Moriond EW 2025 La Thuile, Valle d'Aosta (Italy) 29 March 2025

Triboson and VBS results at ATLAS and CMS

Daniel Camarero Muñoz, Brandeis University On behalf of the ATLAS and CMS collaborations

daniel.camarero.munoz@cern.ch

Triboson and VBS results at ATLAS

- gauge structure of the Standard Model
 - Polarised production of W/Z boson pairs via VBS processes provides a sensitive test of the EW symmetry breaking mechanism
 - Triboson and VBS processes are key to finding signs of new physics at high energies Effects of anomalous quartic gauge couplings can be parameterised in the EFT framework
- Many new ATLAS and CMS physics results! Presented by Max Stange today! **Final** Evidence for longitudinally polarised W bosons in the EW $W^{\pm}W^{\pm}$ production, <u>arXiv:2503.11317</u> **Filles** EW diboson production in semileptonic final states at 13 TeV, <u>arXiv:2503.17461</u> Semileptonic VBS and anomalous quartic gauge couplings at 13 TeV, <u>CMS-PAS-SMP-22-011</u> Section of VVZ production at 13 TeV with the ATLAS detector, arXiv:2412.15123 Measurements of WWZ and ZH cross sections at 13 and 13.6 TeV, <u>CMS-PAS-SMP-24-015</u> Covered by Carlos Vico Villalba today!

Daniel Camarero Muñoz (Brandeis)

Measurements of multiboson production at the LHC are important probes of the EW

EW VVjj production via VBS

arXiv:2503.17461

QCD VVjj production

EW diboson production in semileptonic final states 0-lepton: $Z \rightarrow \nu \nu$ Semileptonic VBS VVjj at 13 TeV with 140 fb⁻¹ 1-lepton: $W \rightarrow \ell \nu$ 2-lepton: $Z \rightarrow \ell \ell$ - Hadronic V decay: merged or resolved topologies Select large-R tagged jet or 2 small-R jets W/Z $\sim W/Z$ **9 orthogonal SRs** plus CRs to model the V + jetand top backgrounds W/Z- $(0-\ell, 1-\ell, 2-\ell) \times (Merged HP, Merged LP, Resolved)$ Jet ••• W 50% •···Z 50% 13 TeV. 140 fb⁻¹ • • • W 80% • • • Z 80% **Pass** 50 % tagger **Fail** 50 % tagger Pass 80 % tagger Leptonic V_1 selection <u>A Recurrent Neural Network (RNN) developed to</u> VBS tagging jets separate VBS VV signal from backgrounds 2000 250[,] Jet p_T [GeV] 1500 500 2500 1000 Pass - Dedicated training in each ℓ channel and High-Purity V_h selection merged merged/resolved regions Low-Purity Fail - Input jet variables for training: $p_{\rm T}$, η , ϕ , E, $n_{\rm tracks}$ Pass V_h selection Resolved resolved - RNN score used as final discriminant Fail To CR selections

Triboson and VBS results

Measured EW *VVjj* signal strength:

	Combined	0-lepton	1-lepton	2-lepton	Resolved
$\sigma^{\mathrm{fid},\mathrm{exp}}_{EWK}$	20.4 ± 3.5 fb	$7.3 \pm 2.5 \text{ fb}$	$10.3 \pm 2.5 \text{ fb}$	2.8 ± 1.1 fb	11.7 ± 3.4 f
$\sigma_{EWK}^{ m fid,obs}$	$29.2 \pm 4.9 \text{ fb}$	$15.7 \pm 2.8 \text{ fb}$	$10.7 \pm 2.8 \text{ fb}$	$3.1 \pm 1.1 \text{ fb}$	17.9 ± 4.3 f

Daniel Camarero Muñoz (Brandeis)

$$\left|A_{\rm SM} + \sum_{i} \frac{f_i}{\Lambda^4} A_i\right|^2 = |A_{\rm SM}|^2 + \sum_{i} 2\frac{f_i}{\Lambda^4}$$
EFT-SM

- <u>New D-8 operators contributing to aQGC would enhance EW VBS prod. at high m_{VV} </u>

Daniel Camarero Muñoz (Brandeis)

Anomalous quartic gauge coupling (aQGC) effects can be parameterised in the EFT framework

