New results in multiboson production from CMS

Giacomo Boldrini¹ - Moriond EW 2025

¹CNRS/IN2P3 - LLR, École polytechnique

On behalf of the CMS Collaboration

 $Z\gamma$ one of the most precisely measurable diboson channels at LHC \rightarrow precise SM tests. Provides unique access to neutral triple gauge couplings as BSM tests.

$Z\gamma ightarrow \ell\ell\gamma$ Run 3 - Analysis strategy

G. Boldrini, 29/03/2025, Moriond EW 2025

$Z\gamma ightarrow \ell\ell\gamma$ Run 3 - Analysis strategy

Major source of background (~98%) **nonprompt** $\gamma \rightarrow$ data-driven estimate with **ABCD method** with ECAL shower shape $\sigma_{i\eta i\eta}$ and charged isolation sum I_{ch} :

- A: Pass $\sigma_{i\eta i\eta}$, Pass I_{ch}
- **B**: Pass $\sigma_{i\eta i\eta}$, Fail I_{ch}
- C: Fail $\sigma_{i\eta i\eta}$, Pass I_{ch}
- **D**: Fail $\sigma_{i\eta i\eta}$, Fail I_{ch}

$$N_{A} = \left(\frac{N_{A} \cdot N_{D}}{N_{B} \cdot N_{C}}\right)^{DY} \cdot \left(N_{B} - N_{B,sig}^{prompt} - N_{B,bkg}^{prompt}\right) \cdot \left(\frac{N_{C} - N_{C,sig}^{prompt} - N_{C,bkg}^{prompt}}{N_{D} - N_{D,sig}^{prompt} - N_{D,bkg}^{prompt}}\right)$$

Mass $\mu^+\mu^-\gamma$ [GeV]

• Statistical uncertainty: error propagation of N_A • Systematic uncertainty: change of $(N_A \cdot N_D / N_B \cdot N_C)^{DY}$ with ABCD regions boundaries

Photon ID, luminosity and Nonprompt are the leading uncertainties in the measurement

$Z\gamma ightarrow \ell\ell\gamma$ Run 3 - Results

$$\mu_{obs} = 0.968^{+0.028}_{-0.027}(sys)^{+0.016}_{-0.017}(stat)$$
$$\mu_{exp} = 1.000^{+0.029}_{-0.027}(sys)^{+0.017}_{-0.017}(stat)$$

	Mass e⁺e⁻γ [GeV]
Region	σ B \pm theory \pm sys. \pm stat.
Ζ γ ($\mu\mu$) Exp.	$0.961 \pm 0.004 \pm 0.028 \pm 0.019$
Z γ (ee) Exp.	$0.961 \pm 0.004 \pm 0.037 \pm 0.021$
Z γ ($\mu\mu$ + ee) Exp.	1.922 \pm 0.006 \pm 0.056 \pm 0.033
Z γ ($\mu\mu$) Obs.	$0.928 \pm 0.004 \pm 0.027 \pm 0.018$
Z γ (ee) Obs.	$0.975 \pm 0.003 \pm 0.038 \pm 0.021$
Z γ ($\mu\mu$ + ee) Obs.	1.896 \pm 0.006 \pm 0.054 \pm 0.033

Vector Boson Scattering

Vector boson scattering (VBS) happens at the LHC when the two incoming partons radiate electroweak vector bosons that interact with each other

• **Peculiar kinematical properties:** 2 jets in the forward region with high $\Delta \eta_{jj}$ and m_{jj} .

Vector bosons TGC / QGC

Vector Boson Scattering in CMS Run II

Run II VBS searches refined analyses with clean channels, **multiple** observations. First time targeting polarized $V_L V_L \rightarrow V_L V_L$. More and more evidences for complex final states thanks to 138 fb⁻¹. $\sqrt{s} = 13$ TeV allows for strongest constraints on aQGC / EFT parameters.

[25]

[24]

[27]

 $\ell^{\pm}\tau_{h}^{\pm}2\nu jj$

3ℓvjj

4ℓjj

2

3

4

 $pp \rightarrow W^{\pm}W^{\pm}jj$

 $pp \rightarrow W^{\pm}Zjj$

 $pp \rightarrow ZZii$

ZZ(4*ℓ*) G. Boldrini, 29/03/2025, Moriond EW 2025

SSWW (τ_h)

WZ

EW Production		Final states			
Vector Boson Scatteri	ng SSWW	OSWW	WZ		ZZ
q V W/Z	$ \begin{array}{c} & & \\ & & $	$(\mathcal{W}^+, \mathcal{V}_\ell, q) = (\mathcal{V}_\ell, q) = (\mathcal{V}_$		ℓ^-, q ℓ^+, \bar{q} ℓ^- $\bar{ u}_\ell$	
qW/Z	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	W^+ ℓ^+ ℓ^+ ℓ^- , $W^ V_\ell$		ℓ^{-} ℓ^{+} ℓ^{+}, \bar{q} ν_{ℓ}, q	
Shorthand name	Production	modes	Final state	N. ℓ	Reference
WV	$pp ightarrow W^+W^-jj, W^2$	±W±jj,W±Zjj	ℓνjjjj	1	[28]
SSWW (e, μ)	$pp ightarrow W^{\pm}$	₩±jj	$\ell^{\pm}\ell^{\pm}2\nu jj$	2	[24]
OSWW	$pp ightarrow W^+$	W−jj	$\ell^+\ell^-$ 2 $ u$ jj	2	[26]
ZV	$pp ightarrow W^{\pm}Z_{z}$	jj, ZZjj	2ℓjjjj	2	[29]
SSWW (τ_h)	$pp ightarrow W^{\pm}$	W±jj	$\ell^{\pm} au_{h}^{\pm} 2 \nu j j$	2	[25]
WZ	$pp ightarrow W^{st}$	±Zjj	3ℓvjj	3	[24]
ZZ(4ℓ)	pp ightarrow Z	Zjj	4ℓjj	4	[27]

