

TOP PROPERTIES AND MASS

F. FABBRI, ON BEHALF OF THE ATLAS AND CMS COLLABORATIONS

TOP QUARK MASS AND PROPERTIES AT LHC

- LHC is called a top-quark factory, this has several implications
 - The measurement of the top mass can reach un-precedented precision
 - ATLAS+CMS top mass combination
 - Extreme region of the phase space have enough statistics to lead to precise measurements and allow to study unexplored characteristics of the top-quark
 - ATLAS top-quark mass measurements using boosted top quarks
 - ATLAS top-quark Lund Jet plane measurement
 - It is possible to measure for the first time the spin density matrix of the top-quark pair differentially
 - CMS top-quark pair spin density matrix and entanglement differential
 - First measurement of Magic
 - The top quark pair final state can be used to probe the fundamentals of the SM
 - ATLAS Lepton Flavour Universality test in $\frac{W \rightarrow ev}{W \rightarrow \tau v}$

TOP QUARK MASS

- The top quark mass is a free parameter of the SM
 - It is extremely related to the Higgs mass and the electroweak sector
 - Direct measurement are a strict constraint of the SM consistency
- There are two main approaches at measuring the top quark mass
 - Indirect measurement: exploit the correlation with the topquark pair production cross-section
 - Direct measurement: exploiting an observable reconstructed at detector level sensitive to the mass
- Recent results:
 - ATLAS top mass measurement using boosted top quarks
 - Most precise ATLAS individual measurement
 - Covered later in E. Watton talk
 - ATLAS and CMS combination using Run1 data

LHC TOP MASS COMBINATION WITH RUNI DATA

- 15 ATLAS and CMS top-quark mass measurements done at $\sqrt{s} = 7/8$ TeV combined
 - All direct measurements
- All correlations considered in the combination
 - Uncertainties grouped in 25 categories
 - Correlation between measurements in the same experiment based on the covariance matrices
 - Correlation cross-experiment evaluated on the categories based on the similarities of approaches and input.
- 31% improvement in precision compared to the most precise input measurement
- Currently most precise top-quark mass measurement
 - Dominant uncertainty due to the jet energy scale of b-jets

e; μ; τ; q

Phys. Rev. D 110 (2024) 112016

SPIN DENSITY MATRIX – ANALYSIS STRATEGY

- The top-quark decays faster than the spin decorrelation time
- The direction of the final state particle in the parent top rest frame can be used to measure the spin density matrix (ρ)
 - Related by the spin analysing power (k)
- The semi-leptonic final state is employed for the measurement
- The semi-leptonic final state is employed for the measurement
 MVA approach to reconstruct the system
 Also targeting the identification of the down-type quark
 The measurement of the ρ coefficients (P, C) is performed exploiting the down to be a set of the do relation with the cross section

$$\Sigma_{\text{tot}}(\phi_{p(\bar{p})}, \theta_{p(\bar{p})}) = \frac{d^4\sigma}{d\phi_p d\cos(\theta_p) d\phi_{\bar{p}} d\cos(\theta_{\bar{p}})}$$
$$= \sigma_{\text{norm}} (1 + \kappa \mathbf{P} \cdot \mathbf{\Omega} + \bar{\kappa} \bar{\mathbf{P}} \cdot \bar{\mathbf{\Omega}} - \kappa \bar{\kappa} \mathbf{\Omega} \cdot (C\bar{\mathbf{\Omega}})$$

- Template built reweighting the nominal generator
- Weights obtained varying the spin density matrix coefficients
- Results obtained fitting the template to data on a multidimensional distribution, depending on the spin analysers angular distributions

SPIN DENSITY MATRIX - RESULTS

- The coefficients of the spin density matrix are extracted differentially in bins of m_{tt^-} , the angle for top-quark production in the top-quark pair frame and p_T
- Dominant uncertainty dependent on the phase space region
- Good agreement with the SM