Each SR is split into 2 m_{VV} bins (high/low) to improve sensitivity

- Improvements for f_S and f_M by factor $\approx 2-3$ with respect to other ATLAS diboson measurements

Triboson and VBS results

Wilson coefficient

 f_{T0}/Λ^4

$$\left| A_{\rm SM} + \sum_{i} \frac{f_i}{\Lambda^4} A_i \right|^2 = |A_{\rm SM}|^2 + \sum_{i} 2 \frac{f_i}{\Lambda^4} \operatorname{Re}(A_{\rm SM}^* A_i) + \sum_{i} \frac{f_i^2}{\Lambda^8} |A_i|^2 + \sum_{i \neq j} 2 \frac{f_i f_j}{\Lambda^8} \operatorname{Re}(A_i^* A_j)$$

EFT-SM interference EFT term EFT cross term

- <u>New D-8 operators contributing to aQGC would enhance EW VBS prod. at high m_{VV} </u>

Daniel Camarero Muñoz (Brandeis)

Anomalous quartic gauge coupling (aQGC) effects can be parameterised in the EFT framework

Each SR is split into 2 m_{VV} bins (high/low) to improve sensitivity

- Improvements for f_S and f_M by factor $\approx 2-3$ with respect to other ATLAS diboson measurements

Expected limit [TeV ⁻⁴]	Observed limit [TeV ⁻⁴]	Expected limit unitarized [TeV ⁻⁴]	Observed limit unitarized [7
[-0.20, 0.18]	[-0.25, 0.22]	[-0.79, 0.47] at [1.76, 1.96] TeV	[-0.85, 0.47] at [1.73, 2.00]
[-0.19, 0.19]	[-0.24, 0.24]	[-0.34, 0.34] at [2.59, 2.59] TeV	[-0.43, 0.43] at [2.43, 2.43]
[-0.44, 0.44]	[-0.55, 0.55]	[-0.95, 0.96] at [2.22, 2.22] TeV	[-1.16, 1.17] at [2.12, 2.11]
[-0.38, 0.38]	[-0.48, 0.48]	[-0.62, 0.62] at [2.71, 2.71] TeV	[-0.88, 0.88] at [2.49, 2.48]
[-1.46, 1.32]	[-1.51, 1.37]	[-3.03, 2.60] at [2.02, 2.09] TeV	[-3.03, 2.60] at [2.02, 2.10]
[-0.57, 0.53]	[-0.64, 0.58]	-	[-2.65, 2.57] at [1.53, 1.54]
[-0.76, 0.72]	[-0.74, 0.71]	[-2.82, 2.01] at [1.66, 1.73] TeV	[-2.98, 2.62] at [1.64, 1.69]
[-1.78, 1.52]	[-1.94, 1.70]	[-7.88, 4.29] at [1.65, 1.90] TeV	[-6.70, 4.11] at [1.72, 1.91]
[-0.59, 0.59]	[-0.48, 0.48]	-	-
[-1.22, 1.22]	[-1.02, 1.03]	-	-
[-3.22, 3.22]	[-3.96, 3.96]	[-5.53, 5.54] at [2.07, 2.67] TeV	[-6.16, 6.17] at [2.01, 2.01]
[-6.84, 6.86]	[-8.06, 8.06]	-	-
[-1.13, 1.12]	[-1.26, 1.25]	[-2.61, 2.58] at [2.00, 2.00] TeV	[-2.71, 2.65] at [1.97, 1.98]
[-3.23, 3.24]	[-3.95, 3.95]	[-6.22, 6.22] at [2.27, 2.27] TeV	[-7.42, 7.43] at [2.17, 2.17]
[-1.66, 1.67]	[-1.85, 1.85]	-	-
[-5.29, 5.29]	[-5.68, 5.71]	[-23.69, 23.39] at [1.57, 1.57] TeV	[-18.62, 19.10] at [1.66, 1.6
[-2.62, 2.62]	[-2.96, 2.97]	-	-
[-3.81, 3.82]	[-4.41, 4.44]	[-6.80, 6.80] at [2.33, 2.33] TeV	[-7.28, 7.30] at [2.29, 2.29]
[-5.32, 5.20]	[-6.60, 6.43]	[-9.47, 9.38] at [2.43, 2.43] TeV	[-11.91, 11.11] at [2.29, 2.3]