EW Production	Fin	Final states			
Vector Boson Scatteri	ng SSWW OSWW	WZ		ZZ	
	$ \begin{array}{c} & & \ell^{\pm}, q \\ & & & \nu_{\ell}, \bar{q} \\ & & & \nu_{\ell}, \bar{q} \\ & & & \nu_{\ell}, \bar{q} \\ & & & & \nu_{\ell}, \bar{q} \\ & & & & \nu_{\ell} \\ & & & & \nu_{\ell} \\ & & & & & \nu_{\ell} \\ & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & \nu_{\ell} \\ & & & & & & & & \nu_{\ell} \\ & & & & & & & & & \nu_{\ell} \\ & & & & & & & & & & & & & \\ & & & & $	\bar{q} Z W^{\pm} Q W^{\pm} \bar{q} W^{\pm} W^{\pm} \bar{q}	ℓ^-, q ℓ^+, \bar{q} ℓ^- $\bar{\nu}_{\ell}$ ℓ^- ℓ^+ ℓ^+, \bar{q} ν_{ℓ}, q		
Shorthand name	Production modes	Final state	N. ℓ	Reference	
WV	$pp ightarrow W^+W^-jj, W^\pm W^\pm jj, W^\pm Zjj$	ℓνjjjj	1	[28]	
SSWW (e, μ)	$pp ightarrow W^{\pm}W^{\pm}jj$	$\ell^{\pm}\ell^{\pm}$ 2 ν jj	2	[24]	
OSWW	$pp ightarrow W^+W^- jj$	$\ell^+\ell^-$ 2 $ u$ jj	2	[26]	
ZV	pp $ ightarrow$ W $^{\pm}$ Zjj, ZZjj	2 <i>ℓ</i> jjjj	2	[29]	
SSWW ($ au_h$)	$pp ightarrow W^{\pm}W^{\pm}jj$	$\ell^{\pm} \tau_{h}^{\pm} 2\nu j j$	2	[25]	
WZ	$pp ightarrow W^{\pm}Zjj$	3ℓvjj	3	[24]	
ZZ(4ℓ)	pp ightarrow ZZjj	4ℓjj	4	[27]	

EW Production		Final states			
Vector Boson Scatteri	ng SSWW	OSWW	WZ		ZZ
	$-q \qquad \qquad$	$ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $		ℓ^-, q ℓ^+, \bar{q} ℓ^- $\bar{\nu}_{\ell}$ ℓ^- ℓ^+ ℓ^+, \bar{q} ν_{ℓ}, q	
Shorthand name	Production r	nodes	Final state	N. <i>l</i>	Reference
WV	$pp ightarrow W^+W^-jj, W^\pm$	W±jj, W±Zjj	ℓνjjjj	1	[28]
SSWW (<i>e</i> , μ)	$pp ightarrow W^{\pm}W$	V±jj	$\ell^{\pm}\ell^{\pm}$ 2 ν jj	2	[24]
OSWW	$pp ightarrow W^+ W$	V−jj	$\ell^+\ell^-$ 2 $ u$ jj	2	[26]
ZV	pp $ ightarrow$ W $^{\pm}$ Zj	j, ZZjj	2ℓjjjj	2	[29]
SSWW ($ au_h$)	$pp ightarrow W^{\pm}W$	V±jj	$\ell^{\pm} \tau_{h}^{\pm} 2 \nu j j$	2	[25]
WZ	$pp ightarrow W^{\pm}$	Zjj	3ℓvjj	3	[24]
ZZ(4ℓ)	pp ightarrow ZZ	Zjj	4ℓjj	4	[27]

EW Production	F	Final states			
Vector Boson Scatterin	ng SSWW OSWW	WZ		ZZ	
	$-q \qquad W^{\pm} \qquad V_{\ell}, \bar{q} \qquad W^{+} \qquad V_{\ell}, \bar{q} \qquad W^{+} \qquad \ell^{+} \qquad \ell^{+} \qquad \ell^{+} \qquad V_{\ell}, \bar{q} \qquad V_{\ell}, \bar{q} \qquad V_{\ell}, \bar{q} \qquad V_{\ell} \qquad V$		ℓ^-, q ℓ^+, \bar{q} ℓ^- $\bar{\nu}_\ell$ ℓ^- ℓ^+ ℓ^+, \bar{q} ν_{ℓ}, q		
Shorthand name	Production modes	Final state	N. ℓ	Reference	
WV	$pp ightarrow W^+W^-jj, W^\pm W^\pm jj, W^\pm Zjj$	ℓνjjjj	1	[28]	
SSWW (<i>e</i> , μ)	$pp ightarrow W^{\pm}W^{\pm}jj$	$\ell^\pm\ell^\pm$ 2 $ u$ jj	2	[24]	
OSWW	$pp ightarrow W^+W^-jj$	$\ell^+\ell^-$ 2 $ u$ jj	2	[26]	
ZV	$pp ightarrow W^{\pm}Zjj, ZZjj$	2ℓjjjj	2	[29]	
SSWW (τ_h)	$pp ightarrow W^{\pm}W^{\pm}jj$	$\ell^{\pm} \tau_{h}^{\pm} 2\nu jj$	2	[25]	
WZ	$pp ightarrow W^{\pm}Zjj$	3ℓ <i>νj</i> j	3	[24]	
ZZ(4ℓ)	pp ightarrow ZZjj	4ℓjj	4	[27]	

EW Production		Final states			
Vector Boson Scatteri	ng SSWW	OSWW	WZ		ZZ
	$-q \qquad \qquad$	$ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $		ℓ^-, q ℓ^+, \bar{q} ℓ^- $\bar{\nu}_{\ell}$ ℓ^- ℓ^+ ℓ^+, \bar{q} ν_{ℓ}, q	
Shorthand name	Production r	nodes	Final state	N. <i>l</i>	Reference
WV	$pp ightarrow W^+W^-jj,W^\pm$	W±jj, W±Zjj	ℓνjjjj	1	[28]
SSWW (e, μ)	$pp ightarrow W^{\pm} W$	V±jj	$\ell^{\pm}\ell^{\pm}$ 2 ν jj	2	[24]
OSWW	$pp ightarrow W^+ W$	V−jj	$\ell^+\ell^-$ 2 νjj	2	[26]
ZV	$pp ightarrow W^{\pm}Zjj$	i, ZZjj	2ℓjjjj	2	[29]
SSWW ($ au_{h}$)	$pp ightarrow W^{\pm} V$	V±jj	$\ell^{\pm} \tau_{h}^{\pm} 2 \nu j j$	2	[25]
WZ	$pp ightarrow W^{\pm}$	Zjj	3ℓvjj	3	[24]
ZZ(4ℓ)	pp ightarrow ZZ	<i>ij</i>	4ℓjj	4	[27]

