}^{SM} @ 95\% CI$  $WW: \Gamma_{H} \lessapprox 6\Gamma_{H}^{SM} @ 95\% CI$











W bosons decay into leptons and neutrinos



WW bosons decay to neutrino's which cannot be detected → Results in "**missing energy**" which is hard to reconstruct!





#### $H \rightarrow WW$ channel has **missing energy** caused by the final state neutrinos







## Yield as a function of POI









## $M_{WW}$ and $V_{31}$









mu\_on and mu off width and couplings dependencies

We get the following system of equations













#### **Multi-POI**







# All analysis signal regions



18





## Neyman Construction for creating confidence intervals

- Neyman construction using toys can be used to correctly estimate the CI for the off-shell ٠
- Three step procedure •
  - 1] Profile dataset •
    - Perform conditional fit (assuming particular injected value of POI) to data to obtain • best fit values of nuisance parameters (NP)
  - 2] Generate toy datasets •
    - Given the injected  $\mu$  and NP, randomize the global observable according to the • PDF and generate a toy dataset
  - 3] Perform unconditional and conditional fits for each toy to get test statistic distribution • for each hypothesis (more info in the backup)





Zef Wolffs

#### Tables

#### DNN inputs

| Variable                             | Different-flavour lepton category |              |              | Same-flavour lepton category |              |              |  |
|--------------------------------------|-----------------------------------|--------------|--------------|------------------------------|--------------|--------------|--|
| variable                             | 0-jet                             | 1-jet        | 2-jet        | 0-jet                        | 1-jet        | 2-jet        |  |
| $p_{\mathrm{T}}^{\ell 0}$            | 1                                 | 1            | 1            | 1                            | 1            |              |  |
| $p_{T}^{\ell_{1}}$                   | 1                                 | 1            | 1            | ✓                            | 1            | 1            |  |
| $\eta^{\ell 0}$                      | ✓                                 | 1            | 1            | ✓                            | 1            | ✓            |  |
| $\eta^{\ell 1}$                      | $\checkmark$                      | ✓            | $\checkmark$ | ✓                            | ✓            | 1            |  |
| $\phi^{\ell 0}$                      | 1                                 | ✓            | 1            | ✓                            | ✓            | 1            |  |
| $\phi^{\ell 1}$                      | ✓                                 |              | 1            | $\checkmark$                 | ✓            | ✓            |  |
| $p_{\mathrm{T}}^{\ell\ell}$          |                                   | 1            |              |                              |              |              |  |
| $\Delta \eta^{\ell \ell}$            |                                   | ✓            | 1            |                              |              | ✓            |  |
| $\Delta y^{\ell \ell}$               |                                   | $\checkmark$ | 1            |                              | $\checkmark$ | 1            |  |
| $\Delta \phi^{\ell \ell}$            |                                   |              | 1            |                              | ✓            | 1            |  |
| $\Delta R^{\ell\ell}$                |                                   |              |              |                              | 1            |              |  |
| $n_{\mathrm{T}}$                     |                                   |              |              |                              |              |              |  |
| $n_{\ell\ell}$                       | $\checkmark$                      | $\checkmark$ | 1            | <b>√</b>                     | $\checkmark$ | 1            |  |
| $\max(m_{\mathrm{T}}^W)$             | 1                                 |              |              | $\checkmark$                 | 1            |              |  |
| $p_{\rm T}^{j0}$                     |                                   | ✓            | ✓            |                              | ✓            | 1            |  |
| $p_{\rm T}^{j1}$                     |                                   |              | ✓            |                              |              | 1            |  |
| $\eta^{j_0}$                         |                                   | ✓            | 1            |                              | ✓            | 1            |  |
| $\eta^{j1}$                          |                                   |              | 1            |                              |              | 1            |  |
| \$ <sup>j0</sup>                     |                                   |              | ✓            |                              | ✓            | 1            |  |
| $n^{j0}$                             |                                   | ✓            | ✓            |                              | 1            | 1            |  |
| $n^{j1}$                             |                                   |              | 1            |                              |              | $\checkmark$ |  |
| n <sup>jj</sup>                      |                                   |              | 1            |                              |              | 1            |  |
| $\Delta y^{jj}$                      |                                   |              | 1            |                              |              | 1            |  |
| $\sqrt{H_{\rm T}}$                   | -                                 | 1            | 1            | -                            |              | 1            |  |
| $E_{\rm T}^{\rm miss}$               | <b>√</b>                          | 1            | 1            |                              |              | <b>√</b>     |  |
| $b_{p_{\mathrm{T}}^{\mathrm{miss}}}$ | $\checkmark$                      |              | 1            | 1                            |              | 1            |  |
| $S(E_{\rm T}^{\rm miss})$            | 1                                 |              | 1            | 1                            | $\checkmark$ | 1            |  |
| $\Delta R^{\ell 0 j 0}$              |                                   | 1            |              |                              | $\checkmark$ |              |  |
| $\Lambda R^{\ell 0 j 1}$             |                                   |              | 1            |                              |              | 1            |  |
| $\Lambda R^{\ell_{1j0}}$             |                                   | 1            |              |                              | 1            |              |  |