Semileptonic VBS and anomalous quartic gauge couplings CMS-PAS-SMP-22-011

Semileptonic VBS and aQGC

- EW production of ZVjj at 13 TeV with 138 fb⁻¹
 - Target final states with one $Z \rightarrow \ell \ell$ and 3 4 jets
 - Hadronic V decay: boosted or resolved topologies
 - Large-R jets tagged to distinguish V from q/g jets
- 4 orthogonal SRs plus CRs to model the main backgrounds (top quark and Drell-Yan)

Preselection	$n_{ m leptons} = 2, m_{\ell\ell} \in [76, 106] { m G}_{p_{ m T}}(j_{1,2}) > 30 { m GeV}_{p_{ m T}}$	S
Regions	Variables	I
Signal Region (SR)	$65 \text{ GeV} < m_{V} < 105 \text{ GeV}$	
DY Control Region (DY CR)	$m_{\rm V} < 65 {\rm GeV}, m_{\rm V} > 105 { m GeV}$	
Top Control Region (Top CR)	65 GeV $< m_V < 105$ GeV	(
		-

 m_V is a key discriminant!

- - Dedicated DNN per topology and b-tagging region (year-dependent for the resolved)

Large background and complex topology. DNN devised to improve the VBS signal separation

- Up to 14 input variables used for training, e.g: m_{jj} , n_{jets} ($p_T > 30$ GeV), ℓ Zeppenfeld, $\Delta \eta_{jj}$

Semileptonic VBS and aQGC

The obs. (exp.) EW ZVVBS signal strength is

$$\mu_{\rm EW}^{\rm obs} = 0.63^{+0.53}_{-0.51} \ (1.00^{+0.61}_{-0.58})$$

Corresponding to a signal significance of 1.3 (1.8) σ

Results driven by the statistical uncertainty of the data

Source	$ -\Delta\mu $
DY and top rate parameters	-0.20
Theory	-0.24
MC sample size (bin-by-bin unc.)	-0.14
Other nuisances	-0.11
Data sample size	-0.36
Total	-0.51

Semileptonic VBS and aQGC

- Sensitivity to aQGC studied by performing likelihood scans varying Wilson coefficients of D-8 operators
 - Combination of ZV and WV (arXiv:2112.05259) boosted channels
 - Invariant mass of the diboson system $(M_{ZV} \text{ or } M_{WV})$ used for fitting
- Stringent 95 % CL limits using Run 2 data are reported