EW Production		Final states			
Vector Boson Scatteri	ng SSWW	OSWW	WZ		ZZ
q V W/Z	$-q \qquad \qquad$	$ \begin{array}{c} & \nu_{\ell,q} \\ & \psi_{\ell}, q \\ & \psi_{\ell}, q \\ & \psi_{\ell}, q \\ & \psi_{\ell} \\ & \psi_{\ell}$		ℓ^-, q ℓ^+, \bar{q} ℓ^- $\bar{\nu}_\ell$ ℓ^- ℓ^+ ℓ^+, \bar{q} ν_ℓ, q	
Shorthand name	Production	modes	Final state	N. <i>l</i>	Reference
WV	$pp ightarrow W^+W^-jj, W^\pm$	™±jj,W±Zjj	ℓνjjjj	1	[28]
SSWW (e, μ)	$pp ightarrow W^{\pm 1}$	₩±jj	$\ell^\pm\ell^\pm$ 2 νjj	2	[24]
OSWW	$pp ightarrow W^+$	W−jj	$\ell^+\ell^-$ 2 $ u$ jj	2	[26]
ZV	$pp ightarrow W^{\pm}Zj$	ij, ZZjj	2 <i>ℓ</i> jjjj	2	[29]
SSWW ($ au_h$)	$pp ightarrow W^{\pm 1}$	N±jj	$\ell^{\pm} \tau_{h}^{\pm} 2 \nu j j$	2	[25]
WZ	$pp ightarrow W^{\pm}$	Zjj	3ℓvjj	3	[24]
ZZ(4ℓ)	$pp \rightarrow Z$	Zjj	4ℓjj	4	[27]

3ℓvjj

4ℓjj

3

4

 $pp \rightarrow W^{\pm}Zjj$

 $pp \rightarrow ZZjj$

ZZ(4*ℓ*) G. Boldrini, 29/03/2025, Moriond EW 2025

WZ

[24]

[27]

Statistical model

Two combination models: one with four parameters of interest (4-POIs) and the other with six parameters of interest (6-POIs). The former provides a **global investigation of VBS** processes. The latter extends the analysis by **probing the expected production charge asymmetry**

Results

		OSWW	SSWW		WZ		ZZ
4-POI	μ	$1.09^{+0.21}_{-0.18} \left(^{+0.20}_{-0.19} \right)$	$1.04_{-0.14}^{-0.14} \begin{pmatrix} +0.14\\ -0.14 \end{pmatrix}$		$1.19^{+0.28}_{-0.23} \left(\substack{+0.29 \\ -0.24} \right)$		$1.15^{+0.44}_{-0.37} \left(^{+0.44}_{-0.37} \right)$
	σ	6.2 (6.1)	≫ 5	(≫ 5)	7.0	(5.5)	4.0 (3.6)
		W^+W^-	W ⁺ W ⁺	W^-W^-	W ⁺ Z	W ⁻ Z	ZZ
6-POI	μ	$1.08^{+0.20}_{-0.19} \left(^{+0.18}_{-0.18} \right)$	$1.11^{+0.17}_{-0.15} \left(^{+0.14}_{-0.16} \right)$	$0.84^{+0.27}_{-0.24} \left(^{+0.28}_{-0.25} \right)$	$1.15^{+0.32}_{-0.27} \left(^{+0.32}_{-0.27} \right)$	$1.30^{+0.47}_{-0.40} \left(^{+0.44}_{-0.37} \right)$	$1.16^{+0.44}_{-0.38} \left(^{+0.42}_{-0.35} \right)$
	σ	6.1 (6.1)	≫ 5 (≫ 5)	4.0 (4.6)	5.7 (4.7)	4.2 (3.2)	4.0 (3.6)

17

1.5

5-10% improvement on signal strengths. Evidence for all charged parameters

2.5

3

2

ιµ ZZ

 $\mu_{W^{+}W^{+}}$

'w⁺7

μ_{wz}

۱µ zz 0

0.5

Prefit log(S/B) plots show good agreement with SM predictions at LO differentially

- ► For all bins of the input templates, prefit log[S(µ = 1)/B] is computed
- ► Postfit yields of signal, backgrounds and data is assigned to the leading signal distribution, in terms of yield → data is not shown twice.
- Uncertainty on background prediction computed with 500 toys

New cross section measurement at $\sqrt{s}=$ 13.6 for Z $\gamma ightarrow \ell\ell\gamma$

- Completes previous measurements at 7,8,13 TeV
- Attention to **nonprompt** γ estimate: leading background and uncertainty
- Fiducial cross-sections in agreement with SM@NLO, per-cent level uncertainties

The SM VBS combination is a first step towards a global interpretation of the VBS processes: polarization, EFT, ...

- 7 channels combined (5 leptonic, 2 semileptonic). Good agreement with SM
- 5-10% improvement on µ measurement. Evidence for all 6 charged parameters

BACKUP

VBS is a fundamental probe to understand the electroweak symmetry breaking mechanism

The presence of the Higgs field regularizes the VBS cross-section by canceling exactly the E^2 behaviour of bosonic-only processes.

A delicate equilibrium: if Higgs boson not SM one (δ), energy-growth of $V_L V_L \rightarrow V_L V_L$ cross section \rightarrow New physics

Final state with **2 VBS-jets and two pairs of oppositely charged isolated leptons** with same flavour compatible with decay products of a *Z* boson.

