

W mass and related measurements Elisabetta Manca (University of California, Los Angeles) On behalf of ATLAS, CMS and LHCb collaborations

Rencontres de Moriond Electroweak 2025

Precision measurements in the Electroweak sector

Research program parallel to direct searches that could reveal precious signs of new physics The Standard Model predicts relations among observables that we can check by providing precise measurements

Phys.Rev.Lett. 129 (2022) 27, 271801

W boson mass measurement results

Measurements from LHC experiments agree with prediction and among each other

	<u>CMS</u>
Electroweak fit	$m_{ m W}$ in [
Phys. Rev. D 110, 030001	80
_EP combination Phys. Rep. 532 (2013) 119	80376 ±
DO PRI 108 (2012) 151804	80375 ±
CDF	80433.5
HCb	80354 ±
ATLAS	80366.5
<u>CMS</u>	80360.2
arXiv:2412.13872, subm. to Nature	

How to measure m_W

m_W is measured at hadron colliders from p_T^l or from a combination of p_T^l and MET — the transverse mass (m_T)

Eur. Phys. J. C (2024) 84 :1309

 $\sqrt{s} = 7 \text{ TeV}, 4.6 \text{ fb}^{-1}$ ~8M W⁺_{μ,e} and 5.7M W⁻_{μ,e} from p_T^l and m_T split in bins of η^l and q^l

Challenges

One of the most complex measurements, requiring unprecedented control of the reconstructed objects

tackle them

- Today I will focus on two main common challenges and review the strategies that the various experiments adopted to

Measure the muon momentum scale with a precision of 0.01%

Model the W production and its systematic uncertainties

Calibration of the muon momentum scale

Eur. Phys. J. C 78 (2018) 110

Calibrated using **Z dimuon events** and then extrapolated to W

Residual corrections $\delta \alpha$ vs $1/\langle p_T \mu \rangle$ are compatible with 1 within two standard deviations. (Sagitta bias subdominant)

9.8 MeV of 15.9 MeV

Calibrated using **Z dimuon events** using the "pseudomass" variable, independent of momentum Pseudomass is fitted in bins of η^{μ} and ϕ and correction extracted

```
7 MeV of 32 MeV
```

Calibration of the muon momentum scale

Model that parametrizes the corrections as a function of $k = 1/p_T$

material *k*_{true} **B** field misalignment

Extract corrections from thousands of fits of the J/ψ mass in all corners of the detector and test the calibration on Y(1S) and Z before extrapolation to W events Propagate charge dependent and charge independent set of uncertainties

4.4 MeV of 9.9 MeV

η=0 η=2.5

W production and decay

This formula describes how W rapidity and q_T are connected to charged lepton variables in W rest frame

$$(1 + \cos^2 \theta^*) + \sum_{i=0}^7 A_i(q_T, y) P_i(\cos \theta^*, \phi^*) \Big]$$
Angular coefficients encode W polarization Spherical harmonics encode W decay

Modeling the W production

perturbative QCD describes high q_T

Uncertainty due to the Parton Distribution Functions

ATLAS and CMS: profile likelihood fit. Results shown in terms of nominal and "scaled" uncertainties

LHCb: **average** wrt three different sets of Parton Distribution Functions

Set	$\sigma_{\rm PDF, base} \; [\rm MeV]$	$\sigma_{\mathrm{PDF},\alpha_s} \; [\mathrm{MeV}]$	$\sigma_{ m PDF} \; [{ m MeV}]$
NNPDF3.1	8.3	2.4	8.6
CT18	11.5	1.4	11.6
MSHT20	6.5	2.1	6.8

9 MeV of 32 MeV

JHEP01(2022)036

2.8 MeV of 9.9 MeV

Eur. Phys. J. C (2024) 84 :1309

Modeling the W transverse momentum

LHCD

~2-4MeV of 15.9 MeV

Pythia8 AZ Tune on Z dimuon p_T propagated to W events + extra profiled systematic variations

POWHEGPYTHIA Tune on Z dimuon p_T propagated to W events + envelope of other 5 models. Simultaneous fit with ϕ^* to constrain intrinsic k_T and α_S

11 MeV of 32 MeV

0.8 MeV of 9.9 MeV

Theoretical model with in-situ **constraints** aka "Theory Nuisance Parameters"[†]

Use constraining power of the data to adjust the value of the parameters of the model while fitting for the W mass

Modeling the W polarization

ATLAS, CMS and LHCb model the angular coefficients using fixed order calculations at NNLO

Complementary innovative approach by CMS: the **Helicity fit** The unpolarized cross section and angular coefficients are extracted directly from the data, bounded to the prediction with large prefit uncertainties

3.7MeV of 15.9 MeV

10 MeV of 32 MeV

CMS

3 MeV of 9.9 MeV

uncertainty LHCb)

Measurement of Γ_W by ATLAS

Measurement of Γ_W with m_W constrained: most precise from single experiment

 $\Gamma_W = 2202 \pm 32$ (stat) ± 34 (syst) MeV = 2202 ± 47 MeV

 m_T is the most dominant channel (opposite of m_W)

Dominated by modeling (shower tune variations) and recoil uncertainty

Simultaneous measurement of Γ_W and m_W

Central value of m_w shifts by about 12 MeV wrt nominal but uncertainty increases by about 1%

Width uncertainty increases by about 4% in simultaneous measurement with very small shift in central value

Conclusions

The measurement of m_w is one of the most challenging of our field Today, I have reviewed the three measurements provided by ATLAS, CMS and LHCb, highlighting the main challenges

and the adopted strategies to tackle them

This is just the start!