	Observed (WV)	Expected (WV)	Observed (ZV)	Expected (ZV)	Observed	Expected
	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
$f_{\rm S0}/\Lambda^4$	[-3.01, 3.1]	[-4.7, 4.77]	[-9.76, 9.89]	[-13.9, 14.0]	[-2.86, 2.96]	[-4.68, 4.75]
$f_{ m S1}/\Lambda^4$	[-4.27, 4.32]	[-6.56, 6.6]	[-10.2, 10.3]	[-13.9, 13.9]	[-3.97, 4.02]	[-6.45, 6.49]
$f_{ m S2}/\Lambda^4$	[-4.42, 4.48]	[-6.81, 6.86]	[-9.75, 9.89]	[-13.9, 14.0]	[-4.04, 4.11]	[-6.68, 6.73]
$f_{\rm M0}/\Lambda^4$	[-0.568, 0.567]	[-0.844, 0.843]	[-1.38, 1.38]	[-1.74, 1.74]	[-0.539, 0.534]	[-0.828, 0.827]
$f_{ m M1}/\Lambda^4$	[-1.71, 1.75]	[-2.6, 2.63]	[-3.97, 4.00]	[-5.28, 5.29]	[-1.59, 1.62]	[-2.55, 2.58]
$f_{\rm M2}/\Lambda^4$	[-0.746, 0.747]	[-1.11, 1.11]	[-1.86, 1.86]	[-2.37, 2.37]	[-0.703, 0.703]	[-1.1, 1.1]
$f_{\rm M3}/\Lambda^4$	[-2.81, 2.81]	[-4.2, 4.2]	[-5.60, 5.59]	[-7.47, 7.47]	[-2 .55 <i>,</i> 2 .55]	[-4.08, 4.07]
$f_{ m M4}/\Lambda^4$	[-1.74, 1.73]	[-2.6, 2.59]	[-2.70, 2.70]	[-3.61, 3.61]	[-1.48, 1.48]	[-2.42, 2.41]
$f_{ m M5}/\Lambda^4$	[-2.53, 2.51]	[-3.77, 3.76]	[-3.80, 3.81]	[-5.21, 5.23]	[-2.14, 2.13]	[-3.5, 3.5]
$f_{ m M7}/\Lambda^4$	[-2.86, 2.82]	[-4.35, 4.32]	[-6.09, 6.07]	[-8.26, 8.24]	[-2.63, 2.58]	[-4.24, 4.2]
$f_{\rm T0}/\Lambda^4$	[-0.096, 0.083]	[-0.14, 0.128]	[-0.26, 0.25]	[-0.33, 0.32]	[-0.0921, 0.0785]	[-0.138, 0.127]
$f_{ m T1}/\Lambda^4$	[-0.0933, 0.1]	[-0.14 2 , 0.149]	[-0.22, 0.24]	[-0.30, 0.31]	[-0.0863, 0.0943]	[-0.14, 0.147]
$f_{\mathrm{T2}}/\Lambda^4$	[-0.225, 0.225]	[-0.336, 0.335]	[-0.56, 0.60]	[-0.74, 0.76]	[-0.21, 0.214]	[-0.331, 0.332]
$f_{\mathrm{T3}}/\Lambda^4$	[-0.206, 0.206]	[-0.311, 0.31]	[-0.48, 0.51]	[-0.64, 0.66]	[-0.191, 0.194]	[-0.305, 0.305]
$f_{ m T4}/\Lambda^4$	[-1.09, 1.02]	[-1.58, 1.53]	[-1.44, 1.37]	[-1.84, 1.77]	[-0.895, 0.828]	[-1.4, 1.35]
$f_{\mathrm{T5}}/\Lambda^4$	[-0.287, 0.257]	[-0.391, 0.383]	[-0.59, 0.57]	[-0.76, 0.73]	[-0.265, 0.237]	[-0.382, 0.373]
$f_{ m T6}/\Lambda^4$	[-0.656, 0.627]	[-0.976, 0.954]	[-0.73, 0.71]	[-0.94, 0.92]	[-0.5, 0.478]	[-0.794, 0.775]
$f_{ m T7}/\Lambda^4$	[-0.936, 0.899]	[-1.39, 1.36]	[-1.78, 1.67]	[-2.26, 2.16]	[-0.85, 0.8]	[-1.34, 1.29]
$f_{ m T8}/\Lambda^4$	—	—	[-0.53, 0.53]	[-0.67, 0.67]	[-0.53, 0.53]	[-0.67, 0.67]
$f_{\rm T9}/\Lambda^4$	—	—	[-1.17, 1.16]	[-1.47, 1.45]	[-1.17, 1.16]	[-1.47, 1.45]

Triboson and VBS results

Search for VVZ production arXiv:2412.15123

 V_1 V_2 $\sim V_3$

Mono-V vertices

Triple-gauge-boson vertex

Quartic-gauge-boson vertex

Higgsstrahlung VH process

- Search for VVZ (WWZ + WZZ + ZZZ) production at 13 TeV using 140 fb^{-1}
 - Combined VVV observed by CMS (arXiv:2006.11191)
 - *WWW* observed by ATLAS (<u>arXiv:2201.13045</u>)
- Extract combined signal strength μ_{VVZ} (also μ_{WWZ} and μ_{WZZ})
- Investigate 3 different final states:

Daniel Camarero Muñoz (Brandeis)

 $\geq 5\ell$ $W/Z \rightarrow \ell \nu / \ell \ell$ $Z \to \ell \ell$ $Z \to \ell \ell$ Target process $W^{\pm}ZZ, ZZZ$

Main backgrounds $W^{\pm}Z$ and ZZ

- MVA techniques utilised to enhance sensitivity to VVZ
 - BDTs optimised separately to each SR and final state
 - Most discriminant var.: H_{T}^{tot} , $p_{\mathrm{T}}^{\mathrm{j}_2}, m_{\ell\ell}^{Z_2}, n_{\mathrm{jets}}, \mathrm{MET} \mathrm{sig.}, p_{\mathrm{T}}^{I} \mathcal{C}_W$