Regions

- EW significance, total fiducial cross sections and search for aQGCs in ZZ-inclusive region m_{ii} > 100 GeV
- fiducial cross section measurements done in two VBS-enriched regions with Δη > 2.4 and m_{jj} > 400 GeV or m_{jj} > 1 TeV
- One background control region with events from inclusive region not entering the loose VBS-enriched region

Backgrounds

- ▶ Dominant QCD-induced ZZ production $(q\bar{q} \rightarrow ZZ, gg \rightarrow ZZ)$
- ► *ttZ*+jets, *VVZ*+jets irreducible
- Fake and non-prompt leptons mainly from Z+jets but also tt+jets, WZ+jets

PhysLettB812(2021)135992

Region	EW-VBS	QCD-ZZ	Irr.	Z+jets
Inclusive	6.5%	82.3%	8.7%	2.5%
Loose	21.0%	71.7%	5.3%	2.1%
Tight	48.4%	46.2%	3.7%	1.7%

Signal extracted with Matrix Element Discriminant (K_D). Check that

MVAs bring no significant gain

- Evidence for EW VBS production 4.0 σ (3.5 expected)
- Cross section (EW and EW+QCD) measured in three fiducial volumes with VBS-EW simulation at LO and NLO Good agreement with SM

Region	σ (EW) fb
Inclusive	$0.33^{+0.11}_{-0.10}$ (stat) $^{+0.04}_{-0.03}$ (syst)
Loose	$0.180^{+0.070}_{-0.060}$ (stat) $^{+0.021}_{-0.012}$ (syst)
Tight	$0.09^{+0.04}_{-0.03}(\text{stat}) \pm 0.02(\text{syst})$

Limits on Wilson coefficients (W.c.) of transverse (T) dimension-8 operators extracted from m_{4l} distribution. The VBS-ZZ is extremely sensitive to charged (T_0 , T_1 , T_2) and neutral operators (T_8 , T_9)

• **Unitarization** of the scattering amplitude $|A_{SM} + \frac{f_i}{\Lambda^4} A_{\mathcal{O}_8}|$ taken into account

No significant deviations from SM observed

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
$f_{\rm T0}/\Lambda^4$	-0.37	0.35	-0.24(-0.26)	0.22 (0.24)	2.4
$f_{\rm T1}/\Lambda^4$	-0.49	0.49	-0.31(-0.34)	0.31 (0.34)	2.6
f_{T2}/Λ^4	-0.98	0.95	-0.63 (-0.69)	0.59 (0.65)	2.5
$f_{\rm T8}/\Lambda^4$	-0.68	0.68	-0.43(-0.47)	0.43 (0.48)	1.8
$f_{\rm T9}/\Lambda^4$	-1.5	1.5	-0.92 (-1.02)	0.92 (1.02)	1.8

Final state with 2 VBS-jets, two isolated leptons with same charge and MET. A Significant background comes from VBS-WZ \rightarrow measure $W^{\pm}W^{\pm}$ and WZ together

Golden channel: the presence of two same-signed leptons reduces drastically the QCD-induced background

G. Boldrini, 29/03/2025, Moriond EW 2025

Backgrounds

- Dominant non-prompt, estimated from data
- Wrong-sign from mischarge identification mainly from Z+jets
- **EW VBS** *W*[±]*Z* where one Z-lepton is lost
- QCD-induced W[±]W[±] + 2jets and W[±]Z + 2jets
- QCD and EW induced ZZ + 2jets

The Zeppenfeld variable Z_l used to reduce QCD-induced background $Z_X = |\eta_X - \bar{\eta}_j| / |\Delta \eta_{jj}|$. Plot from P. Govoni, C. Mariotti

Maximum Likelihood (ML) fit to 5 regions simultaneously. **Including NLO EW+QCD** corrections ($\mathcal{O}(10\%)$) at order α^7 , $\alpha_S \alpha^6$ to VBS $W^{\pm}W^{\pm}$ and WZ

Observables

- W[±]W[±] signal extracted with 2D variable: m_{ll} and m_{jj}
- Boosted Decision Tree trained for EW VBS WZ
- m_{jj} to measure WZ-QCD and ZZ normalization from data

The VBS EW production of $W^{\pm}W^{\pm}$ is observed with a significance » 5 σ

Leptonic VBS $W^{\pm}Z
ightarrow 3l
u$

The VBS production of WZ is treated as a background to the $W^{\pm}W^{\pm}$ analysis but is an interesting process by itself. Measured together with $W^{\pm}W^{\pm}$.

Backgrounds

- Dominant QCD induced
- Non-prompt estimated from data
- Wrong-sign from mischarge identification mainly from Z+jets
- QCD and EW induced ZZ + 2jets

In order to reduce the overwhelming QCD background a **BDT is employed to extract the signal** trained with reported variables

Variable	Definition
mii	Mass of the leading and trailing jets system
$\Delta \eta_{\rm B}$	Absolute difference in rapidity of the leading and trailing jets
$\Delta \phi_{ii}$	Difference in azimuth angles of the leading and trailing jets
p_T^{μ}	p_T of the leading jet
p_{T}^{i2}	p_T of the trailing jet
nî	Pseudorapidity of the leading jet
	Absolute difference between the rapidities of the Z boson
$ \eta^{\prime\prime} - \eta^{\prime\prime} $	and the lepton from the decay of the W boson
$a^*(i = 1, 2, 2)$	Zeppenfeld variable of the three selected leptons:
$z_{\ell_i}(i = 1, 2, 3)$	$z_{\ell}^{*} = \eta_{\ell} - (\eta_{i1} + \eta_{i2})/2. /\Delta \eta_{ii}$
z*	Zeppenfeld variable of the triple-lepton system
$\Delta \hat{R}_{i1Z}$	The ΔR between the leading jet and the Z boson
Tation i	Transverse component of the vector sum of the bosons
$ p_{\rm T}' /\sum_i p_{\rm T}$	and tagging jets momenta, normalised to their scalar p_T sum

The VBS EW production of $W^{\pm}Z$ is observed with a significance of 6.8 σ (5.3 expected)

Inclusive and differential cross-sections measurements are reported in fiducial phase spaces for $W^{\pm}W^{\pm}$ and $W^{\pm}Z$ with selections targeting VBS-signature. Good agreement with SM

Process	$\sigma \mathcal{B}$ (fb)	Theory prediction (fb)	Theory prediction with NLO corrections (fb)
$EWW^\pm W^\pm$	3.98 ± 0.45 (0.37 ((stat)) ± 0.25 ((syst)))	3.93 ± 0.57	3.31 ± 0.47
$EW\text{+}QCDW^\pm W^\pm$	$\begin{array}{c} 4.42 \pm 0.47 \\ (0.39 \;(\; (\text{stat})) \pm 0.25 \;(\; (\text{syst}))) \end{array}$	4.34 ± 0.69	3.72 ± 0.59
EW WZ	1.81 ± 0.41 (0.39 ((stat)) ± 0.14 ((syst)))	1.41 ± 0.21	1.24 ± 0.18
EW+QCD WZ	4.97 ± 0.46 (0.40 ((stat)) ± 0.23 ((syst)))	4.54 ± 0.90	4.36 ± 0.88
QCD WZ	3.15 ± 0.4 (0.45 ((stat)) ± 0.18 ((syst)))	3.12 ± 0.70	3.12 ± 0.70

$W^{\pm}W^{\pm}$ and $W^{\pm}Z$ Effective Field Theory

Anomalous quartic gauge coupling search carried under EFT framework constraining dimension-8 operators.