| Hyperparameter            |
|---------------------------|
| Nodes in layer 1          |
| Nodes in layer 2          |
| Nodes in layer 3          |
| Nodes in layer 4          |
| Nodes in layer 5          |
| Activation function       |
| Optimiser                 |
| Epochs                    |
| Batch-size                |
| Learning rate             |
| Learning rate decay ratio |
| Use Nesterov momentum?    |
| Dropout                   |
| Momentum                  |
| L2 regularisation weight  |

|   | Differe | ent-flavo | our leptons | Same-flavour leptons |       |         |  |
|---|---------|-----------|-------------|----------------------|-------|---------|--|
|   | 0-jet   | 1-jet     | 2-jet       | 0-jet                | 1-jet | 2-jet   |  |
|   | 256     | 128       | 256         | 256                  | 256   | 128     |  |
|   | 128     | 32        | 128         | 128                  | 64    | 128     |  |
|   | 64      | 32        | 64          | 64                   | 256   | 32      |  |
|   | 16      |           | 16          | 16                   |       | 16      |  |
|   | 16      | 16 16     |             |                      |       |         |  |
|   | relu    | relu      | elu         | relu                 | elu   | relu    |  |
|   | SGD     | SGD       | SGD         | SGD                  | SGD   | SGD     |  |
|   | 300     | 300       | 30          | 300                  | 100   | 300     |  |
|   | 256     | 512       | 128         | 256                  | 1024  | 256     |  |
|   | 0.3     | 0.1       | 0.1         | 0.1                  | 0.1   | 0.03    |  |
|   | 0.01    | 0.8       | 0.01        | 0.3                  | 1     | 1       |  |
| • |         |           |             |                      | 1     |         |  |
|   | 0.3     | 0.1       | 0.6         | 0.6                  | 0     | 0       |  |
|   | 0.8     | 0.9       | 0.1         | 0.3                  | 0.95  | 0.3     |  |
|   | 0       | 0         | 0.0003      | 0.0003               | 0     | 0.00003 |  |