QUANTUM OBSERVABLES

- The spins of the top-quarks produced at LHC can also be interpreted as a pair of qubits
- Concepts taken from quantum information and computing can be applied to these systems, e.g. entanglement
- The spin density matrix is the ingredient to then measure all quantum state properties
 - In addition, there are specific entanglement witnesses

Phys. Rev. D 109, 115023

-0.60

2

1.8

1.6⊢

1.4 Ш

ပို နု

+ C

с С

 $\Delta_{\rm E}$ 1.2 28/03/2025

ENTANGLEMENT **MEASUREMENT**

- Both ATLAS and CMS also performed measurements of entanglement
- A stronger entanglement is observed in data compared to nominal predictions at threshold
 - CMS observed that including the "toponium" in the simulation improves the agreement
 - *Toponium*: pseudo-bound state predicted by the SM in the topquark pair threshold
 - See B. Fuks talk

28/03/2025

SPIN DENSITY MATRIX - MAGIC

- Magic is a property of quantum states designed to quantify the potential computational advantage over classical states, related to stabilizer state
- Quantum circuits including only stabilizer state can be efficiently simulated on classical computer
 - Stabilizer state have 0 magic
- Magic can also be measured between top-quarks
 - Deeper understanding on how to realise this state
- Non-linear definition → can not be easily derived by averaging the different top pair initial states

PhysRevD.110.116016

FIRST MEASUREMENT OF MAGIC BETWEEN TOP-QUARKS

 $\tilde{M}_{2} = -\log_{2} \left(\frac{1 + \sum_{i \in n, k, r} [(P_{i}^{4} + \bar{P}_{i}^{4})] + \sum_{i, j \in n, k, r} C_{ij}^{4}}{1 + \sum_{i \in n, k, r} [(P_{i}^{2} + \bar{P}_{i}^{2})] + \sum_{i, j \in n, k, r} C_{ij}^{2}} \right)$

m(tt) [GeV]

28/03/2025

- First measurement of magic, performed by the CMS collaboration
 - Starting from the measurement of the spin density matrix elements and their correlation
- The resulting \widetilde{M}_2 is maximal near the top-quark pair threshold
 - Flat when requiring a cut on $|\cos(\theta)|$
- In agreement with the SM

Measurement dominated by statistical uncertainty

138 fb⁻¹ (13 TeV)

> 800

m(tt) [GeV]

CMS PAS TOP-25-001

LUND JET PLANE - DEFINITION

- The primary lund jet plane (LJP) is a representation of the jet formation
 - The jet clustering obtained with the C/A algorithm is travelled back
 - At each step an emitter and an emission are defined
 - Emissions are included in a 2D representation of the available phase space in angle and momentum
 - The emitter is followed for the next emission
- This observable has many applications:
 - Jet tagging
 - Study of parton shower properties
 - MC tuning
 - Improve calibration

12

LUND JET PLANE MEASUREMENT

- ATLAS and CMS previously measured light-jets originated LJP
- First measurement of the heavy boosted objects LJP
- The semi-leptonic top-quark pair final state is targeted from the event selection
 - The hadronically decaying top quark is reconstructed
 - As a single large-R jet \rightarrow boosted top-quark selection
 - A large-R jet for a W and an additional b-tagged → boosted W selection
 - Large-R jets are trimmed
- The LJP is reconstructed using only the tracks associated to the jet
 - Or the charged particles at particle level
- The result is unfolded to particle level in a fiducial phase space
 - Compared to multiple NLO+PS generators

28/03/2025

LUND JET PLANE **MEASUREMENT**

- On average the top-jets count one extra emission compared to the Wjets
- All generators struggle to describe the whole LJP, with few exceptions in the top jet case
- Beyond the full 2D LJP spectrum the results are also presented as slices of the plane
 - Here it is visible that the agreement with the various generators is highly dependent on the region of the plane
- Dominant uncertainty is modelling