Cannot define $m_{\rm VV}$, 2D variable with transverse mass $m_{\rm T}$ and m_{jj}

- 9 operators investigated
- ► No unitarization procedure is applied → Clipping EFT predictions at limit
- No excess of events with respect to the SM is observed

(13 TeV

(13 TeV)

Simultaneous fits of $W_L W_L$ / $W_X W_T$ and $W_L W_X$ / $W_T W_T$ components in signal and control regions

- Polarization fraction of LL in the WW c.m. frame is the largest
- The interference between the polarized samples is expected to be small
- ▶ NLO $\alpha_{\rm S}$ correction equal for all modes → applied to LL, TT, LT
- α_{EW} small for LL \rightarrow applied to TT, uncertainty on LL LT

Leptonic $W^{\pm}W^{\pm} \rightarrow 2\ell 2\nu$ CMS

Two BDTs used to extract signal

- ► Signal BDT: trained to separate W_LW_L vs W_XW_T and W_LW_X vs W_TW_T. Different trainings for the WW and parton-parton c.m. frames with 15 discriminating variables
- Inclusive BDT: separate unpolarized EW W[±]W[±] vs. non VBS events. Use 10 discriminating variables

Joint fit of 5 regions: SSWW-SR, WZ-SR, SSWW-CR, WZ-CR, ZZ-CR

2D distribution to extract signal: Signal BDT : Inclusive BDT

Source of uncertainty	$\mathrm{W}^\pm_\mathrm{L}\mathrm{W}^\pm_\mathrm{L}$ (%)	$\mathrm{W}_X^\pm\mathrm{W}_\mathrm{T}^\pm$ (%)	$\mathrm{W}^\pm_\mathrm{L}\mathrm{W}^\pm_X$ (%)	$W_{T}^{\pm}W_{T}^{\pm}$ (%)
Integrated luminosity	3.2	1.8	1.9	1.8
Lepton measurement	3.6	1.9	2.5	1.8
Jet energy scale and resolution	11	2.9	2.5	1.1
Pileup	0.9	0.1	1.0	0.3
b tagging	1.1	1.2	1.4	1.1
Nonprompt lepton rate	17	2.7	9.3	1.6
Trigger	1.9	1.1	1.6	0.9
Limited sample size	38	3.9	14	5.7
Theory	6.8	2.3	4.0	2.3
Total systematic uncertainty	44	6.6	18	7.0
Statistical uncertainty	123	15	42	22
Total uncertainty	130	16	46	23

The definition of fiducial region for the cross section measurements:

- ▶ Two same-sign leptons with p_T > 20 GeV, $|\eta|$ < 2.5, $m_{\ell\ell}$ > 20 GeV
- ▶ Two jets with p_T > 20 GeV, $|\eta|$ < 4.7, m_{jj} > 500 GeV, $|\Delta\eta_{jj}$ > 2.5

Measured fiducial cross sections for $W_L W_L$, $W_X W_T$, $W_L W_X$, and $W_T W_T$: Good agreement with SM prediction^{*}

Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)	Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)
$W_L^{\pm}W_L^{\pm}$	$0.32^{+0.42}_{-0.40}$	0.44 ± 0.05	$W_L^{\pm}W_L^{\pm}$	$0.24\substack{+0.40 \\ -0.37}$	0.28 ± 0.03
$W_X^{\pm}W_T^{\pm}$	$3.06_{-0.48}^{+0.51}$	3.13 ± 0.35	$W_X^{\pm}W_T^{\pm}$	$3.25_{-0.48}^{+0.50}$	3.32 ± 0.37
$W_L^{\pm}W_X^{\pm}$	$1.20^{+0.56}_{-0.53}$	1.63 ± 0.18	$W_L^{\pm}W_X^{\pm}$	$1.40^{+0.60}_{-0.57}$	1.71 ± 0.19
$W_T^{\pm}W_T^{\pm}$	$2.11^{+0.49}_{-0.47}$	1.94 ± 0.21	$W_T^{\pm}W_T^{\pm}$	$2.03_{-0.50}^{+0.51}$	1.89 ± 0.21
				0100	

Parton-parton c.m. frame

The theoretical predictions including the $\alpha_S \alpha_{EW}^6$ and α^7 corrections to the MG5 LO cross section. The theoretical uncertainties include statistical, PDF, and LO scale uncertainties. \mathcal{B} is the branching fraction for $WW \rightarrow \ell\ell\nu\nu$

WW c.m. frame

Process	Yields in $W^{\pm}W^{\pm}$ SR
$W_{L}^{\pm}W_{L}^{\pm}$	16.0 ± 18.3
$W_{L}^{\frac{1}{2}}W_{T}^{\frac{1}{2}}$	63.1 ± 10.7
$W_T^{\pm}W_T^{\pm}$	110.1 ± 18.1
$ {QCD} W^{\pm} W^{\pm}$	13.8 ± 1.6
Interference $W^{\pm}W^{\pm}$	8.4 ± 0.6
WZ	63.3 ± 7.8
ZZ	0.7 ± 0.2
Nonprompt	213.7 ± 52.3
tVx	7.1 ± 2.2
Other background	26.9 ± 9.9
Total SM	522.9 ± 60.7
Data	524

Leptonic $W^{\pm}W^{\pm} \rightarrow 2\ell 2\nu$ CMS

Profile likelihood ratio as a function of $W_L W_L$ cross section

WW c.m. frame

- σ Obs. (Exp.) = 2.3 (3.11) for $W_L W_X$
- Observed (expected) limit of 1.17 (0.88) fb for W_LW_L production