#### Hyperparameters

NFs

|          |       | $qq \rightarrow WW$             | Top-quark                       | $Z \to \tau \tau$      | $Z \to \ell \ell$               |
|----------|-------|---------------------------------|---------------------------------|------------------------|---------------------------------|
| Expected | 0-jet | $1.00^{+0.07}_{-0.07}$          | $1.00^{+0.11}_{-0.10}$          | $1.00^{+0.06}_{-0.06}$ | $1.00^{+0.15}_{-0.13}$          |
|          | 1-jet | $1.00\substack{+0.15 \\ -0.12}$ | $1.00^{+0.08}_{-0.09}$          | $1.00^{+0.12}_{-0.10}$ | $1.00\substack{+0.21 \\ -0.16}$ |
|          | 2-jet | $1.0^{+0.6}_{-0.4}$             | $1.00^{+0.05}_{-0.05}$          |                        | $1.00^{+0.41}_{-0.27}$          |
| Observed | 0-jet | $1.01^{+0.07}_{-0.07}$          | $0.93^{+0.10}_{-0.09}$          | $0.90^{+0.05}_{-0.05}$ | $1.15^{+0.17}_{-0.15}$          |
|          | 1-jet | $0.90\substack{+0.14 \\ -0.12}$ | $0.97\substack{+0.08 \\ -0.08}$ | $0.90^{+0.11}_{-0.09}$ | $1.08^{+0.23}_{-0.18}$          |
|          | 2-jet | $0.9^{+0.6}_{-0.4}$             | $0.97^{+0.05}_{-0.05}$          |                        | $0.87^{+0.35}_{-0.23}$          |



#### Tables

| Process                   | ggF B | ggF S+I | EW B | EW S+I | tī    | qqWW  | Mis-ID lep. | $Z \rightarrow \tau \tau$ | $Z \rightarrow \ell \ell$ | Other H | VV(V) | Expected $(\hat{\mu}, \hat{\theta})$ | Data  |
|---------------------------|-------|---------|------|--------|-------|-------|-------------|---------------------------|---------------------------|---------|-------|--------------------------------------|-------|
| 0-jet DF top CR           | 42    | -4      | 1    | 0      | 5309  | 245   | 34          | 21                        | 0                         | 2       | 33    | 5684 ± 92                            | 5681  |
| 0-jet DF low DNN-score    | 972   | 2       | 5    | 0      | 1499  | 14705 | 1566        | 65587                     | 2877                      | 553     | 2212  | 89979 ± 516                          | 90008 |
| 0-jet DF medium DNN-score | 1457  | -53     | 10   | -1     | 4470  | 12249 | 725         | 666                       | 72                        | 81      | 551   | $20227 \pm 156$                      | 20183 |
| 0-jet DF high DNN-score   | 522   | -83     | 7    | 0      | 2152  | 2246  | 67          | 74                        | 10                        | 3       | 73    | $5071 \pm 43$                        | 5045  |
| 0-jet SF low DNN-score    | 775   | -45     | 8    | 0      | 2609  | 7403  | 499         | 290                       | 25046                     | 47      | 5212  | $41844 \pm 476$                      | 41843 |
| 0-jet SF medium DNN-score | 371   | -54     | 4    | -1     | 1562  | 1627  | 47          | 26                        | 896                       | 2       | 260   | $4740 \pm 61$                        | 4800  |
| 0-jet SF high DNN-score   | 107   | -24     | 2    | 0      | 414   | 304   | 8           | 7                         | 25                        | 0       | 51    | $895 \pm 15$                         | 875   |
| 1-jet DF WW CR            | 58    | -3      | 6    | 0      | 865   | 454   | 40          | 85                        | 27                        | 8       | 82    | $1621 \pm 67$                        | 1629  |
| 1-jet DF top CR           | 27    | -3      | 5    | -0     | 19338 | 175   | 89          | 6                         | 1                         | 2       | 44    | $19683 \pm 151$                      | 19670 |
| 1-jet DF $Z\tau\tau$ CR   | 90    | -1      | 10   | 0      | 1244  | 1124  | 226         | 16404                     | 316                       | 285     | 653   | $20351 \pm 266$                      | 20352 |
| 1-jet DF low DNN-score    | 671   | -34     | 48   | 0      | 13238 | 7765  | 543         | 1312                      | 200                       | 69      | 918   | $24730 \pm 406$                      | 24725 |
| 1-jet DF medium DNN-score | 562   | -62     | 51   | -3     | 4394  | 3305  | 198         | 250                       | 37                        | 19      | 266   | $9018 \pm 87$                        | 9032  |
| 1-jet DF high DNN-score   | 119   | -25     | 42   | -6     | 656   | 455   | 30          | 14                        | 3                         | 2       | 32    | $1321 \pm 16$                        | 1302  |
| 1-jet SF low DNN-score    | 381   | -44     | 25   | -1     | 5925  | 2628  | 172         | 134                       | 9323                      | 23      | 1799  | $20366 \pm 334$                      | 20351 |
| 1-jet SF medium DNN-score | 115   | -22     | 15   | -1     | 931   | 506   | 20          | 5                         | 298                       | 1       | 101   | $1968 \pm 26$                        | 1969  |
| 1-jet SF high DNN-score   | 71    | -19     | 29   | -5     | 409   | 253   | 13          | 6                         | 155                       | 0       | 44    | 956 ± 17                             | 979   |
| 2-jet DF top CR           | 26    | -4      | 56   | 0      | 33796 | 157   | 180         | 56                        | 8                         | 13      | 43    | $34333 \pm 217$                      | 34335 |
| 2-jet DF low DNN-score    | 246   | -27     | 137  | -6     | 7419  | 1544  | 180         | 472                       | 60                        | 48      | 255   | $10327 \pm 352$                      | 10311 |
| 2-jet DF medium DNN-score | 10    | -2      | 49   | -3     | 149   | 53    | 6           | 5                         | 1                         | 3       | 10    | $281 \pm 6$                          | 287   |
| 2-jet DF high DNN-score   | 10    | -2      | 138  | -12    | 116   | 39    | 5           | 4                         | 1                         | 3       | 5     | $307 \pm 7$                          | 297   |
| 2-jet SF low DNN-score    | 71    | -12     | 29   | -2     | 1897  | 335   | 22          | 7                         | 997                       | 3       | 196   | $3542 \pm 115$                       | 3532  |
| 2-jet SF medium DNN-score | 11    | -3      | 46   | -3     | 186   | 50    | 4           | 1                         | 42                        | 0       | 12    | $347 \pm 13$                         | 374   |
| 2-jet SF high DNN-score   | 3     | -1      | 42   | -5     | 26    | 7     | 2           | 1                         | 6                         | 0       | 1     | 82 ± 5                               | 83    |