Simultaneous fit across final states and SRs/CRs

At least 3ℓ and 1 "Z candidate", with a di- ℓ pair with sameflavour and opposite-sign (SFOS) and $|m_{\ell\ell} - m_Z| < 20 \text{ GeV}$

- SR 3I-1j: 1 jet
- SR 3I-2j-inV: ≥ 2 jets with $60 < m_{j_1 j_2} < 110 \text{ GeV}$
- SR 3I-2j-outV: ≥ 2 jets with $m_{j_1j_2} < 60$ or $m_{j_1j_2} > 110$ GeV
- CRs: Z+jets, 3I-ttZ, and WZ+jets processes

At least 4ℓ and 1 SFOs di- ℓ pair with $|m_{\ell\ell} - m_Z| < 20 \text{ GeV}$

Categorisation using the 2 "W-leptons" flavour:

- **SR 4I-DF:** Different Flavour ℓ
- SR 4I-SF-inZ: Same Flavour ℓ , $|m_{\ell_3\ell_4} m_Z| < 20 \text{ GeV}$
- SR 4I-SF-outZ: Same Flavour ℓ , $|m_{\ell_3\ell_4} m_Z| \ge 20 \text{ GeV}$
- CRs: ZZ+jets and 4I-ttZ processes

SR 5I: at least 5 ℓ and 2 SFOS with $|m_{\ell\ell} - m_Z| < 20 \text{ GeV}$

Daniel Camarero Muñoz (Brandeis)

- Constraints on aQGC effects via an EFT analysis with D-8 operators
 - Wilson coefficients of most sensitive operators to VVV final states are f_{M2}, f_{M3}, f_{M4} , and f_{M5}
- BDT distributions retrained to increase sensitivity to EFT effects using events from all operators considered

Observed (expected) 95% CL limits on Wilson coefficients (TeV ⁻⁴)								
Coefficient	3ℓ	4ℓ	Combination					
f_{M2}/Λ^4	[-15, 15] ([-17, 17])	[-23, 23] ([-18, 18])	[-15, 15] ([-14, 14])					
f_{M3}/Λ^4	[-25, 25] ([-29, 30])	[-39, 40] ([-31, 31])	[-26, 26] ([-25, 25])					
f_{M4}/Λ^4	[-13, 14] ([-16, 16])	[-17, 17] ([-16, 16])	[-11, 11] ([-13, 13])					
f_{M5}/Λ^4	f_{M5}/Λ^4 [-11, 11] ([-13, 13]) [-12, 12] ([-13, 13]) [-8.5, 8.7] ([-10, 10])							

• Clipping method to provide limits avoiding unitarity violation at high \sqrt{s}

Coefficient	Expected limit [TeV ⁻⁴]	Exp. $\sqrt{\hat{s}_c}$ [TeV]	Observed limit [TeV ⁻⁴]	Obs. $\sqrt{\hat{s}_c}$ [TeV]
f_{M2}/Λ^4	[-18, 17]	1.2	[-19, 19]	1.2
f_{M3}/Λ^4	[-28, 29]	1.5	[-28, 29]	1.5
f_{M4}/Λ^4	[-14, 14]	1.6	[-12, 12]	1.7
f_{M5}/Λ^4	[-11, 11]	2.1	[-9.1, 9.3]	2.2

Daniel Camarero Muñoz (Brandeis)

Summary and conclusions

Same-sign WW polarisation

- First evidence of production of polarised $W_{\rm L}^{\pm}W^{\pm}$: obs. significance 3.3 σ
- Most stringent limits to date for the $W_{\rm L}^{\pm}W_{\rm L}^{\pm}$ cross-section: 0.45 (0.70) fb obs. (exp.)

EW diboson production in semileptonic final states

• CMS and ATLAS have reported improvements on aQGCs upper limits thanks to the

Searches for triboson production

- First observation of VVZ production by ATLAS: obs. (exp.) significance 6.4 (4.7) σ
- First evidence of WWZ production by ATLAS: obs. (exp.) significance 4.4 (3.6) σ
- CMS reports evidence of WWZ using Run 2 + 3 data: obs. (exp.) significance 4.5 (5.0) σ

Daniel Camarero Muñoz (Brandeis)

extended phase space by the merged $V \rightarrow jj$ topology: especially for f_S and f_M operators