Parton-parton c.m. frame

- σ Obs. (Exp.) = 2.6 (2.9) for $W_L W_X$
- Observed (expected) limit of 1.06 (0.85) fb for W_LW_L production

Leptonic $W^{\pm}W^{\pm} \rightarrow \tau_h \ell 2 \nu$ CMS

 $W^{\pm}W^{\pm}$ VBS: minimum QCD-induced background. Exploit τ_h channel for the first time in VBS. Final state with 2 VBS-jets, high-pT $e/\mu \tau_h$ and MET.

au Decay	е	μ	π^{-}	π ⁻ π ⁰	3π	Other
BR (%)	18	18	11	25	18	10

Backgrounds

- Dominant Nonprompt (W + jets, QCD) jets misidentified as leptons or τ_h, dedicated CR
- Leptonic tt, normalization constrained in CR
- ► **Opposite sign** (VBS, Z/γ+jets), normalization constrained in CR

Region	EW-VBS	Fake	tī	0S+Z $/\gamma$	QCD-VBS
SR $e au_h$	3.0%	92.2%	0.9%	2.0%	0.3%
SR μau_{h}	3.1%	93.3%	0.5%	1.7%	0.3%
tŦ CR	-	37.1%	61.6%	8.2%	-
OS CR	-	56.4%	7.9%	35.1%	-

Profiled likelihood fit to DNN spectra in SR and OS, Top $CR \rightarrow$ enhance discrimination of EW VBS from backgrounds:

- SR + loose ℓ (nonprompt proxy): W+jets, had/semilep $t\bar{t}$, Z/γ + jets
- SR + tight ℓ : ZZ, OS, leptonic $t\bar{t}$

BSM search in the context of SMEFT up to dimension-8: no deviations from SM

Wilson coefficient		95% CL interval				
		Observed	Expected			
dim-6	c _W	[-0.842, 0.818]	[-0.987, 0.974			
	c _{HW}	[-8.68, 7.60]	[-9.99, 9.05]			
dim-8	f_{T0}	[-1.32, 1.38]	[-1.52, 1.58]			
	f_{M0}	[-13.1, 12.8]	[-14.6, 14.5]			
	f_{S0}	[-15.9, 16.1]	[-17.4, 17.9]			

$$\begin{split} |\mathcal{A}|^{2} &= |\mathcal{A}_{SM}|^{2} + \sum_{\alpha} \frac{C_{\alpha}}{\Lambda^{2}} \cdot 2 \operatorname{Re}(\mathcal{A}_{SM}\mathcal{A}_{Q_{\alpha}}^{\dagger}) + \sum_{\alpha,\beta} \frac{C_{\alpha}\mathcal{C}_{\beta}}{\Lambda^{4}} \cdot (\mathcal{A}_{Q_{\alpha}}\mathcal{A}_{Q_{\beta}}^{\dagger}) \\ &+ \sum_{\alpha} \left[\frac{f_{M}}{\Lambda^{4}} \cdot 2 \operatorname{Re}(\mathcal{A}_{SM}\mathcal{A}_{Q_{\beta}}^{\dagger}) + \frac{f_{1}^{2}}{\Lambda^{8}} \cdot |\mathcal{A}_{Q_{\beta}}|^{2} \right] \text{ First time in VBS!} \end{split}$$

Leptonic $W^+W^- ightarrow 2l_2 \nu$ CMS

ATLAS: $e\mu 2\nu$, **CMS:** $2l2\nu \rightarrow$ different background composition with flavour

- ee, $\mu\mu$ additional DY contribution
- $e\mu$ DY reduced (low contamination from $\tau\tau \rightarrow e\mu$) \rightarrow Driving the sensitivity

Fine regions definition based on Z_{ll} and $\Delta \eta_{jj}$.

Backgrounds

- **Dominant leptonic** *tt* and *tW*
- ▶ DY only in SF categories \rightarrow divided into PU and no-PU
- QCD-induced VBS. No CR for this background but normalization freely floating
- Nonprompt mainly from W+jets, data driven estimate

CR post-fit yeld. Right: e μ , Left ee + $\mu\mu$

Leptonic $W^+W^- \rightarrow 2l 2\nu$ CMS

G. Boldrini, 29/03/2025, Moriond EW 2025

Lepton-flavour dependent signal extraction Different flavour $e\mu$

- DNN trained against tt, tW and QCD-VBS
- Different models for $Z_{ll} < 1$ and $Z_{ll} > 1$

Same flavour ee/ $\mu\mu$

- ▶ 5 m_{jj} bins for $m_{jj} \ge$ 500 GeV and $\Delta \eta \ge$ 3.5
 - 3 bins in $\Delta \eta$ and m_{jj} with lower sensitivity

The VBS EW production of $W^{\pm}W^{\mp}$ is observed with a significance 5.6 σ (5.2 expected)

Two fiducial volumes (inclusive and exclusive) used to measure the process cross-section. **Good agreement** with SM predictions at LO

Fiducial region	σ measured	σ SM@LO
Inclusive	99 \pm 20 fb	89 \pm 5 fb
Exclusive	10.2 \pm 2.0 fb	9.1 \pm 0.6

Semi-leptonic VBS $W^{\pm}V ightarrow l u jj$

R=0.4

WZ

R=0.4

- First LHC evidence of a semileptonic VBS process. Final state with 4 jets, one charged lepton + MET. Search for WV VBS where the $W^{\pm} \rightarrow l^{\pm}\nu_l$ and $V(W^{\pm}/Z) \rightarrow q\bar{q}$
 - **Resolved regime**: Four R = 0.4 jets resolved in ΔR
 - Boosted regime: Two R = 0.4 and one R = 0.8 jets for boosted decays of the V-boson

Harsh multijet background

- ▶ **Dominant W+jets** production \rightarrow data driven based corrections in $p_T^{W,\ell}$ and $p_{T,i}^{VBS}$ in CR.
- semileptonic tt and single top: constrained from data in *b*-enriched CR.
- Non-prompt mainly from QCD-multijet, data driven estimate

R=0.8

Semi-leptonic VBS $W^{\pm}V ightarrow l u jj$

DNN is used for signal extraction (boost/res) which improves the significance of a factor 3 with respect to m_{jj} Results reported for **pure EW VBS** production, for the joint fit with the **QCD-induced background** and in 2 dimensions for μ_{EW} , μ_{QCD} . Measurement agrees with SM expectations

Table 2

Breakdown of the uncertainties in the EW WV VBS signal strength measurement.