#### CRs

|                                                 | 0-jet                                  | 1-jet                                              | 2-jet                                             |  |  |  |  |  |  |
|-------------------------------------------------|----------------------------------------|----------------------------------------------------|---------------------------------------------------|--|--|--|--|--|--|
| Different-flavour lepton category pre-selection |                                        |                                                    |                                                   |  |  |  |  |  |  |
| $qq \rightarrow WW$                             |                                        | $n_{b-\text{jets}} = 0$                            |                                                   |  |  |  |  |  |  |
|                                                 | _                                      | $m_{\ell\ell} > 80 \mathrm{GeV}$                   | _                                                 |  |  |  |  |  |  |
|                                                 | _                                      | $\Delta \phi_{(\ell,\ell)} < 1.8$                  | _                                                 |  |  |  |  |  |  |
|                                                 |                                        | $ m_{\tau\tau} - 91 \text{ GeV}  > 25 \text{ GeV}$ |                                                   |  |  |  |  |  |  |
| Top-quark                                       | $n_{b-\text{jets}} = 1$                | $n_{b-\text{jets}} = 1$                            | $n_{b-\text{jets}} = 1$                           |  |  |  |  |  |  |
|                                                 | $p_{T,b-jet} \in [20, 30] \text{ GeV}$ | $p_{\mathrm{T},b-\mathrm{jet}} > 30 \mathrm{GeV}$  | $p_{\mathrm{T},b-\mathrm{jet}} > 30 \mathrm{GeV}$ |  |  |  |  |  |  |
|                                                 | $m_{\ell\ell} > 100 \mathrm{GeV}$      | $m_{\ell\ell} > 100 \mathrm{GeV}$                  | $m_{\ell\ell} > 70 \mathrm{GeV}$                  |  |  |  |  |  |  |
|                                                 | $\Delta \eta_{(\ell,\ell)} < 1.8$      | $\Delta \phi_{(\ell,\ell)} > 1.8$                  | central jet veto                                  |  |  |  |  |  |  |
|                                                 |                                        |                                                    | outside lepton veto                               |  |  |  |  |  |  |
| $Z \rightarrow \tau \tau$                       |                                        | $n_{b-\text{jets}} = 0$                            |                                                   |  |  |  |  |  |  |
|                                                 | -                                      | $m_{\ell\ell} < 80 \mathrm{GeV}$                   | -                                                 |  |  |  |  |  |  |
|                                                 |                                        | $m_{\tau\tau} > 66 \mathrm{GeV}$                   |                                                   |  |  |  |  |  |  |