Selection	0-lepton	1-lepton	2-lepton
Trigger	$E_{\rm T}^{\rm miss}$ triggers	Single-electron triggers Single-muon or $E_{\rm T}^{\rm miss}$ triggers	Single-lepton triggers
$V \rightarrow \nu \nu / \ell \nu / \ell \ell$	0 'Loose' leptons $p_{\rm T} > 7 \text{ GeV}$ $E_{\rm T}^{\rm miss} > 200 \text{ GeV}$ $p_{\rm T}^{\rm miss} > 50 \text{ GeV}$ $\Delta \phi(\vec{E}_{\rm T}^{\rm miss}, \vec{p}_{\rm T}^{\rm miss}) < \pi/2$ $\min[\Delta \phi(\vec{E}_{\rm T}^{\rm miss}, \text{small-}R \text{ jet})] > \pi/6$ $\Delta \phi(\vec{E}_{\rm T}^{\rm miss}, V_{\rm had}) > \pi/9$	1 'Tight' lepton $p_T > 27$ GeV 0 other 'Loose' leptons with $p_T > 7$ GeV $E_T^{\text{miss}} > 80$ GeV	2 'Loose' leptons $p_T > 27 \text{ GeV}$ $83 < m_{ee} < 99 \text{ GeV}$ $-0.0117 \times p_T^{\mu\mu} + 85.63 \text{ GeV} < m_{\mu\mu}$ $0.0185 \times p_T^{\mu\mu} + 94 \text{ GeV} > m_{\mu\mu}$
VBS topology tagging jets		Largest m_{jj} pair with $\eta_{\text{tag } j_1} \cdot \eta_{\text{tag } j_2} < 0$ $m_{jj}^{\text{tag}} > 400 \text{ GeV}, p_{\text{T}}^{tag \ j_{1,2}} > 30 \text{ GeV}$	
$V \rightarrow J$	V bos	Leading p_T large- R jet $p_T > 200$ GeV, $ \eta < 2$ son tagger requirements on m_J , D_2 , and $n_{Transport}^{ung}$	groomed icks
$V \rightarrow j j$	$p_{\rm T} > 20$	Two leading p_T small- R jets GeV if $ \eta < 2.5$, and $p_T > 30$ GeV if $2.5 < p_T^{j_1} > 40$ GeV $64 < m_{jj} < 106$ GeV	η < 4.5
Top veto		$m_{jjj} > 220 \text{ GeV}$	
Additional b-jet veto	No	Yes	No

arXiv:2503.17461

Table 1: Summary of the object selection and event preselection criteria used in the analysis.				
	Object selection criteria			
	Passes the "LooseAndBLayerLH" quality requirement			
Electron	$ d_0 /\sigma_{d_0} < 5, z_0 \times \sin \theta < 0.5 \mathrm{mm}$			
	$p_{\rm T} > 7 { m ~GeV}, \eta < 2.47$			
	Passes the "Loose" quality requirement			
Muon	$ d_0 /\sigma_{d_0} < 3, z_0 \times \sin \theta < 0.5 \mathrm{mm}$			
	$p_{\rm T} > 5 \text{ GeV} (p_{\rm T} > 15 \text{ GeV} \text{ for calorimetr-tagged muons}), \eta < 2.7$			
Jet	Passes the JVT requirement, $p_{\rm T} > 20$ GeV, $ \eta < 4.5$			
	Event preselection criteria			
Trigger	Single lepton, dilepton, tri-lepton, or quad-lepton triggers			
Number of charged leptons	≥ 3			
Z boson invariant mass	$ m_{\ell\ell} - m_Z < 40 \text{ GeV}$			

Table 2: Overview of the criteria used to select inclusive 3ℓ events and the three 3ℓ SRs.