Uncertainty source	$\Delta \mu_{\rm EW}$
Statistical	0.12
Limited sample size	0.10
Normalization of backgrounds	0.08
Experimental	
b-tagging	0.05
Jet energy scale and resolution	0.04
Integrated luminosity	0.01
Lepton identification	0.01
Boosted V boson identification	0.01
Total	0.06
Theory	
Signal modeling	0.09
Background modeling	0.08
Total	0.12
Total	0.22

Leptonic $W^+W^- \rightarrow 2l 2\nu$ CMS

Figure: Slide from Mattia Lizzo

The most striking feature by ATLAS analysis is the s/\sqrt{b} of the very last DNN bin, which ultimately is the key ingredient to reach the best possible sensitivity

• CMS last bin: s
$$\sim$$
 14, b \sim 10 $ightarrow$ s/ \sqrt{b} \sim 4.4

ATLAS last bin: s
$$\sim$$
 60, b \sim 35 \rightarrow s/ \sqrt{b} \sim 10.1

Leptonic $W^+W^- \rightarrow 2l_2\nu$ CMS

Very different phase space definition from ATLAS and CMS in the $e\mu$ final state

- Same amount of signal between ATLAS and CMS driving region but less background in CMS
- > ATLAS larger significance driven by discrimination power if the NN model (last bin)
- $\blacktriangleright\,$ Signal (background) fraction in last bin: CMS \sim 9%(0.4%), ATLAS \sim 38%(0.6%)

	CMS signal	region (eµ)	ATLAS signal region		
	$Z_{\ell\ell} < 1$	$Z_{\ell\ell} > 1$	$n_{jet} = 2$	$n_{jet} = 3$	
EWK W^+W^-jj	169 ± 20	70 ± 8	158 ± 27	54 ± 13	
$t\bar{t} + tW$	1629 ± 71	1453 ± 70	2885 ± 214	1851 ± 131	
QCD W^+W^-	327 ± 62	409 ± 77	1214 ± 256	514 ± 121	
W + jets (fake)	107 ± 18	110 ± 16	37 ± 97	19 ± 48	
Z + jets	69 ± 5	102 ± 6	216 ± 62	65 ± 25	
Multiboson	68 ± 7	76 ± 7	101 ± 5	42 ± 3	
Higgs	27 ± 2	20 ± 1	-	—	
MC prediction	2397 ± 99	2240 ± 106	4610 ± 77	2546 ± 48	
DATA	2441	2192	4610	2533	

Figure: Slide from Mattia Lizzo

Observed input distributions in SRs after the combined fit.

Overlap 1/2

Table 14: Summary table of the signal regions defined in the analyses entering the combination along with some of the selections that make them orthogonal to each other

Region	n. l	ℓ veto	SF	$ \sum charge $	b-veto	<i>m</i> ₁₁	MET	n. AK4
WV-SR	1	yes	-	1	yes	-	-	(≥ 4) or $(\geq 2 + \geq 1$ AK8)
SS-SR	2	yes	-	2	yes	> 20 GeV	> 30 GeV	≥ 2
OS-SR(SF)	2	yes	Yes	0	yes	> 120 GeV	> 60 GeV	≥ 2
OS-SR(DF)	2	yes	No	0	yes	> 50 GeV	> 20 GeV	≥ 2
ZV-SR(btag)	2	yes	Yes	0	no	\in [76, 106] GeV	-	(≥ 4) or $(\geq 2 + \geq 1$ AK8)
ZV-SR(bveto)	2	yes	Yes	0	yes	\in [76, 106] GeV	-	(≥ 4) or $(\geq 2 + \geq 1$ AK8)
WZ-SR	3	yes	Yes (Z)	1	yes	\in [76, 106] GeV	> 30 GeV	≥ 2
ZZ-SR	4	yes	Yes	0	-	$\in [60, 120] \text{ GeV}$	-	≥ 2

Table 15: Summary table of the signal regions defined in the analyses entering the combination along with some of the selections that make them orthogonal to each other

Region	n. l	ℓ veto	SF	$ \sum charge $	b-veto	m ₁₁	MET	n. AK4
SS-SR	2	yes	-	2	yes	> 20 GeV	> 30 GeV	≥ 2
OS-SR(SF)	2	yes	Yes	0	yes	> 120 GeV	> 60 GeV	≥ 2
OS-SR(DF)	2	yes	no	0	yes	> 50 GeV	> 20 GeV	≥ 2
ZV-Top	2	yes	no	0	-	\in [76, 106] GeV	-	(≥ 4) or $(\geq 2 + \geq 1$ AK8)
OS-DY(DF)	2	yes	no	0	yes	$\in [50, 80]$ GeV	> 20 GeV	≥ 2
OS-DY(SF)	2	yes	yes	0	yes	\in [76, 106] GeV	> 60 GeV	≥ 2
ZV-DY(bveto)	2	yes	yes	0	yes	\in [76, 106] GeV	-	(≥ 4) or $(\geq 2 + \geq 1$ AK8)
ZV-SR(bveto)	2	yes	yes	0	yes	\in [76, 106] GeV	-	(≥ 4) or $(\geq 2 + \geq 1$ AK8)

Phase space overlaps - 2-lepton b-veto

2 charged leptons regions: b-vetoed Negligible overlap

- SSWW SRs orthogonal to all other b-vetoed regions thanks to $|\sum charge| = 2$
- SSWW(τ_h) OS CR only region **requiring a** τ_h
- ▶ ZV Top CR partially overlap with OS-SR(DF), OS-DY(DF) \rightarrow Removed ZV Top CR
- OSWW DY CR, ZV-DY and ZV-SR different MET requirements and target different kinematic regimes in number of jets: ZV SR $m_V \in [65, 105]$ inverted for ZV DY CR