New tools, ideas, and unprecedented collected events will open the path to a new precision program at LHC

← To be updated with new results!

Extra material

Impacts on W mass measurement

	Impact (MeV)				
Source of uncertainty	Nor	ninal	Global		
	in m_Z	in $m_{\rm W}$	in m_Z	in $m_{ m W}$	
Muon momentum scale	5.6	4.8	5.3	4.4	
Muon reco. efficiency	3.8	3.0	3.0	2.3	
W and Z angular coeffs.	4.9	3.3	4.5	3.0	
Higher-order EW	2.2	2.0	2.2	1.9	
$p_{\rm T}^{\rm V}$ modeling	1.7	2.0	1.0	0.8	
PDF	2.4	4.4	1.9	2.8	
Nonprompt-muon background		3.2		1.7	
Integrated luminosity	0.3	0.1	0.2	0.1	
MC sample size	2.5	1.5	3.6	3.8	
Data sample size	6.9	2.4	10.1	6.0	
Total uncertainty	13.5	9.9	13.5	9.9	

		-		-										
Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	<i>u</i> _T	Lumi			
p_{T}^ℓ	16.2	11.1	11.8	4.9	3.5	1.7	5.6	5.9	5.4	0.9	1.1			
m_{T}	24.4	11.4	21.6	11.7	4.7	4.1	4.9	6.7	6.0	11.4	2.5			
Combined	15.9	9.8	12.5	5.7	3.7	2.0	5.4	6.0	5.4	2.3	1.3			

Eur. Phys. J. C (2024) 84 :1309

Source	Size [MeV]
Parton distribution functions	9
Theory (excl. PDFs) total	17
Transverse momentum model	11
Angular coefficients	10
QED FSR model	7
Additional electroweak corrections	5
Experimental total	10
Momentum scale and resolution modelling	7
Muon ID, trigger and tracking efficiency	6
Isolation efficiency	4
QCD background	2
Statistical	23
Total	32

JHEP01(2022)036

Systematic uncertainty on muon momentum scale

Charge independent "B-field like"

Charge dependent "alignment like"

B-field-like term for Z is consistent with zero within statistical uncertainties, alignment-like almost so

Statistical uncertainty from on calibration parameters from J/ ψ scaled by 2.1 to explicitly-accounted-for

Calibration model tested on simulation

Out of the box CMS reconstruction not compatible with the model

Add a new layer of track reconstruction on top of CMS reconstruction with refined treatment of magnetic field and material

Correct for local biases in the reconstruction

Direct assessment of Z mass

Ultimate test of calibration and associated uncertainty $m_z - m_{PDG_z} = -2.2 \pm 4.8 \text{ MeV} = -2.2 \pm 1.0 \text{ (stat)} \pm 4.7 \text{ (syst)} \text{ MeV}$

How well we model the W transverse momentum

Huge Monte Carlo samples with full detector simulation (4B events) from MiNNLO_{PS}+Pythia+Photos is validated using Z events

How well we model the W longitudinal momentum

Z rapidity events in data and simulation using different PDF sets

CT18Z is the PDF set chosen as central with its uncertainties because it has the flexibility to cover for all the others when measuring the W mass

Theoretical model with in-situ constraints

Theory nuisance parameters calculated from SCETlib at N³LL are able to change the transverse momentum of the W and therefore of the muon*

Parametrize the elements of the resummation series since the structure of the resummation is known to all orders

Let data choose the preferred curve

Sensitivity to the W polarization

While the muon transverse momentum alone carries information about the value of the W mass, its correlation with η is very sensitive to the W polarization and longitudinal motion

E.M. et al. J. High Energ. Phys. (2017) 2017: 130. E.M. CERN-THESIS-2021-271 Phys. Rev. D 102 (2020) 092012

A complementary approach: the Helicity Fit

Exploit the full constraining power of the data to measure the W production directly from data

$$\frac{d\sigma}{dq_T^2 dy d\cos\theta^* d\phi^*} = \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dq_T^2 dy} \left[(1 + \cos^2\theta^*) + \sum_{i=0}^7 A_i(q_T, y) P_i(\cos\theta^*, \phi^*) \right]$$

Each component can be discriminated in the plane of muon transverse momentum and η

Extraction of W transverse momentum

"Theory Nuisance Parameters" approach

Helicity fit