In	3t + jets SR				
Satisfy preselection criteria		\checkmark		5	
Lepton	$p_{\rm T} > 15$ GeV and at least one lepton with $p_{\rm T} > 27$ GeV				
Lepton from the 7 decays		"Loose_VarRad" isolation for	or elect	trons and	
Lepton from the 2 decays		"PFLow_Loose_VarRad" isol	lation	for muons	
Lepton from the W decays	"Tight" identification and "PLImprovedTight" isolation				
Invariant mass of any SFOS dilepton pairs	s > 12 GeV				
Invariant mass of the Z boson	$ m_{\ell\ell} - m_Z < 20 \text{ GeV}$				
Number of leptons	= 3				
Number of <i>b</i> -jets		= 0			
	3ℓ signa	l regions			
	3ℓ-1j	3ℓ-2j-inV		3ℓ-2j-outV	
Satisfy inclusive 3ℓ selection criteria	\checkmark	\checkmark		\checkmark	
BDT score > 0.42	\checkmark	\checkmark		\checkmark	
Number of jets	= 1	≥ 2		≥ 2	
m_{jj}		> 60 GeV and < 110 GeV	< 60	GeV or > 110 GeV	

Daniel Camarero Muñoz (Brandeis)

Inclu	sive 4 <i>l</i> event selection			
Satisfy preselection criteria \checkmark				
Lepton	Exactly for	Ir leptons with $p_{\rm T} > 30, 1$	5, 8, 6 GeV	
Lepton from the Z decays	"Loose_VarRad" isolation for electrons and "PFLow_Loose_VarRad" isolation for muons			
Leptons from the W decays	"Medium" identification and "PLImprovedTight" isolation			
Invariant mass of any SFOS dilepton pairs	> 12 GeV			
Invariant mass of the Z boson	$ m_{\ell\ell} - m_Z < 20 \text{ GeV}$			
Minimum angular distance between any lepton pairs		> 0.1		
$E_{\mathrm{T}}^{\mathrm{miss}}$		> 10 GeV		
Number of <i>b</i> -jets		= 0		
	4 <i>l</i> signal regions			
	4ℓ-D F	4ℓ-SF-inZ	4ℓ-SF-outZ	
Satisfy inclusive 4ℓ selection criteria	\checkmark	\checkmark	\checkmark	
Flavour for lepton from the W decays	eμ	same-flavour	same-flavour	
$m_{\ell\ell}$ for the two W-leptons	_	$ m_{\ell\ell} - m_Z < 20 \mathrm{GeV}$	$ m_{\ell\ell} - m_Z > 20 \text{ GeV}$	

1 4 1 1 10 10 CD •, • T 1 1 2 0C 41

Table 4: Overview of the criteria used to select inclusive 5ℓ events, which form the 5ℓ SR. $\geq 5\ell$ SR Inclusive 5*l* event selection (5*l* SR) Satisfy preselection criteria At least five leptons "Loose_VarRad" isolation for electrons and Leptons "PFlow_Loose_VarRad" isolation for muons At least two SFOS pairs with $|m_{\ell\ell} - m_Z| < 20 \text{ GeV}$ Z boson candidates Z boson invariant mass $|m_{\ell\ell} - m_Z| < 20 \text{ GeV}$ Number of *b*-jets = 0

arXiv:2412.15123

Measured EW VVjj signal strength:

	Combined	0-lepton	1-lepton	2-lepton	Resolved
$\sigma^{\mathrm{fid},\mathrm{exp}}_{EWK}$	20.4 ± 3.5 fb	7.3 ± 2.5 fb	10.3 ± 2.5 fb	2.8 ± 1.1 fb	11.7 ± 3.4 f
$\sigma_{EWK}^{ m fid,obs}$	$29.2 \pm 4.9 \text{ fb}$	$15.7 \pm 2.8 \text{ fb}$	$10.7 \pm 2.8 \text{ fb}$	$3.1 \pm 1.1 \text{ fb}$	17.9 ± 4.3 f

Daniel Camarero Muñoz (Brandeis)

Diboson system mass distributions in the 0- ℓ selection

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2018-27/

Diboson system mass distributions in the 1- ℓ selection

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2018-27/

• Diboson system mass distributions in the 2- ℓ selection

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2018-27/

If VH production is considered as part of the background, the combined observed cross section is found to be $\sigma(pp \rightarrow VVZ) = 382^{+65}_{-63}(\text{stat.})^{+57}_{-60}(\text{syst.})$ fb with an observed signal strength of $1.59^{+0.24}_{-0.29}$ (stat.)^{+0.30}_{-0.25} (syst.). The observed (expected) significance corresponds to 5.5 (3.7) σ . The ratio of on-shell VVZ production to $VH \rightarrow VWW^*/VZZ^*$ production is determined from MC simulation and is allowed to vary within the theoretical uncertainties of the two processes.

Daniel Camarero Muñoz (Brandeis)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2020-08/

26