4.5

 $\ln(1/z)$

F. FABBRI - MORIOND EW 2025

$BR(W \rightarrow e\nu)/BR(W \rightarrow \tau\nu)$ - STRATEGY

29/03/2025

- The top-quark pair in the dilepton final state is used to measure the ratio $R_{\frac{e}{\tau}} = \frac{BR(W \rightarrow e\nu)}{BR(W \rightarrow \tau\nu)}$
 - Only final states with $\tau \rightarrow e \nu_e \nu_{\tau}$ are targeted
- Test of the LFU
 - Fundamental property of the SM
 - Some deviation observed at LEP
- The events are selected with a tag-and-probe method,
 - the origin of the probe electron is then measured: prompt or from τ decay
- Two main observables are employed to identify the origin of the probe electron:
 - Impact parameter d₀
 - Dedicated corrections and calibrations using $Z \rightarrow e^+e^-$ data significantly improve the agreement between data and MC
 - Lepton p_T

arXiv:2412.11989

$BR(W \rightarrow e\nu)/BR(W \rightarrow \tau\nu)$ - STRATEGY

- Result extracted using a binned profile likelihood fit on a multidimensional distribution
- Major backgrounds entirely or partially data-driven
- Dominant uncertainty:
 - Signal modelling
 - *d*₀ calibration
- The result is consistent with the SM expectation value and CMS
- The precision is comparable to that of the LEP combination and the CMS Collaboration → will improve world average

arXiv:2412.11989

CONCLUSIONS

- Presented many recent results of the ATLAS and CMS collaborations on the top-quark properties:
 - Masses:
 - The new techniques being applied, combinations and very large available statistics allow to reach unprecedent precision in the measurement
 - Spin density matrix:
 - Measured differentially for the first time
 - Window to investigate the foundation of quantum mechanics at LHC
 - First measurement of magic!
 - The LJP on boosted W and top-quark has been measured for the first time, showing distinctive feature compared to light jets and the potential to improve the MC modelling
 - Top-quark pair production allows to probe a fundamental property of the SM, the lepton flavour universality, at the same precision reached at LEP
 - All results based on Run2 data, new data are ready to be measured, stay tuned

THANK YOU!

PERFORMANCE OF THE SNN

TEMPLATE BUILDING

Phys. Rev. D 110 (2024) 112016

21

Uncertainty category	Uncert LHC	ainty impa ATLAS	act [GeV] CMS
b-JES	0.18	0.17	0.25
b tagging	0.09	0.16	0.03
ME generator	0.08	0.13	0.14
JES 1	0.08	0.18	0.06
JES 2	0.08	0.11	0.10
Method	0.07	0.06	0.09
CMS b hadron \mathcal{B}	0.07	—	0.12
QCD radiation	0.06	0.07	0.10
Leptons	0.05	0.08	0.07
JER	0.05	0.09	0.02
CMS top quark $p_{\rm T}$	0.05	_	0.07
Background (data)	0.05	0.04	0.06
Color reconnection	0.04	0.08	0.03
Underlying event	0.04	0.03	0.05
g-JES	0.03	0.02	0.04
Background (MC)	0.03	0.07	0.01
Other	0.03	0.06	0.01
1-JES	0.03	0.01	0.05
CMS JES 1	0.03	_	0.04
Pileup	0.03	0.07	0.03
JES 3	0.02	0.07	0.01
Hadronization	0.02	0.01	0.01
$p_{\mathrm{T}}^{\mathrm{miss}}$	0.02	0.04	0.01
PDF	0.02	0.06	< 0.01
Trigger	0.01	0.01	0.01
Total systematic	0.30	0.41	0.39
Statistical	0.14	0.25	0.14
Total	0.33	0.48	0.42

TOP QUARK MASS COMBINATION LFU

Phys. Rev. Lett. 132 (2024) 261902

LUND JET PLANE

<u>arXiv:2407.10879</u>