Region	n. ℓ	ℓ/ au veto	SF	$ \sum charge $	b-veto	m _{ll}	MET	n. AK4
SS-SR	2	yes/yes	-	2	yes	> 20 GeV	> 30 GeV	\geq 2
$SS(\tau)$ -SR	2	yes/no	-	2	yes	-	> 50 GeV	\geq 2
$SS(\tau)$ -OS	2	yes/no	-	о	yes	-	-	\geq 2
OS-SR(SF)	2	yes/-	Yes	о	yes	> 120 GeV	> 60 GeV	\geq 2
OS-SR(DF)	2	yes/-	no	0	yes	> 50 GeV	> 20 GeV	\geq 2
OS-DY(DF)	2	yes/-	no	о	yes	\in [50, 80] GeV	> 20 GeV	\geq 2
OS-DY(SF)	2	yes/-	yes	0	yes	\in [76, 106] GeV	> 60 GeV	≥ 2
ZV-DY(bveto)	2	yes/-	yes	o	yes	\in [76, 106] GeV	-	(\geq 4) or (\geq 2 + \geq 1 AK8)
ZV-SR(bveto)	2	yes/-	yes	o	yes	\in [76, 106] GeV	-	(\geq 4) or (\geq 2 + \geq 1 AK8)

Potential overlaps from 2 charged leptons regions: b-tag Negligible overlap

- SSWW-btag orthogonal to all other b-tag regions thanks to $|\sum charge| = 2$
- SSWW(τ_h) Top CR only region requiring a τ_h
- OSWW(ee, μμ) Top CR orthogonal by SF requirements and m_{ℓℓ} > 120 GeV
- ▶ ZV Top CR partially overlap with OS-SR(DF), OS-DY(DF) \rightarrow Removed ZV Top CR
- ▶ ZV Top CR partially overlap with OS-Top CR ($e\mu$) → Removed ZV Top CR

Region	n. ℓ	ℓ/ au veto	SF	$ \sum charge $	b-veto	m _{ll}	MET	n. AK4
SS-b	2	yes/yes	-	2	no	> 20 GeV	> 30 GeV	≥ 2
SS($ au$)-Top	2	yes/no	-	o	no	-	> 50 GeV	\geq 2
OS-Top(SF)	2	yes/-	yes	0	no	> 120 GeV	> 60 GeV	\geq 2
ZV-DY(btag)	2	yes/-	yes	o	no	\in [76, 106] GeV	-	(\geq 4) or (\geq 2 + \geq 1 AK8)
ZV-SR(btag)	2	yes/-	yes	о	no	\in [76, 106] GeV	-	(\geq 4) or (\geq 2 + \geq 1 AK8)
OS-Top(DF)	2	yes/-	no	0	no	> 50 GeV	> 20 GeV	\geq 2

Phase space overlaps - Other regions

Other regions do not show significant overlaps

- WV CR only regions with 1 charged lepton and veto on additional ones
- ▶ SSWW/WZ ZZ CR not sensitive to EW ZZ \rightarrow 4ℓ but used to measure normalization of QCD-induced part \rightarrow Removed ZZ CR

Region	n. ℓ	ℓ/ au veto	SF	$ \sum charge $	b-veto	m _{ll}	MET	n. AK4
WV-Top	1	yes/-	-	1	no	-	-	(\geq 4) or (\geq 2 + \geq 1 AK8)
WV-Wjets	1	yes/-	-	1	yes	-	-	(\geq 4) or (\geq 2 + \geq 1 AK8)
ZZ-SR	4	yes/-	yes	0	-	\in [60, 120] GeV	-	\geq 2

Overlap 2/2

Table 16: Summary table of the signal regions defined in the analyses entering the combination along with some of the selections that make them orthogonal to each other

Region	n. l	ℓ veto	SF	$ \sum charge $	b-veto	m _{II}	MET	n. AK4
WV-Top	1	yes	\sim	1	no	- []]	-	(≥ 4) or $(\geq 2 + \geq 1$ AK8)
SS-b	2	yes		2	no	> 20 GeV	> 30 GeV	≥ 2
WZ-b	3	yes	yes (Z)	1	no	\in [76, 106] GeV	> 30 GeV	≥ 2
OS-Top(SF)	2	yes	yes	0	no	> 120 GeV	> 60 GeV	≥ 2
ZV-DY(btag)	2	yes	yes	0	no	\in [76, 106] GeV	-	(≥ 4) or $(\geq 2 + \geq 1$ AK8)
ZV-SR(btag)	2	yes	yes	0	no	\in [76, 106] GeV	-	(≥ 4) or $(\geq 2 + \geq 1$ AK8)
ZV-Top	2	yes	no	0	-	∈ [76, 106] GeV	-	(≥ 4) or $(\geq 2 + \geq 1$ AK8)
OS-Top(DF)	2	yes	no	0	no	> 50 GeV	> 20 GeV	≥ 2

Table 17: Summary table of the signal regions defined in the analyses entering the combination along with some of the selections that make them orthogonal to each other

Region	n. l	ℓ veto	SF	$ \sum charge $	b-veto	m_{ll}	MET	n. AK4
WV-Wjets	1	yes	-	1	yes	-	-	(≥ 4) or $(\geq 2 + \geq 1$ AK8)
ZZ-SR	4	yes	yes	0	-	$\in [60, 120] \text{ GeV}$	-	≥ 2
SS-ZZ	4	yes	yes	0	-	\in [76, 106] GeV	-	≥ 2

Post-fit WV

Throw 500 toys from best post-fit value for each of the 4 POI and fit them to evaluate **post-fit**

background uncertainty. * Signal is prefit (r=1) and data is Asimov

Post-fit OSWW

Throw 500 toys from best post-fit value for each of the 4 POI and fit them to evaluate **post-fit background uncertainty**. * Signal is prefit (r=1) and data is Asimov

Post-fit

Throw 500 toys from best post-fit value for each of the 4 POI and fit them to evaluate **post-fit**

background uncertainty. * Signal is prefit (r=1) and data is Asimov

* Signal is prefit (r=1) and data is Asimov

Post-fit

Throw 500 toys from best post-fit value for each of the 4 POI and fit them to evaluate **post-fit background uncertainty**. * Signal is prefit (r=1) and data is Asimov

G. Boldrini, 29/03/2025, Moriond EW^{*}26 gignal is prefit (r=1) and data is Asimov

Correlation tables

Correlation tables

Results

Simultaneous scan of signal strength pairs. Other μ profiled with nuisance parameters. Only mild correlations observed. Good agreement with SM expectations