#### Yields

#### SRs

|                      |                                                  |                                     | SF                               |                                                   |                                                    |                                          |  |
|----------------------|--------------------------------------------------|-------------------------------------|----------------------------------|---------------------------------------------------|----------------------------------------------------|------------------------------------------|--|
|                      | 0-jet                                            | 1-jet                               | 2-jet                            | 0-jet                                             | 1-jet                                              | 2-jet                                    |  |
| Pre-selection        | Trigger sel                                      | ection and matchi                   | Trigger selection and matching   |                                                   |                                                    |                                          |  |
|                      | 2 DF oppos                                       | itely-charged lept                  | ons                              | 2 SF oppositely-charged leptons                   |                                                    |                                          |  |
|                      | No ad                                            | ditional leptons                    |                                  |                                                   | No additio                                         | nal leptons                              |  |
|                      | $p_{\rm T}^{\rm lead} > 27  {\rm GeV}$           | V and $p_{\rm T}^{\rm sublead} > 1$ | 5 GeV                            | $p_{\rm T}^{\rm lead} > 1$                        | 27 GeV and                                         | $p_{\rm T}^{\rm sublead} > 15 {\rm GeV}$ |  |
|                      | -                                                |                                     |                                  | -                                                 | $p_{\mathrm{T}}^{\ell\ell} > 0$                    | 40 GeV                                   |  |
|                      |                                                  |                                     |                                  |                                                   | $\hat{\mathcal{S}}(E_{\mathrm{T}}^{\mathrm{min}})$ | <sup>(ss</sup> ) > 4                     |  |
| Jet categorisation   | $n_{\rm jets} = 0$                               | $n_{\rm jets} = 1$                  | $n_{\text{jets}} \ge 2$          | $n_{\rm jets} = 0$                                | $n_{\rm jets} = 1$                                 | $n_{\text{jets}} \ge 2$                  |  |
| Orthogonality        | $m_{\ell\ell} > 100 \text{GeV}$ or               | $m_{\ell\ell} > 80 \mathrm{GeV}$    | $m_{\ell\ell} > 70 \mathrm{GeV}$ |                                                   | $\Delta R_{(\ell,\ell)}$                           | ) > 1.8                                  |  |
|                      | $(55\text{GeV} \le m_{\ell\ell} < 100\text{GeV}$ | $\Delta \phi_{(\ell,\ell)} > 1.8$   |                                  | $m_{\ell\ell} > 55 \text{GeV}$ $m_{\ell\ell} >$   |                                                    | $m_{\ell\ell} > 70 \mathrm{GeV}$         |  |
|                      | and $\Delta \phi_{(\ell,\ell)} > 2$ )            |                                     |                                  | $\Delta \phi_{(\ell,\ell)}$                       | ) > 1.8                                            |                                          |  |
| Top rejection        | 1                                                | $n_{b-\text{jets}} = 0$             | $n_{b-\text{jets}} = 0$          |                                                   |                                                    |                                          |  |
| Background rejection | $\Delta \eta_{(\ell,\ell)} < 1.8$                |                                     | central jet veto                 | $  m_{\ell\ell} - 91  \text{GeV} > 15 \text{GeV}$ |                                                    | eV > 15 GeV                              |  |
|                      |                                                  |                                     | outside lepton veto              | central j                                         |                                                    | central jet veto                         |  |
|                      |                                                  |                                     |                                  | outside leptor                                    |                                                    | outside lepton veto                      |  |

